Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-23T04:09:21.311Z Has data issue: false hasContentIssue false

On pure word deafness, temporal processing, and the left hemisphere

Published online by Cambridge University Press:  01 July 2005

GERRY A. STEFANATOS
Affiliation:
Moss Rehabilitation Research Institute, Albert Einstein Medical Center, Philadelphia, Pennsylvania
ARTHUR GERSHKOFF
Affiliation:
Moss Rehabilitation Hospital, Albert Einstein Medical Center, Philadelphia, Pennsylvania
SEAN MADIGAN
Affiliation:
Department of Linguistics, University of Delaware, Wilmington, Delaware

Abstract

Pure word deafness (PWD) is a rare neurological syndrome characterized by severe difficulties in understanding and reproducing spoken language, with sparing of written language comprehension and speech production. The pathognomonic disturbance of auditory comprehension appears to be associated with a breakdown in processes involved in mapping auditory input to lexical representations of words, but the functional locus of this disturbance and the localization of the responsible lesion have long been disputed. We report here on a woman with PWD resulting from a circumscribed unilateral infarct involving the left superior temporal lobe who demonstrated significant problems processing transitional spectrotemporal cues in both speech and nonspeech sounds. On speech discrimination tasks, she exhibited poor differentiation of stop consonant-vowel syllables distinguished by voicing onset and brief formant frequency transitions. Isolated formant transitions could be reliably discriminated only at very long durations (>200 ms). By contrast, click fusion threshold, which depends on millisecond-level resolution of brief auditory events, was normal. These results suggest that the problems with speech analysis in this case were not secondary to general constraints on auditory temporal resolution. Rather, they point to a disturbance of left hemisphere auditory mechanisms that preferentially analyze rapid spectrotemporal variations in frequency. The findings have important implications for our conceptualization of PWD and its subtypes. (JINS, 2005, 11, 456–470.)

Type
NEUROBEHAVIORAL GRAND ROUNDS
Copyright
© 2005 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Albert, M.L. & Bear, D. (1974). Time to understand. A case study of word deafness with reference to the role of time in auditory comprehension. Brain, 97, 373384.Google Scholar
Allport, D.A. & Funnell, E. (1981). Components of the mental lexicon. Philosophical Transactions of the Royal Society of London, 295B, 397410.Google Scholar
Arlinger, S., Elberling, C., Bak, C., Kofoed, B., Lebech, J., & Saermark, K. (1982). Cortical magnetic fields evoked by frequency glides of a continuous tone. Electroencephalography and Clinical Neurophysiology, 54, 642653.Google Scholar
Auerbach, S.H., Allard, T., Naeser, M., Alexander, M.P., & Albert, M.L. (1982). Pure word deafness. Analysis of a case with bilateral lesions and a defect at the prephonemic level. Brain, 105, 271300.Google Scholar
Baker, E., Blumstein, S.E., & Goodglass, H. (1981). Interaction between phonological and semantic factors in auditory comprehension. Neuropsychologia, 19, 116.Google Scholar
Ballet, G. (1903). Un cas de surdité verbale par lesion sous-nucleaire (sous-corticale) avec atrophie secondaire de l'ecorce de la premiere temporale. Revue Neurologique, 11, 685688.Google Scholar
Barrett, A. (1910). A case of pure word-deafness with autopsy. Journal of Nervous and Mental Disease, 37, 7392.Google Scholar
Bauer, R.M. & Zawacki, T. (2000). Auditory agnosia and amusia. In M.J. Farah and T.E. Feinberg (Eds.), Patient-Based Approaches to Cognitive Neuroscience Issues in Clinical and Cognitive Neuropsychology (pp. 97106). Cambridge, MA: The MIT Press.
Benton, A.L., Hamsher, K., Varney, N.R., & Spreen, O. (1983). Phoneme Discrimination Test (Vol. New York). New York: Oxford University Press.
Best, W. & Howard, D. (1994). Word sound deafness resolved? Aphasiology, 8, 223256.Google Scholar
Binder, J.R., Frost, J.A., Hammeke, T.A., Bellgowan, P.S., Springer, J.A., Kaufman, J.N., & Possing, E.T. (2000). Human temporal lobe activation by speech and nonspeech sounds. Cerebral Cortex, 10, 512528.Google Scholar
Boatman, D., Lesser, R.P., & Gordon, B. (1995). Auditory speech processing in the left temporal lobe: An electrical interference study. Brain and Language, 51, 269290.Google Scholar
Bramwell, E. (1927). A case of cortical deafness. Brain, 50, 579580.Google Scholar
Buchman, A.S., Garron, D.C., Trost-Cardamone, J.E., Wichter, M.D., & Schwartz, M. (1986). Word deafness: One hundred years later. Journal of Neurology, Neurosurgery and Psychiatry, 49, 489499.Google Scholar
Buchtel, H.A. & Stewart, J.D. (1989). Auditory agnosia: Apperceptive or associative disorder? Brain and Language, 37, 1225.Google Scholar
Caramazza, A., Berndt, R.S., & Basili, A.G. (1983). The selective impairment of phonological processing. Brain and Language, 18, 128174.Google Scholar
Caramazza, A., Chialant, D., Capasso, R., & Miceli, G. (2000). Separable processing of consonants and vowels. Nature, 403, 428430.Google Scholar
Cole, M.F. & Cole, M. (1971). Review of the question of aphasia: What to think about subcortical aphasias (pure aphasias). In Pierre Marie's papers on speech disorders (pp. 75102). New York: Hafner.
Collins, M.J. & Cullen, J.K., Jr. (1978). Temporal integration of tone glides. Journal of the Acoustic Society of America, 63, 469473.Google Scholar
Coslett, H.B., Brashear, H.R., & Heilman, K.M. (1984). Pure word deafness after bilateral primary auditory cortex infarcts. Neurology, 34, 347352.Google Scholar
Croisile, B., Laurent, B., Michel, D., Le Bars, D., Cinotti, L., & Mauguiere, F. (1991). Different clinical types of degenerative aphasia. Revue Neurologique, 147, 192199.Google Scholar
Damasio, H. & Damasio, A.R. (1980). Dichotic listening pattern in conduction aphasia. Brain and Language, 10, 281286.Google Scholar
Déjerine, J. & Serieux, P. (1898). Un cas de surdité verbale pure terminée par aphasie sensorielle. Revue de Psychiatrie, 2, 711.Google Scholar
Delattre, P., Lieberman, A., Cooper, F., & Gerstman, L. (1952). An experimental study of the acoustic determinants of vowel color. Word, 8, 195.Google Scholar
Denes, G. & Semenza, C. (1975). Auditory modality-specific anomia: Evidence from a case of pure word deafness. Cortex, 11, 401411.Google Scholar
DeRenzi, E.F.P. (1978). The Token Test: A sensitive test to detect receptive disturbances in aphasics. Brain, 85, 655678.Google Scholar
Diehl, R.L. (1981). Feature detectors for speech: A critical reappraisal. Psychological Bulletin, 89, 118.Google Scholar
Donaldson, J.O., Hale, M.S., & Klau, M. (1981). A case of reversible pure-word deafness during lithium toxicity. American Journal of Psychiatry, 138, 242243.Google Scholar
Ellis, A.W. (1984). Introduction to Byrom Bramwell's (1897) case of word meaning deafness. Cognitive Neuropsychology, 1, 245248.Google Scholar
Ellis, A. & Young, A.W. (1988). Human Cognitive Neuropsychology. London: Lawrence Erlbaum.
Fant, G. (1973). Stops in CV Syllables, in Speech Sounds and Features. Cambridge, MA: MIT Press.
Franklin, S. (1989). Dissociations in auditory word comprehension: Evidence from fluent aphasic patients. Aphasiology, 3, 189207.Google Scholar
Franklin, S., Turner, J., Lambon Ralph, M., Morris, J., & Bailey, P.J. (1996). A distinctive case of word meaning deafness? Cognitive Neuropsychology, 13, 11391162.Google Scholar
Frauenfelder, U. & Floccia, C. (1998). The Recognition of Spoken Word. New York: Language Comprehension.
Fung, V.S., Sue, C.M., & Somerville, E.R. (2000). Paroxysmal word deafness secondary to focal epilepsy. Neurology, 54, 533534.Google Scholar
Gardner, R.B. & Wilson, J.P. (1979). Evidence for direction-specific channels in the processing of frequency modulation. Journal of the Acoustical Society of America, 66, 704709.Google Scholar
Gazzaniga, M., Glass, A., Sarno, M., & Posner, J. (1973). Pure word deafness and hemispheric dynamics: A case history. Cortex, 9, 136143.Google Scholar
Godefroy, O., Leys, D., Furby, A., De Reuck, J., Daems, C., Rondepierre, P., Debachy, B., Deleume, J.F., & Desaulty, A. (1995). Psychoacoustical deficits related to bilateral subcortical hemorrhages. A case with apperceptive auditory agnosia. Cortex, 31, 149159.Google Scholar
Goldstein, K. (1948). Language and Language Disturbance. New York: Grune & Stratton.
Goldstein, M. (1974). Auditory agnosia for speech (pure word-deafness): A historical review with current implications. Brain and Language, 1, 195204.Google Scholar
Goldstein, M., Brown, M., & Hollander, J. (1975). Auditory agnosia and cortical deafness: Analysis of a case with three-year follow-up. Brain and Language, 2, 324232.Google Scholar
Gow, D.W., Jr. & Caplan, D. (1996). An examination of impaired acoustic-phonetic processing in aphasia. Brain and Language, 52, 386407.Google Scholar
Green, G.G. & Kay, R.H. (1973). The adequate stimuli for channels in the human auditory pathways concerned with the modulation present in frequency-modulated tones. Journal of Physiology. London, 234, 5052.Google Scholar
Griffiths, T.D., Rees, A., & Green, G.G. (1999). Disorders of human complex sound processing. Neurocase, 5, 365378.Google Scholar
Hamanaka, H., Asano, K., Morimune, S., & Seko, K. (1980). Ein fall von reiner worttaubheit ohne akustische agnosie. Studie Phonologica, 14, 1624.Google Scholar
Hari, R. & Makela, J.P. (1986). Neuromagnetic responses to frequency modulation of a continuous tone. Acta OtolaryngologiaSuppl, 432, 2632.Google Scholar
Hart, H.C., Palmer, A.R., & Hall, D.A. (2003). Amplitude and frequency-modulated stimuli activate common regions of human auditory cortex. Cerebral Cortex, 13, 773781.Google Scholar
Head, H. (1926). Aphasia and Kindred Disorders of Speech. Cambridge: Cambridge University Press.
Henschen, S. (1919). On the hearing sphere. Acta Oto-laryngologia, 1, 423486.Google Scholar
Henschen, S. (1920). Klinische und anatomische Beitrage zu Pathologie des Gehirns. Stockholm: Nordiska Bokhandeln.
Hirsh, I.J. (1975). Temporal aspects of hearing. In D. B. Tower (Ed.), The Nervous System, Volume 3: Human Communication Disorders (pp. 157162). New York: Raven Press.
Hugdahl, K., Wester, K., & Asbjornsen, A. (1991). Auditory neglect after right frontal lobe and right pulvinar thalamic lesions. Brain and Language, 41, 465473.Google Scholar
Hugdahl, K., & Asbjornsen. A. (N.d.). Dichotic Listening with CV—Syllables Manual. Department of Biological and Medical Psychology, University of Bergen: Norway.
Jacobs, B.J. & Schneider, S.L. (2003). Analysis of lexical-semantic processing and extensive neurological, electrophysiological, speech perception, and language evaluation following unilateral left hemisphere lesion: Pure word deafness? Aphasiology, 17, 123141.Google Scholar
Jastak, S.F. & Wilkinson, G.S. (1992). The Wide Range Achievement Test–Third Edition. Wilmington, DE: Wide Range, Inc.
Jerger, J., Lovering, L., & Wertz, M. (1972). Auditory disorder following bilateral temporal lobe insult: Report of a case. Journal of Speech and Hearing Disorders, 37, 523535.Google Scholar
Joanisse, M.F. & Gati, J.S. (2003). Overlapping neural regions for processing rapid temporal cues in speech and nonspeech signals. Neuroimage, 19, 6479.Google Scholar
Johnsrude, I.S., Zatorre, R.J., Milner, B.A., & Evans, A.C. (1997). Left-hemisphere specialization for the processing of acoustic transients. Neuroreport, 8, 17611765.Google Scholar
Kamei, H., Nakane, K., Nishimaru, K., Shiraishi, K., & Matuo, M. (1981). Pure word deafness after cerebrovascular disease: A case study. Clinical Neurology, 21, 402408.Google Scholar
Kanshepolsky, J., Kelley, J.J., & Waggener, J.D. (1973). A cortical auditory disorder: Clinical, audiologic and pathologic aspects. Neurology, 23, 699705.Google Scholar
Kay, J., Lesser, R., & Coltheart, M. (1992). Psycholinguistic Assessment of Language Processing in Aphasia (PALPA). Hove, UK: Erlbaum (UK) Taylor & Francis.
Kay, R.H. (1974). The physiology of auditory frequency analysis. Progress in Biophysics and Molecular Biology, 28, 109188.Google Scholar
Kay, R.H. (1982). Hearing of modulation in sounds. Physiological Review, 62, 894975.Google Scholar
Kay, R.H. & Matthews, D.R. (1972). On the existence in human auditory pathways of channels selectively tuned to the modulation present in frequency-modulated tones. Journal of Physiology, 225, 657677.Google Scholar
Kazui, S., Naritomi, H., Sawada, T., Inoue, N., & Okuda, J. (1990). Subcortical auditory agnosia. Brain and Language, 38, 476487.Google Scholar
Keating, P. & Blumstein, S.E. (1978). Effects of transition length on the perception of stop consonants. Journal of the Acoustical Society of America, 64, 5764.Google Scholar
Kertesz, A. (1982). The Western Aphasia Battery. New York: Grune & Stratton.
Klein, R. & Harper, J. (1956). The problem of agnosia in the light of a case of pure word deafness. Journal of Mental Science, 102, 112120.Google Scholar
Kohn, S.E. & Friedman, R.B. (1986). Word-meaning deafness: A phonological-semantic dissociation. Cognitive Neuropsychology, 3, 291308.Google Scholar
Kussmaul, A. (1877). Disturbances of speech. In H. von Ziemssien (Ed.), Cyclopedia of the Practice of Medicine (pp. 581875). New York: William Wood and Company.
Ladefoged, P. (2001). Vowels and Consonants: An Introduction to the Sounds of Languages. Oxford: Blackwell.
Lhermitte, F., Chain, F., Escourelle, R., Ducarne, B., Pillon, A., & Chedru, F. (1971). Etudes des troubles perceptif et auditif dans les lésions temporales bilatérales. Revue Neurologique, 124, 327351.Google Scholar
Liberman, A.M., Cooper, F.S., Shankweiler, D.P., & Studdert-Kennedy, M. (1967). Perception of the speech code. Psychological Review, 74, 431461.Google Scholar
Lichtheim, L. (1885). On aphasia. Brain, 7, 433484.Google Scholar
Liepmann, H. & Storch, E. (1902). Der mikroskopische Gehirnbefund bei dem Fall Gorstelle. Monatsschrift fur Psychiatrie und Neurologie, 11, 115120.Google Scholar
Linebaugh, C.W. (1978). Dichotic ear preference in aphasia: Another view. Journal of Speech and Hearing Research, 21, 598602.Google Scholar
Luria, A.R. (1966). Higher Cortical Functions in Man. New York: Basic Books.
MacGinitie, W.H. & MacGinitie, R.K. (1978). Gates-MacGinitie Reading Tests–2nd Edition. Itasca, IL: Riverside Publishing.
Makela, J.P., Hari, R., & Linnankivi, A. (1987). Different analysis of frequency and amplitude modulations of a continuous tone in the human auditory cortex: A neuromagnetic study. Hearing Research, 27, 257264.Google Scholar
Marie, P. (1906). Revision de la question de l'aphasie: Que faut-il penser des aphasies sous-corticales (aphasies pures)? La Semaine Medicale (Paris), 26, 493500.Google Scholar
Marslen-Wilson, W. & Warren, P. (1994). Levels of perceptual representation and process in lexical access: Words, phonemes, and features. Psychological Review, 101, 653675.Google Scholar
McCarthy, P.A., Montgomery, A.A., & Mueller, H.G. (1990). Decision making in rehabilitative audiology. Journal of the American Academy of Audiology, 1, 2330.Google Scholar
McClelland, J.L. & Elman, J.L. (1986). The TRACE model of speech perception. Cognitive Neuropsychology, 18, 186.Google Scholar
Mendez, M.F. & Geehan, G.R., Jr. (1988). Cortical auditory disorders: Clinical and psychoacoustic features. Journal of Neurology, Neurosurgery, and Psychiatry, 51, 19.Google Scholar
Mesulam, M.M. (1982). Slowly progressive aphasia without generalized dementia. Annals of Neurology, 11, 592598.Google Scholar
Metz-Lutz, M.N. & Dahl, E. (1984). Analysis of word comprehension in a case of pure word deafness. Brain and Language, 23, 1325.Google Scholar
Miceli, G. (1982). The processing of speech sounds in a patient with cortical auditory disorder. Neuropsychologia, 20, 520.Google Scholar
Miceli, G., Caltagirone, C., Gainotti, C., & Payer-Rigo, P. (1978). Discrimination of voice versus place contrasts in aphasia. Brain and Language, 6, 4751.Google Scholar
Miller, G. & Taylor, J. (1948). Perception of repeated bursts of noise. Journal of the Acoustical Society of America, 20, 171182.Google Scholar
Moore, B.D., III & Papanicolaou, A.C. (1988). Dichotic-listening evidence of right-hemisphere involvement in recovery from aphasia following stroke. Journal of Clinical and Experimental Neuropsychology, 10, 380386.Google Scholar
Moore, B.D., III & Papanicolaou, A.C. (1992). Dichotic listening in aphasics: Response to Niccum and Speaks. Journal of Clinical and Experimental Neuropsychology, 14, 641645.Google Scholar
Motomura, N., Yamadori, A., Mori, E., & Tamaru, F. (1986). Auditory agnosia. Analysis of a case with bilateral subcortical lesions. Brain, 109, 379391.Google Scholar
Naglieri, J.A. & Bardos, A.N. (1997). GAMA: General Ability Measure for Adults. Minneapolis, MN: National Computer Systems Inc.
Niccum, N., Selnes, O.A., Speaks, C., Risse, G.L., & Rubens, A.B. (1986). Longitudinal dichotic listening patterns for aphasic patients. III. Relationship to language and memory variables. Brain and Language, 28, 303317.Google Scholar
Niccum, N. & Speaks, C. (1991). Interpretation of outcome on dichotic listening tests following stroke. Journal of Clinical and Experimental Neuropsychology, 13, 614628.Google Scholar
Norris, D., McQueen, J.M., & Cutler, A. (2000). Merging phonetic and lexical information in phonetic decision-making. Behavioral and Brain Sciences, 23, 299325.Google Scholar
Otsuki, M., Soma, Y., Sato, M., Homma, A., & Tsuji, S. (1998). Slowly progressive pure word deafness. Eur Neurol, 39, 135140.Google Scholar
Patterson, J. & Green, D. (1970). Discrimination of transient signals having identical energy spectra. Journal of the Acoustical Society of America, 48, 894905.Google Scholar
Peterson, G. & Barney, H. (1952). Control methods used in a study of the vowels. Journal of the Acoustical Society of America, 24, 175184.Google Scholar
Phillips, D.P. & Farmer, M.E. (1990). Acquired word deafness, and the temporal grain of sound representation in the primary auditory cortex. Behavioural Brain Research, 40, 8594.Google Scholar
Pick, A. (1892). Beitrage zur lehre con der storungen der sprache. Archiv fur Psychiatrie und Nervenkrankheit, 23, 896918.Google Scholar
Pinard, M., Chertkow, H., Black, S., & Peretz, I. (2002). A case study of pure word deafness: Modularity in auditory processing? Neurocase, 8, 4055.Google Scholar
Poeppel, D. (2001). Pure word deafness and the bilateral processing of the speech code. Cognitive Science, 25, 679691.Google Scholar
Poeppel, D. (2003). The analysis of speech in different temporal integration windows: Cerebral lateralization as “asymmetric sampling in time.” Speech Communication, 41, 245255.Google Scholar
Polster, M.R. & Rose, S.B. (1998). Disorders of auditory processing: Evidence for modularity in audition. Cortex, 34, 4765.Google Scholar
Praamstra, P., Hagoort, P., Maassen, B., & Crul, T. (1991). Word deafness and auditory cortical function. A case history and hypothesis. Brain, 114 (Pt 3), 11971225.Google Scholar
Psychology Software Tools, I. (2001). E-Prime (Version 1.0.20.2). Pittsburgh, PA.
Regan, D. & Tansley, B.W. (1979). Selective adaptation to frequency-modulated tones: Evidence for an information-processing channel selectively sensitive to frequency changes. Journal of the Acoustical Society of America, 65, 12491257.Google Scholar
Roberts, M., Sandercock, P., & Ghadiali, E. (1987). Pure word deafness and unilateral right temporo-parietal lesions: A case report. Journal of Neurology, Neurosurgery and Psychiatry, 50, 17081709.Google Scholar
Saffran, E.M., Marin, O.S., & Yeni-Komshian, G.H. (1976). An analysis of speech perception in word deafness. Brain and Language, 3, 209228.Google Scholar
Schuster, P. & Taterka, H. (1926). Beitrag zur anatomie und klinik der reinen worttaubheit. Zeitschrift fur Die Gesamte Neurologie und Psychiatrie, 105.
Seliger, G.M., Lefever, F., Lukas, R., Chen, J., Schwartz, S., Codeghini, L., & Abrams, G. (1991). Word deafness in head injury: implications for coma assessment and rehabilitation. Brain Injury, 5, 5356.Google Scholar
Shindo, M., Kaga, K., & Tanaka, Y. (1991). Speech discrimination and lip reading in patients with word deafness or auditory agnosia. Brain and Language, 40, 153161.Google Scholar
Stefanatos, G.A. (1993). Frequency modulation analysis in children with Landau-Kleffner syndrome. Annals of the New York Academy of Sciences, 682, 412414.Google Scholar
Stefanatos, G.A. & Madigan, S. (2000). The Environmental Sounds Perception Test. Philadelphia, PA.
Takahashi, N., Kawamura, M., Shinotou, H., Hirayama, K., Kaga, K., & Shindo, M. (1992). Pure word deafness due to left hemisphere damage. Cortex, 28, 295303.Google Scholar
Tanaka, Y., Yamadori, A., & Mori, E. (1987). Pure word deafness following bilateral lesions. A psychophysical analysis. Brain, 110 (Pt 2), 381403.Google Scholar
Tanji, K., Suzuki, K., Okuda, J., Shimizu, H., Seki, H., Kimura, I., Endo, K., Hirayama, K., Fujii, T., & Yamadori, A. (2003). Formant interaction as a cue to vowel perception: A case report. Neurocase, 9, 350355.Google Scholar
Tyler, L.K. & Moss, H.E. (1997). Imageability and category-specificity. Cognitive Neuropsychology, 14, 293318.Google Scholar
Ulrich, G. (1978). Interhemispheric functional relationships in auditory agnosia: An analysis of the preconditions and a conceptual mod. Brain and Language, 5, 286300.Google Scholar
Vignolo, L.A. (1982). Auditory agnosia. Philosophical Transactions of the Royal Society of London-Biological Sciences, 298, 4957.Google Scholar
Walden, B.E. & Montgomery, A.A. (1975). Dimensions of consonant perception in normal and hearing-impaired listeners. Journal of Speech and Hearing Research, 18, 444455.Google Scholar
Wang, E., Peach, R.K., Xu, Y., Schneck, M., & Manry, C., II (2000). Perception of dynamic acoustic patterns by an individual with unilateral verbal auditory agnosia. Brain and Language, 73, 442455.Google Scholar
Wernicke, C. (1874). The aphasic symptom complex: A psychological study on a neurological basis. Breslau: English translation by Eggert, G.H. (1977). Wernicke's Works on Aphasia: A Source Book and Review. The Hague: Moulon.
Wise, R.J., Scott, S.K., Blank, S.C., Mummery, C.J., Murphy, K., & Warburton, E.A. (2001). Separate neural subsystems within “Wernicke's area.” Brain, 124, 8395.Google Scholar
Yaqub, B.A., Gascon, G.G., Al-Nosha, M., & Whitaker, H. (1988). Pure word deafness (acquired verbal auditory agnosia) in an Arabic speaking patient. Brain, 111 (Pt 2), 457466.Google Scholar
Zatorre, R.J., Belin, P., & Penhune, V.B. (2002). Structure and function of auditory cortex: Music and speech. Trends in Cognitive Science, 6, 3746.Google Scholar
Ziegler, D. (1952). Word deafness and Wernicke's aphasia. Archives of Neurological Psychology, 67, 323331.Google Scholar