Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T04:39:04.090Z Has data issue: false hasContentIssue false

Neuropsychological results and neuropathological findings at autopsy in a case of mild traumatic brain injury

Published online by Cambridge University Press:  01 September 2004

ERIN D. BIGLER
Affiliation:
Departments of Psychology and Neuroscience, Brigham Young University, Provo, Utah, LDS Hospital, Salt Lake City, Utah and Department of Psychiatry and Radiology, University of Utah, Salt Lake City, Utah

Abstract

Autopsy studies were undertaken in a 47-year-old college-educated male patient who, 7 months prior to an unexpected death, had sustained a mild traumatic brain injury (TBI) as manifested by brief loss of consciousness and an initial Glasgow Coma Scale score of 14. The patient died from cardiac arrest secondary to an undiagnosed and unknown arteriosclerotic cardiovascular disease as assessed by the coroner's office at the time of autopsy. Gross inspection of the brain at autopsy was normal; however, microscopic analysis demonstrated what were considered trauma findings of hemosiderin-laden macrophages in the perivascular space and macrophages in the white matter, particularly the section taken from the frontal lobe. The patient had partially returned to work at the time of death, but had encountered problems with diminished cognitive performance in his work as an appraiser. Neuropsychological studies were generally within normal limits although several tests of either speed of processing or short-term memory showed lower than expected performance. This case demonstrates the presence of subtle neuropathological changes in the brain of a patient who sustained a mild TBI and was still symptomatic for the residual effects of the injury 7 months post injury when he unexpectedly died. (JINS, 2004, 10, 794–806.)

Type
CASE STUDY
Copyright
2004 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, J.H., Graham, D.I., & Jennett, B. (2000). The neuropathology of the vegetative state after an acute brain insult. Brain, 123, 13271338.CrossRefGoogle Scholar
Adelson, P.D., Jenkins, L.W., Hamilton, R.L., Robichaud, P., Tran, M.P., & Kochanek, P.M. (2001). Histopathologic response of the immature rat to diffuse traumatic brain injury. Journal of Neurotrauma, 18, 967977.CrossRefGoogle Scholar
Albert, C.M., Mittleman, M.A., Chae, C.U., Lee, I.M., Hennekens, C.H., & Manson, J.E. (2000). Triggering of sudden death from cardiac causes by vigorous exertion. New England Journal of Medicine, 343, 13551361.CrossRefGoogle Scholar
Alexander, M.P. (1995). Mild traumatic brain injury: Pathophysiology, natural history, and clinical management. Neurology, 45, 12531260.CrossRefGoogle Scholar
American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4th ed.). Washington, DC: Author.
Arfanakis, K., Haughton, V.M., Carew, J.D., Rogers, B.P., Dempsey, R.J., & Meyerand, M.E. (2002). Diffusion tensor MR imaging in diffuse axonal injury. American Journal of Neuroradiology, 23, 794802.Google Scholar
Beck, A.T. (1978). Beck Depression Inventory manual. San Antonio, TX: The Psychological Corporation.
Beck, A.T. (1990). Beck Anxiety Inventory. San Antonio, TX: The Psychological Corporation.
Benton, A.L. (1992). Benton Visual Retention Test–5th Edition. New York: The Psychological Corporation.
Besenski, N. (2002). Traumatic injuries: Imaging of head injuries. European Radiology, 12, 12371252.CrossRefGoogle Scholar
Bigler, E.D. (2001). Quantitative magnetic resonance imaging in traumatic brain injury. Journal of Head Trauma Rehabilitation, 16, 121.CrossRefGoogle Scholar
Bigler, E.D., Anderson, C.V., & Blatter, D.D. (2002). Temporal lobe morphology in normal aging and traumatic brain injury. AJNR American Journal of Neuroradiology, 23, 255266.Google Scholar
Blumbergs, P.C., Scott, G., Manavis, J., Wainwright, H., Simpson, D.A., & McLean, A.J. (1994). Staining of amyloid precursor protein to study axonal damage in mild head injury. Lancet, 344, 10551056.CrossRefGoogle Scholar
Brandes, D., Ben-Schachar, G., Gilboa, A., Bonne, O., Freedman, S., & Shalev, A.Y. (2002). PTSD symptoms and cognitive performance in recent trauma survivors. Psychiatry Research, 110, 231238.CrossRefGoogle Scholar
Brooks, W.M., Stidley, C.A., Petropoulos, H., Jung, R.E., Weers, D.C., Friedman, S.D., Barlow, M.A., Sibbitt, W.L., & Yeo, R.A. (2000). Metabolic and cognitive response to human traumatic brain injury: A quantitative proton magnetic resonance study. Journal of Neurotrauma, 17, 629640.CrossRefGoogle Scholar
Davis, R.L. & Robertson, D.M. (1985). Textbook of neuropathology. Baltimore: Williams & Wilkins.
Derogatis, L.R. (1996). Symptom Checklist–90–R. Minneapolis, MN: National Computer Systems, Inc.
Dietrich, W.D., Alonso, O., & Halley, M. (1994). Early microvascular and neuronal consequences of traumatic brain injury: A light and electron microscopic study in rats. Journal of Neurotrauma, 11, 289301.CrossRefGoogle Scholar
Fann, J.R., Burington, B., Leonetti, A., Jaffe, K., Katon, W.J., & Thompson, R.S. (2004). Psychiatric illness following traumatic brain injury in an adult health maintenance organization population. Archives of General Psychiatry, 61, 5361.CrossRefGoogle Scholar
Faschingbauer, T.R. (1974). A 166-item written short form of the group MMPI: The FAM. Journal of Consulting and Clinical Psychology, 42, 645655.CrossRefGoogle Scholar
Fazekas, F., Kleinert, R., Roob, G., Kleinert, G., Kapeller, P., Schmidt, R., & Hartung, H.P. (1999). Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: Evidence of microangiopathy-related microbleeds. American Journal of Neuroradiology, 20, 637642.Google Scholar
Folkerts, M.M., Berman, R.F., Muizelaar, J.P., & Rafols, J.A. (1998). Disruption of MAP-2 immunostaining in rat hippocampus after traumatic brain injury. Journal of Neurotrauma, 15, 349363.CrossRefGoogle Scholar
Garnett, M.R., Blamire, A.M., Corkill, R.G., Cadoux-Hudson, T.A.D., Rajagopalan, B., & Styles, P. (2000a). Early proton magnetic resonance spectroscopy in normal-appearing brain correlates with outcome in patients following traumatic brain injury. Brain, 123, 20462054.Google Scholar
Garnett, M.R., Blamire, A.M., Rajagopalan, B., Styles, P., & Cadoux-Hudson, T.A.D. (2000b). Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: A magnetic resonance spectroscopy study. Brain, 123, 14031409.Google Scholar
Gennarelli, T.A., Thibault, L.E., & Graham, D.I. (1998). Diffuse axonal injury: An important form of traumatic brain damage. Neuroscientist, 4, 202215.CrossRefGoogle Scholar
Goetz, P., Blamire, A., Rajagopalan, B., Cadoux-Hudson, T., Young, D., & Styles, P. (2004). Increase in apparent diffusion coefficient in normal appearing white matter following human traumatic brain injury correlates with injury severity. Journal of Neurotrauma, 21, 645654.CrossRefGoogle Scholar
Goodglass, H. & Kaplan, E. (1987). The assessment of aphasia and related disorders (2nd ed.). Philadelphia: Lea & Febiger.
Grady, M.S., Charleston, J.S., Maris, D., Witgen, B.M., & Lifshitz, J. (2003). Neuronal and glial cell number in the hippocampus after experimental traumatic brain injury: Analysis by stereological estimation. Journal of Neurotrauma, 20, 929941.CrossRefGoogle Scholar
Graham, D.I., Gennarelli, T.A., & McIntosh, T.K. (2002). Trauma. In P.L. Lantos (Ed.), Greenfield's neuropathology, pp. 823895. New York: Hodder Arnold.
Greenberg, G.D. (1994). Adult neuropsychological history. Worthington, OH: IDS Publishing Corporation.
Guo, Z., Cupples, L.A., Kurz, A., Auerbach, S.H., Volicer, L., Chui, H., Green, R.C., Sadovnick, AD., Duara, R., DeCarli, C., Johnson, K., Go, R.C., Growdon, J.H., Haines, J.L., Kukull, W.A., & Farrer, L.A. (2000). Head injury and the risk of AD in the MIRAGE study. Neurology, 54, 13161323.CrossRefGoogle Scholar
Hofman, P.A.M., Verhey, F.R.J., Wilmink, J.T., Rozendaal, N., & Jolles, J. (2002). Brain lesions in patients visiting a memory clinic with postconcussional sequelae after mild to moderate brain injury. Journal of Neuropsychiatry and Clinical Neurosciences, 14, 176184.CrossRefGoogle Scholar
Holsinger, T., Steffens, D.C., Phillips, C., Helms, M.J., Havlik, R.J., Breitner, J.C., Guralnik, J.M., & Plassman, B.L. (2002). Head injury in early adulthood and the lifetime risk of depression. Archives of General Psychiatry, 59, 1722.CrossRefGoogle Scholar
Hooper, H.E. (1958). The Hooper Visual Organization Test manual. Beverley Hills, CA: Western Psychological Services.
Imaizumi, T., Horita, Y., Chiba, M., Hashimoto, Y., Honma, T., & Niwa, J. (2004). Dot-like hemosiderin spots on gradient echo T2-weighted magnetic resonance imaging are associated with past history of small vessel disease in patients with intracerebral hemorrhage. Journal of Neuroimaging, 14, 251257.CrossRefGoogle Scholar
Jastak, S. & Wilkinson, G. (1993). The Wide Range Achievement Test–Revision 3. Wilmington, DE: Jastak Associates.
Johnston, K.C. & Marx, W.F., Jr. (2003). Microhemorrhages on gradient echo MRI. Neurology, 60, 518.CrossRefGoogle Scholar
Jorge, R.E., Robinson, R.G., Moser, D., Tateno, A., Crespo-Facorro, B., & Arndt, S. (2004). Major depression following traumatic brain injury. Archives of General Psychiatry, 61, 4250.CrossRefGoogle Scholar
Kumar, R., Gupta, R.K., Husain, M., Vatsal, D.K., Chawla, S., Rathore, R.K., & Pradhan, S. (2003). Magnetization transfer MR imaging in patients with posttraumatic epilepsy. AJNR American Journal of Neuroradiology, 24, 218224.Google Scholar
Lewine, J.D., Davis, J.T., Sloan, J.H., Kodituwakku, P.W., & Orrison, W.W. (1999). Neuromagnetic assessment of pathophysiologic brain activity induced by minor head trauma. American Journal of Neuroradiology, 20, 857866.Google Scholar
Lezak, M.D. (1995). Neuropsychological assessment (3rd ed.). New York: Oxford University Press.
MacKenzie, J.D., Siddiqi, F., Babb, J.S., Bagley, L.J., Mannon, L.J., Sinson, G.P., & Grossman, R.I. (2002). Brain atrophy in mild or moderate traumatic brain injury: A longitudinal quantitative analysis. American Journal of Neuroradiology, 23, 15091515.Google Scholar
Malamud, N. & Hirano, A. (1973). Atlas of neuropathology (2nd ed.). Berkley, CA: University of California Press.
Mathias, J.L., Beall, J.A., & Bigler, E.D. (2004). Neuropsychological and information processing deficits following mild traumatic brain injury. Journal of the International Neuropsychological Society, 10, 286297.Google Scholar
McGowan, J.C., Yang, J.H., Plotkin, R.C., Grossman, R.I., Umile, E.M., Cecil, K.M., & Bagley, L.J. (2000). Magnetization transfer imaging in the detection of injury associated with mild head trauma. American Journal of Neuroradiology, 21, 875880.Google Scholar
McIntosh, T.K., Saatman, K.E., Raghupathi, R., Graham, D.I., Smith, D.H., Lee, V.M.-Y., & Trojanowski, J.Q. (1998). The molecular and cellular sequelae of experimental traumatic brain injury: Pathogenetic mechanisms. Neuropathology and Applied Neurobiology, 24, 251267.CrossRefGoogle Scholar
Medana, I.M. & Esiri, M.M. (2003). Axonal damage: A key predictor of outcome in human CNS diseases. Brain, 126, 515530.CrossRefGoogle Scholar
Mehta, K.M., Ott, A., Kalmijn, S., Slooter, A.J.C., Van Duijn, C.M., Hoffman, A., & Breteler, M.M.B. (1999). Head trauma and risk of dementia and Alzheimer's disease: The Rotterdam Study. Neurology, 53, 19591962.CrossRefGoogle Scholar
Oehmichen, M., Walter, T., Meissner, C., & Friedrich, H.-J. (2003). Time course of cortical hemorrhages after closed traumatic brain injury: Statistical analysis of posttraumatic histomorphological alterations. Journal of Neurotrauma, 20, 87103.CrossRefGoogle Scholar
O'Meara, E.S., Kukull, W.A., Sheppard, L., Bowen, J.D., McCormick, W.C., Teri, L., Pfanschmidt, M., Thompson, J.D., Schellenberg, G.D., & Larson, E.B. (1997). Head injury and risk of Alzheimer's disease by Apolipoprotein E genotype. American Journal of Epidemiology, 146, 373384.CrossRefGoogle Scholar
Ommaya, A.K., Goldsmith, W., & Thibault, L. (2002). Biomechanics and neuropathology of adult and paediatric head injury. British Journal of Neurosurgery, 16, 220242.CrossRefGoogle Scholar
Plassman, B.L., Havlik, R.J., Steffens, D.C., Helms, M.J., Newman, T.N., Drosdick, D., Phillips, C., Gau, B.A., Welsh-Bohmer, K.A., Burke, J.R., Guralnik, J.M., & Breitner, J.C.S. (2000). Documented head injury in early adulthood and risk of Alzheimer's disease and other dementias. Neurology, 55, 11581166.CrossRefGoogle Scholar
Povlishock, J. & Christman, C. (1995). The pathobiology of traumatically induced axonal injury in animals and humans: A review of current thoughts. Journal of Neurotrauma, 12, 555564.CrossRefGoogle Scholar
Preul, C., Kuhn, B., Lang, E.W., Mehdorn, H.M., Heller, M., & Link, J. (2003). Differentiation of cerebral tumors using multi-section echo planar MR perfusion imaging. European Journal of Radiology, 48, 244251.CrossRefGoogle Scholar
Pritchard, D.A. (1998). Tests of neuropsychological malingering (version 2.0). New York: CRC Press, LLC.
Raghupathi, R. & Margulies, S.S. (2002). Traumatic axonal injury after closed head injury in the neonatal pig. Journal of Neurotrauma, 19, 843853.CrossRefGoogle Scholar
Raven, J.C. (1947). Colored Progressive Matrices Sets A, Ab, B. London: H.K. Lewis.
Rey, A. (1964). L'examen clinique en psychologie [The clinical examination in psychology]. Paris: Presse Universitaire de France.
Scheid, R., Preul, C., Gruber, O., Wiggins, C., & von Cramon, D.Y. (2003). Diffuse axonal injury associated with chronic traumatic brain injury: Evidence from T2*-weighted gradient-echo imaging at 3 T. American Journal of Neuroradiology, 24, 10491056.Google Scholar
Schofield, P.W., Tang, M., Marder, K., Bell, K., Dooneief, G., Chun, M., Sano, M., Stern, Y., & Mayeux, R. (1997). Alzheimer's disease after remote head injury: An incidence study. Journal of Neurology, Neurosurgery, and Psychiatry, 62, 119124.CrossRefGoogle Scholar
Schwab, J.M., Seid, K., & Schluesener, H.J. (2001). Traumatic brain injury induces prolonged accumulation of cyclooxygenase-1 expressing microglia/brain macrophages in rats. Journal of Neurotrauma, 18, 881890.CrossRefGoogle Scholar
Silver, C.H. (2000). Ecological validity of neuropsychological assessment in childhood traumatic brain injury. Journal of Head Trauma Rehabilitation, 15, 973988.CrossRefGoogle Scholar
Silver, J. & Miller, J.H. (2004). Regeneration beyond the glial scar. Neuroscience, 5, 146156.CrossRefGoogle Scholar
Sinson, G.P., Bagley, L.J., Cecil, K.M., Torchia, M., McGowan, J.C., Lenkinski, R.E., McIntosh, T.K., & Grossman, R.I. (2001). Magnetization transfer imaging and proton MR spectroscopy in the evaluation of axonal injury: Correlation with clinical outcome after traumatic brain injury. American Journal of Neuroradiology, 22, 143151.Google Scholar
Smith, D.H. & Meaney, D.F. (2000). Axonal damage in traumatic brain injury. Neuroscientist, 6, 483495.CrossRefGoogle Scholar
Soares, H.D., Hicks, R.R., Smith, D., & McIntosh, T.K. (1995). Inflammatory leukocytic recruitment and diffuse neuronal degeneration are separate pathological processes resulting from traumatic brain injury. Journal of Neuroscience, 15, 82238233.CrossRefGoogle Scholar
Stoll, G., Trapp, B.D., & Griffin, J.W. (1989). Macrophage function during Wallerian degeneration of rat optic nerve: Clearance of degenerating myelin and Ia expression. Journal of Neuroscience, 9, 23272335.CrossRefGoogle Scholar
Strich, S.J. (1956). Diffuse degeneration of the cerebral white matter in severe dementia following head injury. Journal of Neurology, Neurosurgery, and Psychiatry, 19, 163185.CrossRefGoogle Scholar
Strich, S.J. (1961). Shearing of nerve fibres as a cause of brain damage due to head injury. A pathological study of twenty cases. Lancet, 2, 443448.Google Scholar
Tartaglia, M.C., Narayanan, S., Francis, S.J., Santos, A.C., De Stefano, N., Lapierre, Y., & Arnold, D.L. (2004). The relationship between diffuse axonal damage and fatigue in multiple sclerosis. Archives of Neurology, 61, 201207.CrossRefGoogle Scholar
Teasdale, G. & Jennett, B. (1974). Assessment of coma and impaired consciousness: A practical scale. Lancet, 2, 8184.CrossRefGoogle Scholar
Thatcher, R.W., Camacho, M., Salazar, A., Linden, C., Biver, C., & Clarke, L. (1997). Quantitative MRI of the gray-white matter distribution in traumatic brain injury. Journal of Neurotrauma, 14, 114.Google Scholar
Tracey, K.J. (2002). The inflammatory reflex. Nature, 420, 853859.CrossRefGoogle Scholar
Varney, N.R. & Roberts, R.J. (1999). The evaluation and treatment of mild traumatic brain injury. Mahwah, NJ: Lawrence Erlbaum Associates.
Vela, J.M., Yáñez, A., González, B., & Castellano, B. (2002). Time course of proliferation and elimination of microglia/macrophages in different neurodegenerative conditions. Journal of Neurotrauma, 19, 15031520.CrossRefGoogle Scholar
Wardlaw, J.M. & Statham, P.F. (2000). How often is haemosiderin not visible on routine MRI following traumatic intracerebral haemorrhage? Neuroradiology, 42, 8184.Google Scholar
Warrington, E.K. (1984). Warrington Recognition Memory Test. Windsor, UK: NFER-Nelson.
Wechsler, D. (1981). Wechsler Adult Intelligence Scale–Revised (WAIS–R). San Antonio, TX: The Psychological Corporation.
Wechsler, D. (1987). Wechsler Memory Scale–Revised manual. San Antonio, TX: The Psychological Corporation.
Wong, K.S., Chan, Y.L., Liu, J.Y., Gao, S., & Lam, W.W. (2003). Asymptomatic microbleeds as a risk factor for aspirin-associated intracerebral hemorrhages. Neurology, 60, 511513.CrossRefGoogle Scholar
Yokota, H., Naoe, Y., Nakabayashi, M., Unemoto, K., Kushimoto, S., Kurokawa, A., Node, Y., & Yamamoto, Y. (2002). Cerebral endothelial injury in severe head injury: The significance of measurements of serum thrombomodulin and the von Willebrand factor. Journal of Neurotrauma, 19, 10071015.CrossRefGoogle Scholar
Zhang, L., Ravdin, L.D., Relkin, N., Zimmerman, R.D., Jordan, B., Lathan, W.E., & Ulug, A.M. (2003). Increased diffusion in the brain of professional boxers: A preclinical sign of traumatic brain injury? American Journal of Neuroradiology, 24, 5257.Google Scholar