Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T21:56:10.578Z Has data issue: false hasContentIssue false

Object-based and action-based visual perception in children with spina bifida and hydrocephalus

Published online by Cambridge University Press:  11 January 2002

MAUREEN DENNIS
Affiliation:
Department of Psychology, The Hospital for Sick Children, Toronto, Canada Department of Surgery, University of Toronto, Toronto, Canada Department of Psychology, University of Toronto, Toronto, Canada
JACK M. FLETCHER
Affiliation:
Department of Pediatrics, University of Texas–Houston
TRACEY ROGERS
Affiliation:
Department of Psychology, The Hospital for Sick Children, Toronto, Canada
ROSS HETHERINGTON,
Affiliation:
Department of Psychology, The Hospital for Sick Children, Toronto, Canada Department of Psychology, University of Toronto, Toronto, Canada
DAVID J. FRANCIS
Affiliation:
Department of Psychology, University of Houston, Houston, Texas

Abstract

Children with spina bifida and hydrocephalus (SBH) have long been known to have difficulties with visual perception. We studied how children with SBH perform 12 visual perception tasks requiring object identification, multistable representations of visual space, or visually guided overt actions. Four tasks required object-based processing (visual constancy illusions, face recognition, recognition of fragmented objects, line orientation). Four tasks required the representation of visual space in egocentric coordinates (stereopsis, visual figure-ground identification, perception of multistable figures, egocentric mental rotation). Four tasks required the coupling of visual space to overt movement (visual pursuit, figure drawing, visually guided route finding, visually guided route planning). Effect sizes, measuring the magnitude of the difference between SBH children and controls, were consistently larger for action-based than object-based visual perception tasks. Within action-based tasks, effect sizes were large and roughly comparable for tasks requiring the representation of visual space and for tasks requiring visually guided action. The results are discussed in terms of the physical and brain problems of children with SBH that limit their ability to build effective situation models of space. (JINS, 2002, 8, 95–106.)

Type
Research Article
Copyright
© 2002 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alivisatos, B. & Petrides, M. ( 1997). Functional activation of the human brain during mental rotation. Neuropsychologia, 35, 111118.Google Scholar
Anderson, E. & Spain, B. ( 1977). The child with spina bifida. London: Oxford University Press.
Anderson, R.A. ( 1989). Visual and eye movement function of the posterior parietal cortex. Annual Review of Neuroscience, 12, 377403.Google Scholar
Andreason, N.C., O'Leary, D.S., Arndt, S., Cizadlo, T., Hurtig, R., Rezai, K., Watkins, G.L., Ponto, L.B., & Hichwa, R.D. ( 1996). Neural substrates of facial recognition. Journal of Neuropsychiatry and Clinical Neurosciences, 12, 139146.Google Scholar
Barkovich, A.J. ( 1995). Pediatric neuroimaging ( 2nd ed.). New York: Raven Press.
Barnes, M.A. & Dennis, M. ( 1992). Reading in children and adolescents after early onset hydrocephalus and in normally developing age peers: Phonological analysis, word recognition, word comprehension, and passage comprehension skill. Journal of Pediatric Psychology, 17, 445465.Google Scholar
Barnes, M.A. & Dennis, M. ( 1996). Reading comprehension deficits arise from diverse sources: Evidence from readers with and without developmental brain pathology. In C. Cornoldi & J.A. Oakhill (Eds.), Reading comprehension difficulties: Processes and intervention (pp. 251278). Hillsdale, NJ: Erlbaum.
Barsalou, L.W. ( 1999). Language comprehension: Archival memory or preparation for situated action? Discourse Processes, 28, 6180.Google Scholar
Beery, K.E. ( 1982). Revised administration, scoring, and teaching manual for the Developmental Test of Visual–Motor Integration. Cleveland, OH: Modern Curriculum Press.
Bellugi, U., Sabo, H., & Vaid, J. ( 1988). Spatial deficits in children with Williams Syndrome. In J. Stiles-Davis, M. Kritchevsky, & U. Bellugi (Eds.), Spatial cognition: Brain bases and development (pp. 273298). Hillsdale, NJ: Erlbaum.
Benton, A.L., Hamsher, K., Varney, N.R., & Spreen, O. ( 1983). Contributions to neuropsychology assessment. New York: Oxford University Press.
Benton, A.L., Hannay, H.J., & Varney, N.R. ( 1975). Visual perception of line direction in patients with unilateral brain disease. Neurology, 25, 907910.Google Scholar
Bertenthal, B.I. ( 1996). Origins and early development of perception, action, and representation. Annual Review of Psychology, 47, 431459.Google Scholar
Birch, E. ( 1999). Randot Preschool Stereoacuity Test. Chicago: Stereo Optical Company.
Brewer, J.B., Zhao, Z., Desmond, J.E., Glover, G.H., & Gabrieli, J.D.E. ( 1988). Making memories: Brain activity that predicts how well visual experience will be remembered. Science, 281, 11851187.Google Scholar
Bridgeman, B. ( 1999, June). Two visual brains in action. Psyche [On-line serial], 5 ( 18). .
Butters, N., Barton, M., & Brody, B.A. ( 1970). Role of the right parietal lobe in the mediation of cross-modal associations and reversible operations in space. Cortex, 6, 174190.Google Scholar
Carpenter, P.A., Just, M.A., Keller, T.A., Eddy, W.F., & Thulborn, K.R. ( 1999). Graded functional activation in the visuospatial system with the amount of task demand. Journal of Cognitive Neuroscience, 11, 924.Google Scholar
Castiello, U. ( 1999). Mechanisms of selection for the control of hand action. Trends in Cognitive Sciences, 3, 264271.Google Scholar
Chen, J., Myerson, J., Hale, S., & Simon, A. ( 2000). Behavioral evidence for brain-based ability factors in visuospatial information processing. Neuropsychologia, 38, 380387.Google Scholar
Cohen, J. ( 1977). Statistical power analysis for the behavioural sciences ( Rev. ed.). New York: Academic Press.
Cohen, M.S., Kosslyn, S.M., Breiter, H.C., DiGirolamo, G.J., Thompson, W.L., Anderson, A.K., Brookheimer, S.Y., Rosen, B.R., & Belliveau, J.W. ( 1996). Changes in cortical activity during mental rotation: A mapping study using functional MRI. Brain, 119, 89100.Google Scholar
Colby, C.L. & Goldberg, M.E. ( 1999). Space and attention in parietal cortex. Annual Review of Neuroscience, 22, 319349.Google Scholar
Corballis, M.C. ( 1982). Mental rotation: Anatomy of a paradigm. In M. Potegal (Ed.), Spatial abilities: Developmental and physiological foundations (pp. 173198). New York: Academic Press.
Corballis, M.C. ( 1988a). Distinguishing clockwise from counterclockwise: Does it require mental rotation? Memory and Cognition, 16, 567578.Google Scholar
Corballis, M.C. ( 1988b). Recognition of disoriented shapes. Psychological Review, 95, 115123.Google Scholar
Cowey, A. & Gross, C.G. ( 1970). Effects of foveal prestriate and inferotemporal lesions on visual discrimination by rhesus monkeys. Experimental Brain Research, 11, 128144.Google Scholar
Critchley, M. ( 1953). The parietal lobes. New York: Hafner.
Culatta, B. ( 1980). Perceptual and linguistic performance of spina bifida–hydrocephalic children. Spina Bifida Therapy, 1, 235247.Google Scholar
Daprati, E. & Gentilucci, M. ( 1997). Grasping an illusion. Neuropsychologia, 35, 15771582.Google Scholar
Decety, J., Grèzes, J., Costes, N., Perani, D., Jeannerod, M., Procyk, E., Grassi, F., & Fazio, F. ( 1997). Brain activity during observation of actions: Influence of action content and subject's strategy. Brain, 120, 17631777.Google Scholar
Dennis, M., Fitz, C.R., Netley, C.T., Harwood-Nash, D.C.F., Sugar, J., Hendrick, E.G., Hoffman, H.J., & Humphreys, R.P. ( 1981). The intelligence of hydrocephalic children. Archives of Neurology, 38, 607615.Google Scholar
Dennis, M., Hendrick, E.B., Hoffman, H.J., & Humphreys, R.P. ( 1987). The language of hydrocephalic children and adolescents. Journal of Clinical and Experimental Neuropsychology, 9, 593621.Google Scholar
Dennis, M., Jacennik, B., & Barnes, M.A. ( 1994). The content of narrative discourse in children and adolescents after early-onset hydrocephalus and in normally-developing age peers. Brain and Language, 46, 129165.Google Scholar
Dennis, M., Rogers, T., & Barnes, M.A. ( 2001). Children with spina bifida perceive visual illusions but not multistable figures. Brain and Cognition, 46, 108113.Google Scholar
Dennis, M., Salman, M.S., Hetherington, R., Spiegler, B.J., MacGregor, D.L., Drake, J.M., Humphreys, R.P., & Gentili, F. ( in press). Upper limb motor function in young adults with spina bifida. Child's Nervous System.
DeRenzi, E. ( 1982). Disorders of space exploration and cognition. New York: John Wiley and Sons.
DeRenzi, E. ( 2000). Prospopagnosia. In M.J. Farah & T.E. Feinberg (Eds.), Patient-based approaches to cognitive neuroscience (pp. 8595). Cambridge, MA: MIT Press.
Desimone, R. ( 1991). Face-selective cells in the temporal cortex of monkeys. Journal of Cognitive Neuroscience, 3, 18.Google Scholar
Desimone, R. & Ungerleider, L.G. ( 1990). Neural mechanisms of visual processing in monkeys. In F. Boller & J. Grafman (Vol. Eds.), Handbook of neuropsychology (Vol. 2, pp. 267300). New York: Elsevier Science.
Desmurget, M., Epstein, C.M., Turner, R.S., Prablanc, C., Alexander, G.E., & Grafton, S.T. ( 1999). Role of the posterior parietal cortex in updating reaching movements to a visual target. Nature Neuroscience, 2, 563567.Google Scholar
Diller, L., Ben-Yishay, Y., Gerstmon, L.J., Goodkin, R., Gordon, W., & Weinberg, J. ( 1974). Studies in cognition and rehabilitation in hemiplegia ( Rehabilitation Monograph No. 50). New York: New York University Medical Center Institute of Rehabilitation Medicine.
Donders, J., Canady, A.J., & Rourke, B.P. ( 1990). Psychometric intelligence after infantile hydrocephalus: A critical review and reinterpretation. Child's Nervous System, 6, 148154.Google Scholar
Duhamel, J.R., Colby, C.L., & Gazzaniga, M.E. ( 1992). The updating of the representation of visual space in parietal cortex by intended eye movements. Science, 255, 9092.Google Scholar
Farah, M.T. ( 1995). Visual agnosia. Cambridge MA: MIT Press.
Fletcher, J.M., Bohan, T.P., Brandt, M.E., Kramer, L.A., Brookshire, B.L., Thorstad, K., Davidson, K.C., Francis, D.J., McCauley, S.R., & Baumgartner, J.E. ( 1996). Morphometric evaluation of the hydrocephalic brain: Relationships with cognitive development. Child's Nervous System, 12, 192199.Google Scholar
Fletcher, J.M., Brookshire, B.L., Bohan, T.P., Brandt, M.E., & Davidson, K.C. ( 1995). Early hydrocephalus. In B.P. Rourke (Ed.), Syndrome of nonverbal learning disabilities: Neurodevelopmental manifestations (pp. 206238). New York: Guilford Publications, Inc.
Fletcher, J.M., Francis, D.J., Thompson, N.M., Davidson, K.C., & Miner, M.E. ( 1992). Verbal and nonverbal skill discrepancies in hydrocephalic children. Journal of Clinical and Experimental Neuropsychology, 14, 593609.Google Scholar
Friedrich, W.N., Lovejoy, M.C., Shaffer, J., Shurtleff, D.B., & Beilke, R.L. ( 1991). Cognitive abilities and achievement status of children with myelomeningocele: A contemporary sample. Journal of Pediatric Psychology, 16, 423428.Google Scholar
Gardner, M.F. ( 1988). TVPS: Test of visual–perceptual skills. Hydesville, CA: Psychological and Educational Publications, Inc.
Garron, D.C. & Chelfetz, D.I. ( 1965). Comment on “Bender Gestalt discernment of organic pathology.” Psychological Bulletin, 63, 197200.Google Scholar
Glenberg, A.M. & Robertson, D.A. ( 1999). Indexical understanding of instructions. Discourse Processes, 28, 126.Google Scholar
Gollin, E. ( 1960). Developmental studies of visual recognition of incomplete objects. Perceptual and Motor Skills, 11, 289298.Google Scholar
Goodale, M.A., Milner, A.D., Jakobson, L.S., & Carey, D.P. ( 1991). A neurological dissociation between perceiving objects and grasping them. Nature, 349, 154156.Google Scholar
Graesser, A.C. & Bower, G.H. ( 1990). Inferences and text comprehension. New York: Academic Press.
Hannay, H.J. ( 2000). Functions of the corpus callosum in children with early hydrocephalus. Journal of the International Neuropsychological Society, 6, 351361.Google Scholar
Hannay, H.J., Galgout, J.C., Leli, D.A., Katholi, C.R., Halsey, J.H., & Wills, E.L. ( 1987). Focal right temporal–occipital blood flow changes associated with judgment of line orientation. Neuropsychologia, 25, 755763.Google Scholar
Haxby, J.V., Grady, C.L., Horwitz, B., Ungerleider, L.G., Mishkin, M., Carson, R.E., Herscovitch, P., Schapiro, M.B., & Rapoport, S.I. ( 1991). Dissociation of object and spatial visual processing pathways in human extrastriate cortex. Proceedings of the National Academy of Sciences USA, 88, 16211625.Google Scholar
Henderson, J.M. & Hollingworth, A. ( 1999). High-level scene perception. Annual Review of Psychology, 50, 243271.Google Scholar
Hetherington, R. & Dennis, M. ( 1999). Motor function profile in children with early onset hydrocephalus. Developmental Neuropsychology, 15, 2551.Google Scholar
Iacoboni, M. ( 1999). Adjusting reaches: Feedback in the posterior parietal cortex. Nature Neuroscience, 2, 492494.Google Scholar
Ito, J., Saijo, H., Araki, A., Tanaka, H., Tasaki, T., Cho, K., & Miyamoto, A. ( 1977). Neuroradiological assessment of visuoperceptual disturbances in children with spina bifida and hydrocephalus. Developmental Medicine and Child Neurology, 39, 385392.Google Scholar
Iwai, E. & Mishkin, M. ( 1969). Further evidence on the locus of the visual area in the temporal lobe of the monkey. Experimental Neurology, 25, 585594.Google Scholar
Jernigan, T.L., Bellugi, U., Sowell, E., Doherty, S., & Hesselink, J. ( 1993). Cerebral morphologic distinctions between Williams and Down Syndromes. Archives of Neurology, 50, 186191.Google Scholar
Kikuchi, R. & Iwai, E. ( 1980). The locus of the posterior subdivision of the inferotemporal visual learning area in the monkey. Brain Research, 6, 347360.Google Scholar
Land, L.C. ( 1977). A study of the sensory integration of children with meningomyelocele. In R.L. McLaurin (Ed.), Myelomeningocele (pp. 112117). New York: Grune & Stratton.
Leigh, R.J. & Zee, D.S. ( 1983). The neurology of eye movements. Philadelphia: F.A. Davies.
Lennerstrand, G. ( 1988). Motor dysfunction in strabismus. In G. Lennerstrand, G.K. von Noorden, & E.C. Campos (Eds.), Strabismus and amblyopia (pp. 521). London: MacMillan.
Lennerstrand, G., Gallo, J.E., & Samuelsson, L. ( 1990). Neuro–ophthalmological findings in relation to CNS lesion in patients with myelomeningocele. Developmental Medicine and Child Neurology, 32, 423431.Google Scholar
Leopold, D.A. & Logothetis, N.K. ( 1999). Multistable phenomena: Changing views in perception. Trends in Cognitive Science, 3, 254264.Google Scholar
Lindgren, S.D. & Benton, A.L. ( 1980). Developmental patterns of visuospatial judgment. Journal of Pediatric Psychology, 5, 217225.Google Scholar
Livingstone, M. & Hubel, D. ( 1988). Segregation of form, color, movement, and depth: Anatomy, physiology, and perception. Science, 240, 740749.Google Scholar
Lonton, A.P. ( 1977). Location of the myelomeningocele and its relationship to subsequent physical and intellectual abilities in children with myelomeningocele associated with hydrocephalus. Zeitschrift fur Kinderchirurgie, 22, 510519.Google Scholar
Lumer, E.D., Friston, K.J., & Rees, G. ( 1998). Neural correlates of perceptual rivalry in the human brain. Science, 280, 19301934.Google Scholar
Lumer, E.D. & Rees, G. ( 1999). Covariation of activity in visual and prefrontal cortex associated with subjective visual perception. Proceedings of the National Academy of Sciences USA, 96, 16691673.Google Scholar
Maunsell, J.H.R. ( 1995). The brain's visual world: Representation of visual targets in cerebral cortex. Science, 270, 764769.Google Scholar
Maunsell, J.H.R., Nealey, T.A., & DePriest, D.D. ( 1990). Magnocellular and parvocellular contributions to responses in the middle temporal visual area (MT) of the macaque monkey. Journal of Neuroscience, 10, 33233334.Google Scholar
Maunsell, J.H.R. & Newsome, W.T. ( 1987). Visual processing in monkey extrastriate cortex. Annual Review of Neuroscience, 10, 363401.Google Scholar
McCarron, L.T. ( 1976). MAND McCarron assessment of neuromuscular development. Dallas, TX: Common Market Press.
Mendez, M.E. ( 2000). Corticobasal ganglionic degeneration with Balint's syndrome. Journal of Neuropsychiatry and Clinical Neurosciences, 12, 273275.Google Scholar
Miller, E. & Sethi, L. ( 1971). The effect of hydrocephalus on perception. Developmental Medicine and Child Neurology, 13 ( Suppl. 25), 7781.Google Scholar
Milner, A.D. & Goodale, M.A. ( 1995). The visual brain in action. New York: Oxford University Press.
Mishkin, M., Ungerleider, L.G., & Macko, K.A. ( 1983). Object vision and spatial vision: Two cortical pathways. Trends in Neuroscience, 6, 414417.Google Scholar
Money, J., Alexander, D., & Walker, H.T. ( 1965). A standardized road-map test of direction sense. Baltimore: Johns Hopkins Press.
Nachson, I. ( 1995). On the modularity of face recognition: The riddle of domain specificity. Journal of Clinical and Experimental Neuropsychology, 17, 256275.Google Scholar
Otto-de Haart, E.G., Carey, D.P., & Milner, A.B. ( 1999). More thoughts on perceiving and grasping the Müller-Lyer illusion. Neuropsychologia, 37, 14371444.Google Scholar
Paillard, J. ( 1991). Motor and representational framing of space. In J. Paillard (Ed.), Brain and space (pp. 163182). New York: Oxford University Press.
Perenin, M.T. & Vignetto, A. ( 1988). Optic ataxia: A specific disruption in visuomotor mechanisms. I. Different aspects of the deficit in reaching for objects. Brain, 111, 643674.Google Scholar
Perret, D.I., Mistlin, A.J., & Chitty, A.J. ( 1987). Visual neurons responsive to faces. Trends in Neurosciences, 10, 358364.Google Scholar
Peterson, M.A. & Gibson, B.S. ( 1994). Object recognition contributions to figure–ground organization: Operations on outlines and subjective contours. Perceptual Psychophysiology, 56, 551564.Google Scholar
Porteus, S.D. ( 1965). Porteus Maze Test. Fifty years' application. New York: Psychological Corporation.
Rafal, R.D. ( 1997). Balint syndrome. In T.E. Feinberg & M.J. Farah (Eds.), Behavioural neurology and neuropsychology (pp. 337356). New York: McGraw-Hill.
Rafal, R.D. ( 2000). Neglect II: Cognitive neuropsychological issues. In M.J. Farah & T.E. Feinberg (Eds.), Patient-based approaches to cognitive neuroscience (pp. 125141). Cambridge, MA: MIT Press.
Riva, D., Milani, N., Giorgi, C., Pantaleoni, C., Sorzi, C., & Devoti, M. ( 1994). Intelligence outcome in children with shunted hydrocephalus of different etiology. Child's Nervous System, 19, 7073.Google Scholar
Roth, W.M. ( 1999). Discourse and agency in school science laboratories. Discourse Processes, 28, 2760.Google Scholar
Sand, P., Taylor, N., Rawlings, M., & Chitnis, S. ( 1973). Performance of children with spina bifida manifesta on the Frostig Developmental Test of Visual Perception. Perceptual and Motor Skills, 37, 539546. Google Scholar
Sandler, A.D., Macias, M., & Brown, T.T. ( 1993). The drawings of children with spina bifida: Developmental correlations and interpretations. European Journal of Pediatric Surgery, 3, 2527.Google Scholar
Scherzer, A.L. & Gardner, G.G. ( 1971). Studies of the school age child with meningomyelocele. I: Physical and intellectual development. Pediatrics, 47, 424430.Google Scholar
Schultz, K. ( 1991). The contribution of solution strategy to spatial performance. Canadian Journal of Psychology, 45, 474491.Google Scholar
Semmes, J., Weinstein, S., Ghent, L., & Teuber, H.L. ( 1963). Correlates of impaired orientation in personal and extrapersonal space. Brain, 86, 747772.Google Scholar
Simms, B. ( 1987). The route learning ability of young people with spina bifida and hydrocephalus and their able-bodied peers. Zeitschrift fur Kinderchirurgie, 42 ( Suppl. 1), 5356.Google Scholar
Snyder, L.H., Batista, A.P., & Andersen, R.A. ( 1997). Coding of intention in the posterior parietal cortex. Nature, 13, 167170.Google Scholar
Soare, P. & Raimondi, A. ( 1977). Intellectual and perceptual-motor characteristics of treated myelomeningocele children. American Journal of Diseases of Childhood, 131, 199204.Google Scholar
Spain, B. ( 1974). Verbal and performance ability in pre-school children with spina bifida. Developmental Medicine and Child Neurology, 16, 773780.Google Scholar
Tagaris, G.A., Kim, S.G., Strupp, J.P., Andersen, P., Ugurbil, K., & Georgopoulos, A.P. ( 1997). Mental rotation studied by functional magnetic resonance imaging at high field (4 Tesla): Performance and cortical activation. Journal of Cognitive Neuroscience, 9, 419432.Google Scholar
Teuber, H.L. ( 1964). The riddle of frontal lobe function in men. In J.M. Warren & K. Akert (Eds.), The frontal granular cortex and behavior (pp. 410444). New York: McGraw Hill.
Tew, B.J. ( 1991). The effects of spina bifida and hydrocephalus upon learning and behaviour. In C.M. Bannister & B.J. Tew (Eds.), Current concepts in spina bifida and hydrocephalus (pp. 158179). New York: Cambridge University Press.
Tew, B.J. & Laurence, K.M. ( 1975). The effects of hydrocephalus on intelligence, visual perception and school attainment. Developmental Medicine and Child Neurology, 17, 129134.Google Scholar
Thelen, E. ( 1995). Motor development: A new synthesis. American Psychologist, 50, 7995.Google Scholar
Tovée, M.J. & Cohen-Tovée, E.M. ( 1993). The neural substrates of face processing models: A review. Cognitive Neuropsychology, 10, 505528.Google Scholar
Ungerleider, L.G. & Mishkin, M. ( 1982). Two cortical visual systems. In D.J. Ingle, M.A. Goodale, & R.J.W. Mansfield (Eds.), Analysis of visual behavior (pp. 549586). Cambridge, MA: MIT Press.
Vallar, G., Daini, R., & Antonucci, G. ( 2000). Processing of illusion of length in spatial hemineglect: A study of line bisection. Neuropsychologia, 38, 10871097.Google Scholar
Vingerhoets, G., Lannoo, E., & Bauwens, S. ( 1996). Analyses of the Money Road Map Test performance in normal and brain-damaged subjects. Archives of Clinical Neuropsychology, 11, 19.Google Scholar
Wechsler, D. ( 1949). Weschler Intelligence Scale for Children. New York: The Psychological Corporation.
Weiskrantz, L. ( 1986). Blindsight: A case study and implications. Oxford, UK: Oxford University Press.
Weiskrantz, L., Warrington, E., Sander, M.D., & Marshall, J. ( 1974). Visual capacity in the hemianopic field following restricted occipital ablation. Brain, 97, 709729.Google Scholar
Willoughby, R. & Hoffman, R. ( 1979). Cognitive and perceptual impairments in children with spina bifida: A look at the evidence. Spina Bifida Therapy, 2, 127134.Google Scholar
Wills, K.E., Holmbeck, G.N., Dillon, K., & McLone, D.G. ( 1990). Intelligence and achievement in children with myelomeningocele. Journal of Pediatric Psychology, 15, 161176.Google Scholar
Zeiner, H.K., Prigitano, G.P., Pollay, M., Biscoe, C.B., & Smith, R.V. ( 1985). Ocular motility, visual acuity and dysfunction of neuropsychological impairment in children with shunted uncomplicated hydrocephalus. Child's Nervous System, 1, 115122.Google Scholar