Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-22T13:04:41.576Z Has data issue: false hasContentIssue false

Neuropsychology 3.0: Evidence-Based Science and Practice

Published online by Cambridge University Press:  19 November 2010

Robert M. Bilder*
Affiliation:
Jane and Terry Semel Institute for Neuroscience & Human Behavior at UCLA, Los Angeles, California Department of Psychiatry & Biobehavioral Sciences, David Geffen School of Medicine at UCLA, Los Angeles, California Department of Psychology, UCLA College of Letters & Science, Los Angeles, California
*
Correspondence and reprint requests to: Robert M. Bilder, PhD, Semel Institute at UCLA, 740 Westwood Plaza, Room C8-849, Los Angeles, CA 90095. E-mail: [email protected]

Abstract

Neuropsychology is poised for transformations of its concepts and methods, leveraging advances in neuroimaging, the human genome project, psychometric theory, and information technologies. It is argued that a paradigm shift toward evidence-based science and practice can be enabled by innovations, including (1) formal definition of neuropsychological concepts and tasks in cognitive ontologies; (2) creation of collaborative neuropsychological knowledgebases; and (3) design of Web-based assessment methods that permit free development, large-sample implementation, and dynamic refinement of neuropsychological tests and the constructs these aim to assess. This article considers these opportunities, highlights selected obstacles, and offers suggestions for stepwise progress toward these goals. (JINS, 2011, 17, 000–000)

Type
Short Reviews
Copyright
Copyright © The International Neuropsychological Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (DSM-IV). Washington, DC: American Psychiatric Association.Google Scholar
Bilder, R.M. (2008). Phenomics: Building scaffolds for biological hypotheses in the post-genomic era. Biological Psychiatry, 63(5), 439440. doi:S0006-3223(07)01140-7 [pii] 0.1016/j.biopsych.2007.11.013CrossRefGoogle ScholarPubMed
Bilder, R.M., Sabb, F.W., Cannon, T.D., London, E.D., Jentsch, J.D., Parker, D.S. (2009). Phenomics: The systematic study of phenotypes on a genome-wide scale. Neuroscience, 164(1), 3042. doi:S0306-4522(09)00048-7 [pii] 10.1016/j.neuroscience.2009.01.027CrossRefGoogle ScholarPubMed
Bilder, R.M., Sabb, F.W., Parker, D.S., Kalar, D., Chu, W.W., Fox, J. (2009). Cognitive ontologies for neuropsychiatric phenomics research. Cognitive Neuropsychiatry, 14(4–5), 419450. doi:913383678 [pii] 10.1080/13546800902787180CrossRefGoogle ScholarPubMed
Biswal, B.B., Mennes, M., Zuo, X.N., Gohel, S., Kelly, C., Smith, S.M. (2010). Toward discovery science of human brain function. Proceedings of the National Academy of Sciences of the United States of America, 107(10), 47344739. doi:0911855107 [pii] 10.1073/pnas.0911855107CrossRefGoogle ScholarPubMed
Freimer, N., Sabatti, C. (2003). The human phenome project. Nature Genetics, 34(1), 1521.CrossRefGoogle ScholarPubMed
Furlow, C.F., Beretvas, S.N. (2005). Meta-analytic methods of pooling correlation matrices for structural equation modeling under different patterns of missing data. Psychological Methods, 10(2), 227254. doi:2005-07009-006 [pii] 10.1037/1082-989X.10.2.227CrossRefGoogle ScholarPubMed
Gibbons, R.D., Weiss, D.J., Kupfer, D.J., Frank, E., Fagiolini, A., Grochocinski, V.J. (2008). Using computerized adaptive testing to reduce the burden of mental health assessment. Psychiatric Services, 59(4), 361368. doi:59/4/361 [pii] 10.1176/appi.ps.59.4.361CrossRefGoogle ScholarPubMed
Giles, J. (2005). Internet encyclopaedias go head to head. Nature, 438(7070), 900901. doi:438900a [pii] 10.1038/438900aCrossRefGoogle ScholarPubMed
Glahn, D.C., Winkler, A.M., Kochunov, P., Almasy, L., Duggirala, R., Carless, M.A. (2010). Genetic control over the resting brain. Proceedings of the National Academy of Sciences of the United States of America, 107(3), 12231228. doi:0909969107 [pii] 10.1073/pnas.0909969107CrossRefGoogle ScholarPubMed
Hannay, H.J. (1998). Proceedings of the Houston Conference on Specialty Education and Training in Clinical Neuropsychology, September 3-7, 1997, University of Houston Hilton and Conference Center. Archives of Clinical Neuropsychology, 13(2), 157250.Google Scholar
Heilman, K.M., Valenstein, E. (1993). Clinical neuropsychology (Vol. 3). New York: Oxford University Press.CrossRefGoogle Scholar
Insel, T.R., Cuthbert, B.N. (2009). Endophenotypes: Bridging genomic complexity and disorder heterogeneity. Biological Psychiatry, 66(11), 988989. doi:S0006-3223(09)01208-6 [pii] 10.1016/j.biopsych.2009.10.008CrossRefGoogle ScholarPubMed
Insel, T., Cuthbert, B., Garvey, M., Heinssen, R., Pine, D.S., Quinn, K. (2010). Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. American Journal of Psychiatry, 167(7), 748751. doi:167/7/748 [pii] 10.1176/appi.ajp.2010.09091379CrossRefGoogle Scholar
Jagaroo, V. (2009). Obstacles and aids to neuroinformatics in neuropsychology. In: Neuroinformatics for neuropsychology (pp. 8593). New York: Springer.CrossRefGoogle Scholar
Kløve, H. (1963). Clinical neuropsychology. The Medical Clinics of North America, 47, 16471658.CrossRefGoogle ScholarPubMed
Kurzweil, R. (2005). The singularity is near: When humans transcend biology. New York: Viking.Google Scholar
Loring, D.W., Bauer, R.M. (2010). Testing the limits: Cautions and concerns regarding the new Wechsler IQ and Memory scales. Neurology, 74(8), 685690. doi:74/8/685 [pii] 10.1212/WNL.0b013e3181d0cd12CrossRefGoogle ScholarPubMed
Miniwatts Marketing Group. (2010). Internet world stats usage and population statistics. Retrieved from http://www.internetworldstats.com/Google Scholar
Mitrushina, M.N., Boone, K.B., Razani, J., D’Elia, L.F. (2005). Handbook of normative data for neuropsychological assessment. New York: Oxford University Press.Google Scholar
Poldrack, R.A., Halchenko, Y.O., Hanson, S.J. (2009). Decoding the large-scale structure of brain function by classifying mental States across individuals. Psychological Science, 20(11), 13641372. doi:PSCI2460 [pii] 10.1111/j.1467-9280.2009.02460.xCrossRefGoogle ScholarPubMed
Riley, R.D., Simmonds, M.C., Look, M.P. (2007). Evidence synthesis combining individual patient data and aggregate data: A systematic review identified current practice and possible methods. Journal of Clinical Epidemiology, 60(5), 431439. doi:S0895-4356(06)00403-3 [pii] 10.1016/j.jclinepi.2006.09.009CrossRefGoogle Scholar
Sabb, F.W., Bearden, C.E., Glahn, D.C., Parker, D.S., Freimer, N., Bilder, R.M. (2008). A collaborative knowledge base for cognitive phenomics. Molecular Psychiatry, 13(4), 350360. doi:4002124 [pii] 10.1038/sj.mp.4002124Google Scholar
Shattuck, D.W., Mirza, M., Adisetiyo, V., Hojatkashani, C., Salamon, G., Narr, K.L. (2008). Construction of a 3D probabilistic atlas of human cortical structures. Neuroimage, 39(3), 10641080. doi:S1053-8119(07)00809-9 [pii] 10.1016/j.neuroimage.2007.09.031CrossRefGoogle ScholarPubMed
Van Horn, J.D., Bandettini, P.A., Cheng, K., Egan, G.F., Stenger, V.A., Strother, S., Toga, A.W. (2008). New horizons for the next era of human brain imaging, cognitive, and behavioral research: Pacific Rim Interactivity. Brain Imaging and Behavior, 2(4), 227231.CrossRefGoogle ScholarPubMed