Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-28T14:27:26.176Z Has data issue: false hasContentIssue false

Neuropsychological Function Response to Nocturnal Blue Light Blockage in Individuals With Symptoms of Insomnia: A Pilot Randomized Controlled Study

Published online by Cambridge University Press:  20 March 2019

Molly E. Zimmerman*
Affiliation:
Fordham University, Department of Psychology, Bronx, New York
Moosun Brad Kim
Affiliation:
Institute of Human Nutrition, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
Christiane Hale
Affiliation:
Taub Institute for Research on Alzheimer’s disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York
Andrew J. Westwood
Affiliation:
Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York
Adam M. Brickman
Affiliation:
Taub Institute for Research on Alzheimer’s disease and the Aging Brain, Columbia University College of Physicians and Surgeons, New York, New York Department of Neurology, Columbia University College of Physicians and Surgeons, New York, New York
Ari Shechter
Affiliation:
Center for Behavioral Cardiovascular Health, Department of Medicine, Columbia University College of Physicians and Surgeons, New York, New York
*
Correspondence and reprint requests to: Molly E. Zimmerman, Fordham University, Department of Psychology Dealy Hall Room 226, 441 East Fordham Road, Bronx, NY 10458. E-mail: [email protected]

Abstract

Objectives: Insomnia is associated with neuropsychological dysfunction. Evidence points to the role of nocturnal light exposure in disrupted sleep patterns, particularly blue light emitted through smartphones and computers used before bedtime. This study aimed to test whether blocking nocturnal blue light improves neuropsychological function in individuals with insomnia symptoms. Methods: This study used a randomized, placebo-controlled crossover design. Participants were randomly assigned to a 1-week intervention with amber lenses worn in wrap-around frames (to block blue light) or a 1-week intervention with clear lenses (control) and switched conditions after a 4-week washout period. Neuropsychological function was evaluated with tests from the NIH Toolbox Cognition Battery at three time points: (1) baseline (BL), (2) following the amber lenses intervention, and (3) following the clear lenses intervention. Within-subjects general linear models contrasted neuropsychological test performance following the amber lenses and clear lenses conditions with BL performance. Results: Fourteen participants (mean(standard deviation, SD): age = 46.5(11.4)) with symptoms of insomnia completed the protocol. Compared with BL, individuals performed better on the List Sorting Working Memory task after the amber lenses intervention, but similarly after the clear lenses intervention (F = 5.16; p = .014; η2 = 0.301). A similar pattern emerged on the Pattern Comparison Processing Speed test (F = 7.65; p = 0.002; η2 = 0.370). Consideration of intellectual ability indicated that treatment with amber lenses “normalized” performance on each test from approximately 1 SD below expected performance to expected performance. Conclusions: Using a randomized, placebo-controlled crossover design, we demonstrated improvement in processing speed and working memory with a nocturnal blue light blocking intervention among individuals with insomnia symptoms. (JINS, 2019, 25, 668–677)

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alkozei, A., Smith, R., Dailey, N.S., Bajaj, S., & Killgore, W. D. S. (2017). Acute exposure to blue wavelength light during memory consolidation improves verbal memory performance. PLoS One, 12(9), e0184884. doi:10.1371/journal.pone.0184884CrossRefGoogle ScholarPubMed
Altena, E., Van Der Werf, Y.D., Strijers, R.L., & Van Someren, E.J. (2008). Sleep loss affects vigilance: Effects of chronic insomnia and sleep therapy. Journal of Sleep Research, 17(3), 335343. doi:10.1111/j.1365-2869.2008.00671.xCrossRefGoogle ScholarPubMed
American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (DSM-5®): Washington, DC: American Psychiatric Association.Google Scholar
Bastien, C.H. (2011). Insomnia: Neurophysiological and neuropsychological approaches. Neuropsychological Review, 21(1), 2240. doi:10.1007/s11065-011-9160-3CrossRefGoogle ScholarPubMed
Bastien, C.H., St-Jean, G., Morin, C.M., Turcotte, I., & Carrier, J. (2008). Chronic psychophysiological insomnia: Hyperarousal and/or inhibition deficits? An ERPs investigation. Sleep, 31(6), 887898.CrossRefGoogle ScholarPubMed
Bastien, C.H., Vallieres, A., & Morin, C.M. (2004). Precipitating factors of insomnia. Behavioral Sleep Medicine, 2(1), 5062. doi:10.1207/s15402010bsm0201_5CrossRefGoogle ScholarPubMed
Bloemendal, H., de Jong, W., Jaenicke, R., Lubsen, N.H., Slingsby, C., & Tardieu, A. (2004). Ageing and vision: Structure, stability and function of lens crystallins. Progress in Biophysics and Molecular Biology, 86(3), 407485. doi:10.1016/j.pbiomolbio.2003.11.012CrossRefGoogle ScholarPubMed
Brainard, G.C., Hanifin, J.P., Greeson, J.M., Byrne, B., Glickman, G., Gerner, E., & Rollag, M.D. (2001). Action spectrum for melatonin regulation in humans: Evidence for a novel circadian photoreceptor. Journal of Neuroscience, 21(16), 64056412.CrossRefGoogle ScholarPubMed
Cajochen, C., Frey, S., Anders, D., Spati, J., Bues, M., Pross, A., . . . Stefani, O. (2011). Evening exposure to a light-emitting diodes (LED)-backlit computer screen affects circadian physiology and cognitive performance. Journal of Applied Physiology (Bethesda, Md. : 1985), 110(5), 1432–1438. doi:10.1152/japplphysiol.00165.2011CrossRefGoogle ScholarPubMed
Cajochen, C., Krauchi, K., & Wirz-Justice, A. (2003). Role of melatonin in the regulation of human circadian rhythms and sleep. Journal of Neuroendocrinology, 15(4), 432437.CrossRefGoogle ScholarPubMed
Chang, A.M., Aeschbach, D., Duffy, J.F., & Czeisler, C.A. (2015). Evening use of light-emitting eReaders negatively affects sleep, circadian timing, and next-morning alertness. Proceedings of the National Academy of Sciences of the United States of America, 112(4), 12321237. doi:10.1073/pnas.1418490112CrossRefGoogle ScholarPubMed
Cole, R.J., Kripke, D.F., Gruen, W., Mullaney, D.J., & Gillin, J.C. (1992). Automatic sleep/wake identification from wrist activity. Sleep, 15(5), 461469.CrossRefGoogle ScholarPubMed
Edinger, J.D., Means, M.K., Carney, C.E., & Krystal, A.D. (2008). Psychomotor performance deficits and their relation to prior nights’ sleep among individuals with primary insomnia. Sleep, 31(5), 599607.CrossRefGoogle ScholarPubMed
Fortier-Brochu, E., & Morin, C.M. (2014). Cognitive impairment in individuals with insomnia: Clinical significance and correlates. Sleep, 37(11), 17871798. doi:10.5665/sleep.4172CrossRefGoogle ScholarPubMed
Fossum, I.N., Nordnes, L.T., Storemark, S.S., Bjorvatn, B., & Pallesen, S. (2014). The association between use of electronic media in bed before going to sleep and insomnia symptoms, daytime sleepiness, morningness, and chronotype. Behavioral Sleep Medicine, 12(5), 343357. doi:10.1080/15402002.2013.819468CrossRefGoogle ScholarPubMed
Gamble, K.L., May, R.S., Besing, R.C., Tankersly, A.P., & Fargason, R.E. (2013). Delayed sleep timing and symptoms in adults with attention-deficit/hyperactivity disorder: A controlled actigraphy study. Chronobiology International, 30(4), 598606. doi:10.3109/07420528.2012.754454CrossRefGoogle ScholarPubMed
Gershon, R.C., Cella, D., Fox, N.A., Havlik, R.J., Hendrie, H.C., & Wagster, M.V. (2010). Assessment of neurological and behavioural function: The NIH Toolbox. Lancet Neurology, 9(2), 138139. doi:10.1016/s1474-4422(09)70335-7CrossRefGoogle ScholarPubMed
Glickman, G., Byrne, B., Pineda, C., Hauck, W.W., & Brainard, G.C. (2006). Light therapy for seasonal affective disorder with blue narrow-band light-emitting diodes (LEDs). Biological Psychiatry, 59(6), 502507. doi:10.1016/j.biopsych.2005.07.006CrossRefGoogle Scholar
Gradisar, M., Wolfson, A.R., Harvey, A.G., Hale, L., Rosenberg, R., & Czeisler, C.A. (2013). The sleep and technology use of Americans: Findings from the National Sleep Foundation’s 2011 Sleep in America poll. Journal of Clinical Sleep Medicine, 9(12), 1291.Google ScholarPubMed
Haimov, I., Hanuka, E., & Horowitz, Y. (2008). Chronic insomnia and cognitive functioning among older adults. Behavioral Sleep Medicine, 6(1), 3254. doi:10.1080/15402000701796080CrossRefGoogle ScholarPubMed
Harvey, A.G. (2002). A cognitive model of insomnia. Behaviour Research and Therapy, 40(8), 869893.CrossRefGoogle ScholarPubMed
Hauri, P.J. (1997). Cognitive deficits in insomnia patients. Acta Neurologica Belgica, 97(2), 113117.Google ScholarPubMed
Heaton, R.K., Akshoomoff, N., Tulsky, D., Mungas, D., Weintraub, S., Dikmen, S., . . . Gershon, R. (2014). Reliability and validity of composite scores from the NIH Toolbox Cognition Battery in adults. Journal of the International Neuropsychological Society, 20(6), 588598. doi:10.1017/s1355617714000241CrossRefGoogle ScholarPubMed
Howell, D.C. (2010). Statistical methods for psychology. (7th ed.). Belmond, CA: Wadsworth.Google Scholar
Kayumov, L., Casper, R.F., Hawa, R.J., Perelman, B., Chung, S.A., Sokalsky, S., & Shapiro, C.M. (2005). Blocking low-wavelength light prevents nocturnal melatonin suppression with no adverse effect on performance during simulated shift work. The Journal of Clinical Endocrinology and Metabolism, 90(5), 27552761. doi:10.1210/jc.2004-2062CrossRefGoogle ScholarPubMed
Ling, A., Lim, M.L., Gwee, X., Ho, R.C., Collinson, S.L., & Ng, T.P. (2016). Insomnia and daytime neuropsychological test performance in older adults. Sleep Medicine, 17, 712. doi:10.1016/j.sleep.2015.07.037CrossRefGoogle ScholarPubMed
Moul, D., Pilkonis, P., Miewald, J., Carey, T., & Buysse, D. (2002). Preliminary study of the test-retest reliability and concurrent validities of the Pittsburgh Insomnia Rating Scale (PIRS). Sleep, 25, A246A247.Google Scholar
Moul, D.E., Hall, M., Pilkonis, P.A., & Buysse, D.J. (2004). Self-report measures of insomnia in adults: Rationales, choices, and needs. Sleep Medicine Reviews, 8(3), 177198. doi:10.1016/s1087-0792(03)00060-1CrossRefGoogle ScholarPubMed
Ohayon, M.M. (2002). Epidemiology of insomnia: What we know and what we still need to learn. Sleep Medicine Reviews, 6(2), 97111.CrossRefGoogle Scholar
Okun, M.L., Kravitz, H.M., Sowers, M.F., Moul, D.E., Buysee, D.E., & Hall, M. (2007). Psychometric evaluation of the Insomnia Symptom Questionnaire: A self-report measure to identify chronic insomnia. J Clin Sleep Med, 5(1), 4151.Google Scholar
Orff, H.J., Drummond, S.P., Nowakowski, S., & Perils, M.L. (2007). Discrepancy between subjective symptomatology and objective neuropsychological performance in insomnia. Sleep, 30(9), 12051211.CrossRefGoogle ScholarPubMed
Ozguner, F., Koyu, A., & Cesur, G. (2005). Active smoking causes oxidative stress and decreases blood melatonin levels. Toxicol Ind Health, 21, 2126.CrossRefGoogle ScholarPubMed
Perlis, M.L., Giles, D.E., Mendelson, W.B., Bootzin, R.R., & Wyatt, J.K. (1997). Psychophysiological insomnia: The behavioural model and a neurocognitive perspective. Journal of Sleep Research, 6(3), 179188.CrossRefGoogle Scholar
Phelps, J. (2008). Dark therapy for bipolar disorder using amber lenses for blue light blockade. Medical Hypotheses, 70(2), 224229. doi:10.1016/j.mehy.2007.05.026CrossRefGoogle ScholarPubMed
Riedel, B.W., & Lichstein, K.L. (2000). Insomnia and daytime functioning. Sleep Medicine Reviews, 4(3), 277298. doi:10.1053/smrv.1999.0074CrossRefGoogle ScholarPubMed
Sasseville, A., Paquet, N., Sevigny, J., & Hebert, M. (2006). Blue blocker glasses impede the capacity of bright light to suppress melatonin production. Journal of Pineal Research, 41(1), 7378. doi:10.1111/j.1600-079X.2006.00332.xCrossRefGoogle ScholarPubMed
Sateia, M.J., Doghramji, K., Hauri, P.J., & Morin, C.M. (2000). Evaluation of chronic insomnia. An American Academy of Sleep Medicine review. Sleep, 23(2), 243308.CrossRefGoogle ScholarPubMed
Schneider, C., Fulda, S., & Schulz, H. (2004). Daytime variation in performance and tiredness/sleepiness ratings in patients with insomnia, narcolepsy, sleep apnea and normal controls. Journal of Sleep Research, 13(4), 373383. doi:10.1111/j.1365-2869.2004.00427.xCrossRefGoogle ScholarPubMed
Schutte-Rodin, S., Broch, L., Buysse, D., Dorsey, C., & Sateia, M. (2008). Clinical guideline for the evaluation and management of chronic insomnia in adults. Journal of Clinical Sleep Medicine, 4(5), 487504.Google ScholarPubMed
Shechter, A., Kim, E.W., St-Onge, M.P., & Westwood, A.J. (2018). Blocking nocturnal blue light for insomnia: A randomized controlled trial. Journal of Psychiatric Research, 96, 196202. doi:10.1016/j.jpsychires.2017.10.015CrossRefGoogle ScholarPubMed
Shekleton, J.A., Rogers, N.L., & Rajaratnam, S.M. (2010). Searching for the daytime impairments of primary insomnia. Sleep Medicine Reviews, 14(1), 4760. doi:10.1016/j.smrv.2009.06.001CrossRefGoogle ScholarPubMed
Smith, M.T., Perlis, M.L., Chengazi, V.U., Pennington, J., Soeffing, J., Ryan, J.M., & Giles, D.E. (2002). Neuroimaging of NREM sleep in primary insomnia: A Tc-99-HMPAO single photon emission computed tomography study. Sleep, 25(3), 325335.Google ScholarPubMed
Souman, J.L., Tinga, A.M., Te Pas, S.F., van Ee, R., & Vlaskamp, B. N. S. (2018). Acute alerting effects of light: A systematic literature review. Behavioural Brain Research, 337, 228239. doi:10.1016/j.bbr.2017.09.016CrossRefGoogle ScholarPubMed
Stoschitzky, K., Sakotnik, A., Lercher, P., Zweiker, R., Meier, R., Liebmann, P., & Lindner, W. (1999). Influence of beta-blockers on melatonin release. Eur J Clin Pharmacol, 55(2), 111115.CrossRefGoogle ScholarPubMed
Thapan, K., Arendt, J., & Skene, D.J. (2001). An action spectrum for melatonin suppression: Evidence for a novel non-rod, non-cone photoreceptor system in humans. The Journal of Physiology, 535(Pt 1), 261267.CrossRefGoogle ScholarPubMed