Hostname: page-component-669899f699-tpknm Total loading time: 0 Render date: 2025-04-25T18:50:44.073Z Has data issue: false hasContentIssue false

Personalized high-definition transcranial direct current stimulation improves cognition following carbon monoxide poisoning induced amnesia: A case report

Published online by Cambridge University Press:  03 December 2024

Brett S Schneider
Affiliation:
Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
Melvin McInnis
Affiliation:
Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
Victor Di Rita
Affiliation:
Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
Benjamin M Hampstead*
Affiliation:
Mental Health Service, VA Ann Arbor Healthcare System, Ann Arbor, MI, USA Research Program on Cognition and Neuromodulation Based Interventions, Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
*
Corresponding author: Benjamin M Hampstead; Email: [email protected]

Abstract

Objective:

High-definition transcranial direct current stimulation (HD-tDCS) has the potential to improve cognitive functioning following neurological injury and in neurodegenerative conditions. In this case report, we present the first use of HD-tDCS in a person with severe anterograde amnesia following carbon monoxide poisoning.

Method:

The participant underwent two rounds of HD-tDCS that were separated by 3 months (Round 1 = 30 sessions; Round 2 = 31 sessions). We used finite element modeling of the participant’s structural MRI to develop an individualized montage that targeted multiple brain regions involved in memory encoding, as identified by Neurosynth.

Results:

Overall, the participant’s objective cognitive functioning improved significantly following Round 1, declined during the 2 months without HD-tDCS, and again improved following Round 2. Subjective informant reports from family and medical personnel followed this same pattern of improvement following each round with a decline in between rounds. We also provide preliminary evidence of altered brain activity during a learning/memory task using functional near-infrared spectroscopy, which may help establish the physiological effects of HD-tDCS in future work.

Conclusion:

Overall, these findings reinforce the potential value of HD-tDCS as a user-friendly method of enhancing cognition following anoxic/hypoxic brain injury.

Type
Case Report
Creative Commons
This is a work of the US Government and is not subject to copyright protection within the United States. Published by Cambridge University Press on behalf of International Neuropsychological Society.
Copyright
© Department of Veterans Affairs, 2024

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Alam, M., Truong, D. Q., Khadka, N., & Bikson, M. (2016). Spatial and polarity precision of concentric high-definition transcranial direct current stimulation (HD-tDCS). Physics in Medicine and Biology, 61(12), 45064521.CrossRefGoogle ScholarPubMed
Allen, J. S., Tranel, D., Bruss, J., & Damasio, H. (2006). Correlations between regional brain volumes and memory performance in anoxia. Journal of Clinical and Experimental Neuropsychology, 28(4), 457476.CrossRefGoogle ScholarPubMed
Anderson, C. A., & Arciniegas, D. B. (2010). Cognitive sequelae of hypoxic-ischemic brain injury: A review. NeuroRehabilitation, 26(1), 4763.Google ScholarPubMed
Barker, J. W., Aarabi, A., & Huppert, T. J. (2013). Autoregressive model based algorithm for correcting motion and serially correlated errors in fNIRS. Biomedical Optics Express, 4(8), 1366-00–1379.CrossRefGoogle ScholarPubMed
Bikson, M., & Rahman, A. (2013). Origins of specificity during tDCS: Anatomical, activity-selective, and input-bias mechanisms. Frontiers in Human Neuroscience, 7, 688.CrossRefGoogle ScholarPubMed
Buckley, N. A., Juurlink, D. N., Isbister, G., Bennett, M. H., Lavonas, E. J., Cochrane Injuries Group (2011). Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database of Systematic Reviews, 2011(4), CD002041.Google ScholarPubMed
Charvet, L. E., Shaw, M. T., Bikson, M., Woods, A. J., & Knotkova, H. (2020). Supervised transcranial direct current stimulation (tDCS) at home: A guide for clinical research and practice. Brain Stimulation, 13(3), 686693.CrossRefGoogle Scholar
Chenoweth, J. A., Albertson, T. E., & Greer, M. R. (2021). Carbon monoxide poisoning. Critical Care Clinics, 37(3), 657672.CrossRefGoogle ScholarPubMed
Craver, C. F., Graham, B., & Rosenbaum, R. S. (2014). Remembering mr B. Cortex, 59, 153184.CrossRefGoogle ScholarPubMed
Datta, A., Bansal, V., Diaz, J., Patel, J., Reato, D., & Bikson, M. (2009). Gyri-precise head model of transcranial direct current stimulation: Improved spatial focality using a ring electrode versus conventional rectangular pad. Brain Stimulation, 2(4), 201207.e1.CrossRefGoogle ScholarPubMed
Di Paola, M., Caltagirone, C., Fadda, L., Sabatini, U., Serra, L., Carlesimo, G. A. (2008). Hippocampal atrophy is the critical brain change in patients with hypoxic amnesia. Hippocampus, 18(7), 719728.CrossRefGoogle Scholar
Duff, K. (2012). Evidence-based indicators of neuropsychological change in the individual patient: Relevant concepts and methods. Archives of Clinical Neuropsychology, 27(3), 248261.CrossRefGoogle Scholar
Eilam-Stock, T., George, A., & Charvet, L. E. (2021). Cognitive telerehabilitation with transcranial direct current stimulation improves cognitive and emotional functioning following a traumatic brain injury: A case study. Archives of Clinical Neuropsychology, 36(3), 442453.CrossRefGoogle ScholarPubMed
Elsner, B., Kugler, J., & Mehrholz, J. (2020). Transcranial direct current stimulation (tDCS) for improving aphasia after stroke: A systematic review with network meta-analysis of randomized controlled trials. Journal of NeuroEngineering and Rehabilitation, 17(1), 88.CrossRefGoogle ScholarPubMed
Esmaeilpour, Z., Shereen, A. D., Ghobadi‐Azbari, P., Datta, A., Woods, A. J., Ironside, M., O’Shea, J., Kirk, U., Bikson, M., & Ekhtiari, H. (2020). Methodology for tDCS integration with fMRI. Human Brain Mapping, 41(7), 19501967.CrossRefGoogle ScholarPubMed
Farnad, L., Ghasemian-Shirvan, E., Mosayebi-Samani, M., Kuo, M.-F., & Nitsche, M. A. (2021). Exploring and optimizing the neuroplastic effects of anodal transcranial direct current stimulation over the primary motor cortex of older humans. Brain Stimulation, 14(3), 622634.CrossRefGoogle ScholarPubMed
Fishburn, F. A., Ludlum, R. S., Vaidya, C. J., & Medvedev, A. V. (2019). Temporal derivative distribution repair (TDDR): A motion correction method for fNIRS. NeuroImage, 184, 171179.CrossRefGoogle ScholarPubMed
Garcia, S., & Hampstead, B. M. (2022). HD-tDCS as a neurorehabilitation technique for a case of post-anoxic leukoencephalopathy. Neuropsychological Rehabilitation, 32(6), 946966.CrossRefGoogle ScholarPubMed
Hampstead, B. M., Ehmann, M., & Rahman-Filipiak, A. (2020). Reliable use of silver chloride HD-tDCS electrodes. Brain Stimulation: Basic, Translational, and Clinical Research in Neuromodulation, 13(4), 10051007.CrossRefGoogle ScholarPubMed
Hampstead, B. M., Sathian, K., Bikson, M., & Stringer, A. Y. (2017). Combined mnemonic strategy training and high-definition transcranial direct current stimulation for memory deficits in mild cognitive impairment. Alzheimer’s & Dementia: Translational Research & Clinical Interventions, 3(3), 459470.Google ScholarPubMed
Hampstead, B. M., Stringer, A. Y., Stilla, R. F., Amaraneni, A., & Sathian, K. (2011). Where did I put that? Patients with amnestic mild cognitive impairment demonstrate widespread reductions in activity during the encoding of ecologically relevant object-location associations. Neuropsychologia, 49(9), 23492361.CrossRefGoogle ScholarPubMed
Hampstead, B. M., Stringer, A. Y., Stilla, R. F., Deshpande, G., Hu, X., Moore, A. B., & Sathian, K. (2011). Activation and effective connectivity changes following explicit-memory training for face-name pairs in patients with mild cognitive impairment: A pilot study. Neurorehabilitation and Neural Repair, 25(3), 210222.CrossRefGoogle ScholarPubMed
Hampstead, B. M., Khoshnoodi, M., Yan, W., Deshpande, G., & Sathian, K. (2016). Patterns of effective connectivity during memory encoding and retrieval differ between patients with mild cognitive impairment and healthy older adults. NeuroImage, 124, 9971008.CrossRefGoogle ScholarPubMed
Hopkins, R. O., & Bigler, E. D. (2012). Neuroimaging of anoxic injury: Implications for neurorehabilitation. NeuroRehabilitation, 31(3), 319329.Google ScholarPubMed
Huang, Y., Datta, A., Bikson, M., & Parra, L. C. (2019). Realistic volumetric-approach to simulate transcranial electric stimulation—ROAST—a fully automated open-source pipeline. Journal of Neural Engineering, 16(5), 056006.CrossRefGoogle ScholarPubMed
Huppert, T. J. (2016). Commentary on the statistical properties of noise and its implication on general linear models in functional near-infrared spectroscopy. Neurophotonics, 3(1), 010401-0–10401.CrossRefGoogle ScholarPubMed
Iglesias, J. E., Billot, B., Balbastre, Y. B. l, Magdamo, C., Arnold, S. E., Das, S., Edlow, B. L., Alexander, D. C., Golland, P., & Fischl, B. (2023). SynthSR: A public AI tool to turn heterogeneous clinical brain scans into high-resolution T1-weighted images for 3D morphometry. Science Advances, 9(5), eadd3607.CrossRefGoogle ScholarPubMed
Indahlastari, A., Hardcastle, C., Albizu, A., Alvarez-Alvarado, S., Boutzoukas, E. M., Evangelista, N. D., Woods, A. J., & (2021). A systematic review and meta-analysis of transcranial direct current stimulation to remediate age-related cognitive decline in healthy older adults. Neuropsychiatric Disease and Treatment Volume, 17, 971990.CrossRefGoogle ScholarPubMed
Iordan, A. D., Ryan, S., Tyszkowski, T., Peltier, S. J., Rahman-Filipiak, A., & Hampstead, B. M. (2022). High-definition transcranial direct current stimulation enhances network segregation during spatial navigation in mild cognitive impairment. Cerebral Cortex, 32(22), 52305241.CrossRefGoogle ScholarPubMed
Iverson, G. L. (2001). Interpreting change on the WAIS-III/WMS-III in clinical samples. Archives of Clinical Neuropsychology.Google ScholarPubMed
Kim, H. (2019). Neural activity during working memory encoding, maintenance, and retrieval: A network-based model and meta-analysis. Human Brain Mapping, 40(17), 49124933.CrossRefGoogle ScholarPubMed
Kuo, H.-I., Bikson, M., Datta, A., Minhas, P., Paulus, W., Kuo, M.-F., & Nitsche, M. A. (2013). Comparing cortical plasticity induced by conventional and high-definition 4 × 1 ring tDCS: A neurophysiological study. Brain Stimulation, 6(4), 644648.CrossRefGoogle ScholarPubMed
Lengu, K., Ryan, S., Peltier, S. J., Tyszkowski, T., Kairys, A., Giordani, B., Hampstead, B. M., & Hornberger, M. (2021). Effects of HD-tDCS on local GABA and glutamate levels among older adults with and without mild cognitive impairment: An exploratory study. Journal of Alzheimer’s Disease, 84(3), 10911102.CrossRefGoogle ScholarPubMed
Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high-resolution EEG and ERP measurements. Clinical Neurophysiology, 112(4), 713719.CrossRefGoogle ScholarPubMed
Patel, R., Dawidziuk, A., Darzi, A., Singh, H., & Leff, D. R. (2020). Systematic review of combined functional near-infrared spectroscopy and transcranial direct-current stimulation studies. Neurophotonics, 7(02), 1.CrossRefGoogle ScholarPubMed
Pilloni, G., Vogel-Eyny, A., Lustberg, M., Best, P., Malik, M., Walton-Masters, L., George, A., Mirza, I., Zhovtis, L., Datta, A., Bikson, M., Krupp, L., & Charvet, L. (2022). Tolerability and feasibility of at-home remotely supervised transcranial direct current stimulation (RS-tDCS): Single-center evidence from 6,779 sessions. Brain Stimulation, 15(3), 707716.CrossRefGoogle ScholarPubMed
Rahman-Filipiak, A., Reckow, J. M., Woods, A. J., Nitsche, M. A., & Hampstead, B. M. (2019). The use and efficacy of transcranial direct current stimulation in individuals with neurodegenerative dementias. In Nitsche, M. A., Bikson, M., Knotkova, H., Woods, A. J. (Eds.), Practical Guide to Transcranial Direct Current Stimulation (pp. 473507). Springer.CrossRefGoogle Scholar
Randolph, C. (1998). Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Psychological Corporation.Google ScholarPubMed
Reckow, J., Rahman-Filipiak, A., Garcia, S., Schlaefflin, S., Calhoun, O., DaSilva, A. F., Bikson, M., & Hampstead, B. M. (2018). Tolerability and blinding of 4x1 high-definition transcranial direct current stimulation (HD-tDCS) at two and three milliamps. Brain Stimulation, 11(5), 991997.CrossRefGoogle ScholarPubMed
Rose, J. J., Wang, L., Xu, Q., McTiernan, C. F., Shiva, S., Tejero, J., & Gladwin, M. T. (2017). Carbon monoxide poisoning: Pathogenesis, management, and future directions of therapy. American Journal of Respiratory and Critical Care Medicine, 195(5), 596606.CrossRefGoogle ScholarPubMed
Santosa, H., Fishburn, F., Zhai, X., & Huppert, T. J. (2019). Investigation of the sensitivity-specificity of canonical- and deconvolution-based linear models in evoked functional near-infrared spectroscopy. Neurophotonics, 6(2), 025009.Google ScholarPubMed
Santosa, H., Zhai, X., Fishburn, F., & Huppert, T. (2018). The NIRS brain analyzIR toolbox. Algorithms, 11(5), 73.CrossRefGoogle ScholarPubMed
Stagg, C. J., Antal, A., & Nitsche, M. A. (2018). Physiology of transcranial direct current stimulation. The Journal of ECT, 34(3), 144152.CrossRefGoogle ScholarPubMed
Watt, S., Prado, C. E., & Crowe, S. F. (2018). Immediate and delayed neuropsychological effects of carbon monoxide poisoning: A meta-analysis. Journal of the International Neuropsychological Society, 24(4), 405415.CrossRefGoogle ScholarPubMed
Weaver, L. K. (2009). Carbon monoxide poisoning. New England Journal of Medicine, 360(12), 12171225.CrossRefGoogle ScholarPubMed
Wolstenholme, N., & Moore, B. (2010). The clinical manifestations of anoxic brain injury. Progress in Neurology and Psychiatry, 14(4), 813.CrossRefGoogle Scholar
Wright, K. L., Kirwan, C. B., Gale, S. D., Levan, A. J., & Hopkins, R. O. (2017). Long-term cognitive and neuroanatomical stability in patients with anoxic amnesia: A case report. Brain Injury, 31(5), 709716.CrossRefGoogle ScholarPubMed
Yan, R., Zhang, X., Li, Y., Hou, J., Chen, H., & Liu, H. (2020). Effect of transcranial direct-current stimulation on cognitive function in stroke patients: A systematic review and meta-analysis. PLOS ONE, 15(6), e0233903.CrossRefGoogle ScholarPubMed
Yarkoni, T., Poldrack, R. A., Nichols, T. E., Van Essen, D. C., & Wager, T. D. (2011). Large-scale automated synthesis of human functional neuroimaging data. Nature Methods, 8(8), 665670.CrossRefGoogle ScholarPubMed
Zoungas, S., Patel, A., Chalmers, J., de Galan, B. E., Li, Q., Billot, L., Woodward, M., Ninomiya, T., Neal, B., MacMahon, S., Grobbee, D. E., Kengne, A. P., Marre, M., & Heller, S. (2010). Severe hypoglycemia and risks of vascular events and death. New England Journal of Medicine, 363(15), 14101418.CrossRefGoogle ScholarPubMed
Supplementary material: File

Schneider et al. supplementary material

Schneider et al. supplementary material
Download Schneider et al. supplementary material(File)
File 27.6 KB