Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T19:35:23.294Z Has data issue: false hasContentIssue false

A New Spin on Spatial Cognition in ADHD: A Diffusion Model Decomposition of Mental Rotation

Published online by Cambridge University Press:  09 December 2020

Jason S. Feldman*
Affiliation:
The Pennsylvania State University, University Park, PA16802, USA
Cynthia Huang-Pollock
Affiliation:
The Pennsylvania State University, University Park, PA16802, USA
*
*Correspondence and reprint requests to: Jason S. Feldman, 140 Moore Building, The Pennsylvania State University, University Park, PA16802, USA. E-mail: [email protected]

Abstract

Objectives:

Multiple studies have found evidence of task non-specific slow drift rate in ADHD, and slow drift rate has rapidly become one of the most visible cognitive hallmarks of the disorder. In this study, we use the diffusion model to determine whether atypicalities in visuospatial cognitive processing exist independently of slow drift rate.

Methods:

Eight- to twelve-year-old children with (n = 207) and without ADHD (n = 99) completed a 144-trial mental rotation task.

Results:

Performance of children with ADHD was less accurate and more variable than non-ADHD controls, but there were no group differences in mean response time. Drift rate was slower, but nondecision time was faster for children with ADHD. A Rotation × ADHD interaction for boundary separation was also found in which children with ADHD did not strategically adjust their response thresholds to the same degree as non-ADHD controls. However, the Rotation × ADHD interaction was not significant for nondecision time, which would have been the primary indicator of a specific deficit in mental rotation per se.

Conclusions:

Poorer performance on the mental rotation task was due to slow rate of evidence accumulation, as well as relative inflexibility in adjusting boundary separation, but not to impaired visuospatial processing specifically. We discuss the implications of these findings for future cognitive research in ADHD.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5). Arlington, VA: American Psychiatric Publishing.Google Scholar
Antonini, T.N., Narad, M.E., Langberg, J.M., & Epstein, J.N. (2013). Behavioral correlates of reaction time variability in children with and without ADHD. Neuropsychology, 27(2), 201.CrossRefGoogle ScholarPubMed
Arnold, L.E., Hodgkins, P., Kahle, J., Madhoo, M., & Kewley, G. (2020). Long-term outcomes of ADHD: Academic achievement and performance. Journal of Attention Disorders, 24(1), 7385.CrossRefGoogle ScholarPubMed
Bayliss, D.M., Jarrold, C., Baddeley, A.D., Gunn, D.M., & Leigh, E. (2005). Mapping the developmental constraints on working memory span performance. Development Psychology, 41(4), 579597. doi: 10.1037/0012-1649.41.4.579 CrossRefGoogle ScholarPubMed
Bethell-Fox, C.N. & Shepard, R.N. (1988). Mental rotation: Effects of stimulus complexity and familiarity. Journal of Experimental Psychology: Human Perception and Performance, 14(1), 12-23. doi: 10.1037/0096-1523.14.1.12 Google Scholar
Castellanos, F.X. & Tannock, R. (2002). Neuroscience of attention-deficit/hyperactivity disorder: The search for endophenotypes. Nature Reviews Neuroscience, 3(8), 617.CrossRefGoogle ScholarPubMed
Chiang, H.-L. & Gau, S.S.-F. (2014). Impact of executive functions on school and peer functions in youths with ADHD. Research in Developmental Disabilities, 35(5), 963972.CrossRefGoogle ScholarPubMed
Conners, C.K. (2001). Conners’ Rating Scales-Revised Technical Manual. New York, NY: Multi-Health Systems.Google Scholar
Cooper, L.A. Shepard, R.N. (1973). Chronometric studies of the rotation of mental images. In Chase, W. G. (Ed.), Visual information processing (pp. 75176). New York:  Academic Press.Google Scholar
Cubillo, A., Halari, R., Smith, A., Taylor, E., & Rubia, K. (2012). A review of fronto-striatal and fronto-cortical brain abnormalities in children and adults with attention deficit hyperactivity disorder (ADHD) and new evidence for dysfunction in adults with ADHD during motivation and attention. Cortex, 48(2), 194215.CrossRefGoogle ScholarPubMed
de Vega, M. Intons-Peterson, M.J. Johnson-Laird, P.N. Denis, M. Marschark, M. (1996). Models of Visuospatial Cognition. New York:  Oxford University Press.Google Scholar
DuPaul, G.J., Power, T.J., Anastopoulos, A.D., & Reid, R. (1998). ADHD Rating Scale—IV: Checklists, Norms, and Clinical Interpretation. New York: Guilford Press.Google Scholar
Dutilh, G., Krypotos, A.M., & Wagenmakers, E.J. (2011). Task-related versus stimulus-specific practice. Experimental Psychology, 58(6), 434442. doi: 10.1027/1618-3169/a000111 CrossRefGoogle ScholarPubMed
Dutilh, G., Vandekerckhove, J., Tuerlinckx, F., & Wagenmakers, E.J. (2009). A diffusion model decomposition of the practice effect. Psychonomic Bulletin & Review, 16(6), 10261036. doi: 10.3758/16.6.1026 CrossRefGoogle ScholarPubMed
Ferrin, M. & Vance, A. (2012). Examination of neurological subtle signs in ADHD as a clinical tool for the diagnosis and their relationship to spatial working memory. Journal of Child Psychology and Psychiatry, 53(4), 390400.CrossRefGoogle ScholarPubMed
Forstmann, B.U., Dutilh, G., Brown, S., Neumann, J., Von Cramon, D.Y., Ridderinkhof, K.R., & Wagenmakers, E.-J. (2008). Striatum and pre-SMA facilitate decision-making under time pressure. Proceedings of the National Academy of Sciences, 105(45), 1753817542.CrossRefGoogle ScholarPubMed
Fosco, W.D., White, C.N., & Hawk, L.W. (2017). Acute stimulant treatment and reinforcement increase the speed of information accumulation in children with ADHD. Journal of Abnormal Child Psychology, 45(5), 911920.CrossRefGoogle ScholarPubMed
Frazier, T.W., Demaree, H.A., & Youngstrom, E.A. (2004). Meta-analysis of intellectual and neuropsychological test performance in attention-deficit/hyperactivity disorder. Neuropsychology, 18(3), 543555. doi: 10.1037/0894-4105.18.3.543 CrossRefGoogle ScholarPubMed
Frazier, T.W., Youngstrom, E.A., Glutting, J.J., & Watkins, M.W. (2007). ADHD and achievement: Meta-analysis of the child, adolescent, and adult literatures and a concomitant study with college students. Journal of Learning Disabilities, 40(1), 4965.CrossRefGoogle Scholar
Galloway-Long, H., Shapiro, Z., & Huang-Pollock, C.L. (2016). Diffusion modeling in ADHD: A brief introduction and application for clinical practice. National Academy of Neuropsychology Bulletin, 30, 1921.Google Scholar
Heekeren, H.R., Marrett, S., & Ungerleider, L.G. (2008). The neural systems that mediate human perceptual decision making. Nature Reviews Neuroscience, 9(6), 467479.CrossRefGoogle ScholarPubMed
Heil, M. (2002). The functional significance of ERP effects during mental rotation. Psychophysiology, 39(5), 535545.CrossRefGoogle ScholarPubMed
Huang-Pollock, C.L., Karalunas, S.L., Tam, H., & Moore, A.N. (2012). Evaluating vigilance deficits in ADHD: A meta-analysis of CPT performance. Journal of Abnormal Psychology, 121(2), 360371.CrossRefGoogle ScholarPubMed
Huang-Pollock, C.L. Ratcliff, R. McKoon, G. Roule, A. Warner, T. Feldman, J.S. & Wise, S. (2020). A diffusion model analysis of sustained attention in children with attention deficit hyperactivity disorder. Neuropsychology, 34(6), 641– 653.CrossRefGoogle ScholarPubMed
Ivanoff, J., Branning, P., & Marois, R. (2008). fMRI evidence for a dual process account of the speed-accuracy tradeoff in decision-making. PLoS One, 3(7).CrossRefGoogle ScholarPubMed
Jacoby, L.L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory and Language, 30(5), 513541.CrossRefGoogle Scholar
Jakobson, A., & Kikas, E. (2007). Cognitive functioning in children with and without attention-deficit/hyperactivity disorder with and without comorbid learning disabilities. Journal of Learning Disabilities, 40(3), 194202.CrossRefGoogle ScholarPubMed
Kail, R. (1986). The impact of extended practice on rate of mental rotation. Journal of Experimental Child Psychology, 42(3), 378391.CrossRefGoogle ScholarPubMed
Kaiser, M.L., Schoemaker, M.M., Albaret, J.M., & Geuze, R.H. (2015). What is the evidence of impaired motor skills and motor control among children with attention deficit hyperactivity disorder (ADHD)? Systematic review of the literature. Research in Developmental Disabilities, 36, 338357.CrossRefGoogle Scholar
Karalunas, S.L., Geurts, H.M., Konrad, K., Bender, S., & Nigg, J.T. (2014). Annual research review: Reaction time variability in ADHD and autism spectrum disorders: Measurement and mechanisms of a proposed trans-diagnostic phenotype. Journal of Child Psychology and Psychiatry, 55(6), 685710.CrossRefGoogle ScholarPubMed
Karalunas, S.L., & Huang-Pollock, C.L. (2013). Integrating impairments in reaction time and executive function using a diffusion model framework. Journal of Abnormal Child Psychology, 41(5), 837850.CrossRefGoogle ScholarPubMed
Karalunas, S.L., Huang-Pollock, C.L., & Nigg, J.T. (2012). Decomposing attention-deficit/hyperactivity disorder (ADHD)-related effects in response speed and variability. Neuropsychology, 26(6), 684-694. doi: 10.1037/a0029936 CrossRefGoogle ScholarPubMed
Kessler, K. & Thomson, L.A. (2010). The embodied nature of spatial perspective taking: Embodied transformation versus sensorimotor interference. Cognition, 114(1), 72-88. doi: 10.1016/j.cognition.2009.08.015 CrossRefGoogle ScholarPubMed
Kosslyn, S.M., Ganis, G., & Thompson, W.L. (2001). Neural foundations of imagery. Nature Reviews Neuroscience, 2(9), 635642. doi: 10.1038/35090055 CrossRefGoogle ScholarPubMed
Kozhevnikov, M. & Hegarty, M. (2001). A dissociation between object manipulation spatial ability and spatial orientation ability. Memory & Cognition, 29(5), 745-756. doi: 10.3758/BF03200477 CrossRefGoogle ScholarPubMed
Lahey, B.B., Applegate, B., McBurnett, K., Biederman, J., Greenhill, L., Hynd, G.W., … Richters, J. (1994). DSM-IV field trials for attention deficit hyperactivity disorder in children and adolescents. The American Journal of Psychiatry, 151(11), 16731685.Google ScholarPubMed
Landau, B. & Jackendoff, R. (1993). Whence and whither in spatial language and spatial cognition? Behavioral and Brain Sciences, 16(2), 255265.CrossRefGoogle Scholar
Larsen, A. (2014). Deconstructing mental rotation. Journal of Experimental Psychology: Human Perception and Performance, 40(3), 10721091.Google ScholarPubMed
Lerche, V. & Voss, A. (2017). Experimental validation of the diffusion model based on a slow response time paradigm. Psychological Research, 83(6), 11941209. doi: 10.1007/s00426-017-0945-8 CrossRefGoogle ScholarPubMed
Lin, Y.J., Chen, W.J., & Gau, S.S. (2014). Neuropsychological functions among adolescents with persistent, subsyndromal and remitted attention deficit hyperactivity disorder. Psychological Medicine, 44(8), 17651777.CrossRefGoogle ScholarPubMed
Martinussen, R., Hayden, J., Hogg-Johnson, S., & Tannock, R. (2005). A meta-analysis of working memory impairments in children with attention-deficit/hyperactivity disorder. Journal of the American Academy of Child & Adolescent Psychiatry, 44(4), 377384.CrossRefGoogle ScholarPubMed
Matzke, D., & Wagenmakers, E.-J. (2009). Psychological interpretation of the ex-Gaussian and shifted Wald parameters: A diffusion model analysis. Psychonomic Bulletin & Review, 16(5), 798817.CrossRefGoogle ScholarPubMed
Meneghetti, C., Borella, E., & Pazzaglia, F. (2016). Mental rotation training: Transfer and maintenance effects on spatial abilities. Psychological Research, 80(1), 113127.CrossRefGoogle ScholarPubMed
Merkt, J., Singmann, H., Bodenburg, S., Goossens-Merkt, H., Kappes, A., Wendt, M., & Gawrilow, C. (2013). Flanker performance in female college students with ADHD: A diffusion model analysis. ADHD Attention Deficit and Hyperactivity Disorders, 5(4), 321341.CrossRefGoogle ScholarPubMed
Metin, B., Roeyers, H., Wiersema, J.R., van der Meere, J.J., Thompson, M., & Sonuga-Barke, E. (2013). ADHD performance reflects inefficient but not impulsive information processing: A diffusion model analysis. Neuropsychology, 27(2), 193200. doi: 10.1037/a0031533 CrossRefGoogle Scholar
Moreau, D. (2013). Differentiating two- from three-dimensional mental rotation training effects. Quarterly Journal of Experimental Psychology, 66(7), 13991413. doi: 10.1080/17470218.2012.744761 CrossRefGoogle ScholarPubMed
Moustafa, A.A., Kéri, S., Somlai, Z., Balsdon, T., Frydecka, D., Misiak, B., & White, C. (2015). Drift diffusion model of reward and punishment learning in schizophrenia: Modeling and experimental data. Behavioural Brain Research, 291, 147154.CrossRefGoogle ScholarPubMed
Mulder, M.J., Bos, D., Weusten, J.M., van Belle, J., van Dijk, S.C., Simen, P., … Durston, S. (2010). Basic impairments in regulating the speed-accuracy tradeoff predict symptoms of attention-deficit/hyperactivity disorder. Biological Psychiatry, 68(12), 11141119.CrossRefGoogle ScholarPubMed
Pannebakker, M.M., Jolicœur, P., van Dam, W.O., Band, G.P., Ridderinkhof, K.R., & Hommel, B. (2011). Mental rotation impairs attention shifting and short-term memory encoding: Neurophysiological evidence against the response-selection bottleneck model of dual-task performance. Neuropsychologia, 49(11), 29852993.CrossRefGoogle ScholarPubMed
Pe, M.L., Vandekerckhove, J., & Kuppens, P. (2013). A diffusion model account of the relationship between the emotional flanker task and rumination and depression. Emotion, 13(4), 739.CrossRefGoogle ScholarPubMed
Pham, Q.C. & Hicheur, H. (2009). On the open-loop and feedback processes that underlie the formation of trajectories during visual and nonvisual locomotion in humans. Journal of Neurophysiology, 102(5), 28002815. doi: 10.1152/jn.00284.2009 CrossRefGoogle ScholarPubMed
Prime, D.J. & Jolicoeur, P. (2010). Mental rotation requires visual short-term memory: Evidence from human electric cortical activity. Journal of Cognitive Neuroscience, 22(11), 24372446.CrossRefGoogle ScholarPubMed
Provost, A. & Heathcote, A. (2015). Titrating decision processes in the mental rotation task. Psychological Review, 122(4), 735754.CrossRefGoogle ScholarPubMed
Provost, A., Johnson, B., Karayanidis, F., Brown, S.D., & Heathcote, A. (2013). Two routes to expertise in mental rotation. Cognitive Science, 37(7), 1321-1342. doi: 10.1111/cogs.12042 CrossRefGoogle ScholarPubMed
Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59108.CrossRefGoogle Scholar
Ratcliff, R., Love, J., Thompson, C.A., & Opfer, J.E. (2012). Children are not like older adults: A diffusion model analysis of developmental changes in speeded responses. Child Development, 83(1), 367381.CrossRefGoogle Scholar
Ratcliff, R. & McKoon, G. (2008). The diffusion decision model: Theory and data for two-choice decision tasks. Neural Computation, 20(4), 873922. doi: 10.1162/neco.2008.12-06-420 CrossRefGoogle ScholarPubMed
Ratcliff, R., Philiastides, M., & Sajda, P. (2009). Quality of evidence for perceptual decision making is indexed by trial-to-trial variability of the EEG. Proceedings of the National Academy of Sciences, 106(16), 65396544.CrossRefGoogle ScholarPubMed
Ratcliff, R., & Tuerlinckx, F. (2002). Estimating parameters of the diffusion model: Approaches to dealing with contaminant reaction times and parameter variability. Psychonomic Bulletin & Review, 9(3), 438481.CrossRefGoogle ScholarPubMed
Resnick, I., & Shipley, T.F. (2013). Breaking new ground in the mind: An initial study of mental brittle transformation and mental rigid rotation in science experts. Cognitive Processing, 14(2), 143152. doi: 10.1007/s10339-013-0548-2 CrossRefGoogle ScholarPubMed
Reynolds, C.R., & Kamphaus, R.W. (2004). Behavior Assessment System for Children, (BASC-2). Circle Pines, MN: American Guidance Service.Google Scholar
Riečanský, I., & Katina, S. (2010). Induced EEG alpha oscillations are related to mental rotation ability: the evidence for neural efficiency and serial processing. Neuroscience Letters, 482(2), 133136.CrossRefGoogle ScholarPubMed
Rommelse, N.N., Altink, M.E., Fliers, E.A., Martin, N.C., Buschgens, C.J., Hartman, C.A., … Oosterlaan, J. (2009). Comorbid problems in ADHD: Degree of association, shared endophenotypes, and formation of distinct subtypes. Implications for a future DSM. Journal of Abnormal Child Psychology, 37(6), 793804. doi: 10.1007/s10802-009-9312-6 CrossRefGoogle ScholarPubMed
Rump, B. & McNamara, T.P. (2013). Representations of interobject spatial relations in long-term memory. Memory & Cognition, 41(2), 201-213. doi: 10.3758/s13421-012-0257-6 CrossRefGoogle ScholarPubMed
Salum, G., Sergeant, J., Sonuga-Barke, E., Vandekerckhove, J., Gadelha, A., Pan, P., … Rohde, L.A.P. (2014). Specificity of basic information processing and inhibitory control in attention deficit hyperactivity disorder. Psychological Medicine, 44(3), 617631. doi: 10.1017/S0033291713000639 CrossRefGoogle ScholarPubMed
Salum, G., Sonuga-Barke, E., Sergeant, J., Vandekerckhove, J., Gadelha, A., Moriyama, T., … Rohde, L.A.P. (2014). Mechanisms underpinning inattention and hyperactivity: Neurocognitive support for ADHD dimensionality. Psychological Medicine, 44(15), 31893201. doi: 10.1017/S0033291714000919 CrossRefGoogle ScholarPubMed
Schoechlin, C., & Engel, R.R. (2005). Neuropsychological performance in adult attention-deficit hyperactivity disorder: Meta-analysis of empirical data. Archives of Clinical Neuropsychology, 20(6), 727-744. doi: 10.1016/j.acn.2005.04.005 CrossRefGoogle ScholarPubMed
Semrud-Clikeman, M. (2012). The role of inattention on academics, fluid reasoning, and visual–spatial functioning in two subtypes of ADHD. Applied Neuropsychology: Child, 1(1), 1829.CrossRefGoogle ScholarPubMed
Shaffer, D., Fisher, P., & Lucas, C. (1997). NIMH Diagnostic Interview Schedule for Children—IV. New York: Ruane Center for Early Diagnosis, Division of Child Psychiatry, Columbia University.Google Scholar
Shapiro, Z. & Huang-Pollock, C.L. (2019). A diffusion-model analysis of timing deficits among children with ADHD. Neuropsychology, 33(6). doi: 10.1037/neu0000562 CrossRefGoogle ScholarPubMed
Shepard, R.N. & Cooper, L.A. (1982). Mental Images and Their Transformation. Cambridge, MA: MIT Press.Google Scholar
Shepard, R.N. & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171(3972), 701703.CrossRefGoogle ScholarPubMed
Silk, T., Vance, A., Rinehart, N., Egan, G., O’Boyle, M., Bradshaw, J., & Cunnington, R. (2005). Fronto-parietal activation in attention-deficit hyperactivity disorder, combined type: Functional magnetic resonance imaging study. The British Journal of Psychiatry, 187(3), 282283.CrossRefGoogle ScholarPubMed
Sonuga-Barke, E.J.S., Cortese, S., Fairchild, G., & Stringaris, A. (2016). Annual Research Review: Transdiagnostic neuroscience of child and adolescent mental disorders—differentiating decision making in attention-deficit/hyperactivity disorder, conduct disorder, depression, and anxiety. Journal of Child Psychology and Psychiatry, 57(3), 321349. doi: 10.1111/jcpp.12496 CrossRefGoogle ScholarPubMed
Thinus-Blanc, C. (1996). Animal Spatial Cognition: Behavioural and Brain Approach. Singapore:  World Scientific Publishing Company.CrossRefGoogle Scholar
Vance, A., Silk, T.J., Casey, M., Rinehart, N.J., Bradshaw, J.L., Bellgrove, M.A., & Cunnington, R. (2007). Right parietal dysfunction in children with attention deficit hyperactivity disorder, combined type: A functional MRI study. Molecular Psychiatry, 12(9), 826832. doi: 10.1038/sj.mp.4001999 CrossRefGoogle ScholarPubMed
Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion model: An empirical validation. Memory & Cognition, 32(7), 12061220.CrossRefGoogle ScholarPubMed
Voss, A. & Voss, J. (2007). Fast-dm: A free program for efficient diffusion model analysis. Behavior Research Methods, 39(4), 767775.CrossRefGoogle ScholarPubMed
Wagenmakers, E.-J. (2009). Methodological and empirical developments for the Ratcliff diffusion model of response times and accuracy. European Journal of Cognitive Psychology, 21(5), 641671.CrossRefGoogle Scholar
Wechsler, D. (2003). Weschler Intelligence Scale for Children—IV, Technical Manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Weigard, A. & Huang-Pollock, C.L. (2014). A diffusion modeling approach to understanding contextual cueing effects in children with ADHD. Journal of Child Psychology and Psychiatry, 55(12), 13361344. doi: 10.1111/jcpp.12250 CrossRefGoogle ScholarPubMed
Weigard, A., & Huang-Pollock, C.L. (2017). The role of speed in ADHD-related working memory deficits: A time-based resource-sharing and diffusion model account. Clinical Psychological Science, 5(2), 195211.CrossRefGoogle ScholarPubMed
Wexler, M., Kosslyn, S.M., & Berthoz, A. (1998). Motor processes in mental rotation. Cognition, 68(1), 7794.CrossRefGoogle ScholarPubMed
White, C.N., Skokin, K., Carlos, B., & Weaver, A. (2016). Using decision models to decompose anxiety-related bias in threat classification. Emotion, 16(2), 196.CrossRefGoogle ScholarPubMed
Willcutt, E.G., Doyle, A.E., Nigg, J.T., Faraone, S.V., & Pennington, B.F. (2005). Validity of the executive function theory of attention-deficit/hyperactivity disorder: A meta-analytic review. Biological Psychiatry, 57(11), 13361346.CrossRefGoogle ScholarPubMed
Williams, J., Omizzolo, C., Galea, M.P., & Vance, A. (2013). Motor imagery skills of children with attention deficit hyperactivity disorder and developmental coordination disorder. Human Movement Science, 32(1), 121135.CrossRefGoogle ScholarPubMed
Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138146. doi: 10.1016/j.tics.2010.01.001 CrossRefGoogle ScholarPubMed
Zacks, J.M. (2008). Neuroimaging studies of mental rotation: A meta-analysis and review. Journal of Cognitive Neuroscience, 20(1), 119.CrossRefGoogle ScholarPubMed
Ziegler, S., Pedersen, M.L., Mowinckel, A.M., & Biele, G. (2016). Modelling ADHD: A review of ADHD theories through their predictions for computational models of decision-making and reinforcement learning. Neuroscience & Biobehavioral Reviews, 71, 633656. doi: 10.1016/j.neubiorev.2016.09.002 CrossRefGoogle ScholarPubMed
Supplementary material: File

Feldman and Huang-Pollock supplementary material

Table S1

Download Feldman and Huang-Pollock supplementary material(File)
File 18.6 KB