Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-26T20:56:18.122Z Has data issue: false hasContentIssue false

Neuropsychological Assessment: Past and Future

Published online by Cambridge University Press:  04 December 2017

Kaitlin B. Casaletto*
Affiliation:
Department of Neurology, University of California, San Francisco, California
Robert K. Heaton
Affiliation:
Department of Psychiatry, University of California, San Diego, California
*
Correspondence and reprint requests to: Kaitlin B. Casaletto, Memory and Aging Center, Department of Neurology, University of California, San Francisco, 675 Nelson Rising Lane, Suite 190, San Francisco, CA 94158. E-mail: [email protected]

Abstract

Neuropsychological assessment tools are the staple of our field. The development of standardized metrics sensitive to brain-behavior relationships has shaped the neuropsychological questions we can ask, our understanding of discrete brain functions, and has informed the detection and treatment of neurological disorders. We identify key turning points and innovations in neuropsychological assessment over the past 40–50 years that highlight how the tools used in common practice today came to be. Also selected for emphasis are several exciting lines of research and novel approaches that are underway to further probe and characterize brain functions to enhance diagnostic and treatment outcomes. We provide a brief historical review of different clinical neuropsychological assessment approaches (Lurian, Flexible and Fixed Batteries, Boston Process Approach) and critical developments that have influenced their interpretation (normative standards, cultural considerations, longitudinal change, common metric batteries, and translational assessment constructs). Lastly, we discuss growing trends in assessment including technological advances, efforts to integrate neuropsychology across disciplines (e.g., primary care), and changes in neuropsychological assessment infrastructure. Neuropsychological assessment has undergone massive growth in the past several decades. Nonetheless, there remain many unanswered questions and future challenges to better support measurement tools and translate assessment findings into meaningful recommendations and treatments. As technology and our understanding of brain function advance, efforts to support infrastructure for both traditional and novel assessment approaches and integration of complementary brain assessment tools from other disciplines will be integral to inform brain health treatments and promote the growth of our field. (JINS, 2017, 23, 778–790)

Type
Section 1 – Brain Systems and Assessment
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, K.M., Kvale, V.I., & Keegan, J.F. (1984). Relative Accuracy of 3 Automated Systems for Neuropsychological Interpretation. Journal of Clinical Neuropsychology, 6(4), 413431. doi: 10.1080/01688638408401232 Google Scholar
Adams, K.M. (1975). Automated clinical interpretation of the neuropsychological test battery: An ability based approach. Detroit, MI: Wayne State University, University Microfilms.Google Scholar
Al-Joudi, H. (2015). Availability of Arabic language tests in the Middle East and North Africa. In J.H. University (Ed.), INS NET: JINS.Google Scholar
Ardila, A., Rosselli, M., Matute, E., & Guajardo, S. (2005). The influence of the parents’ educational level on the development of executive functions. Developmental Neuropsychology, 28(1), 539560. doi: 10.1207/s15326942dn2801_5 CrossRefGoogle ScholarPubMed
Arnold, B.R., Montgomery, G.T., Castaneda, I., & Longoria, R. (1994). Acculturation and performance of Hispanics on selected Halstead-Reitan neuropsychological tests. Assessment, 1(3), 239248.CrossRefGoogle Scholar
Bauer, R.M., Iverson, G.L., Cernich, A.N., Binder, L.M., Ruff, R.M., & Naugle, R.I. (2012). Computerized neuropsychological assessment devices: Joint position paper of the American Academy of Clinical Neuropsychology and the National Academy of Neuropsychology. The Clinical Neuropsychologist, 26(2), 177196. doi: 10.1080/13854046.2012.663001 CrossRefGoogle ScholarPubMed
Bediou, B., Ryff, I., Mercier, B., Milliery, M., Henaff, M.A., D’Amato, T., & Krolak-Salmon, P. (2009). Impaired social cognition in mild Alzheimer disease. Journal of Geriatric Psychiatry and Neurology, 22(2), 130140. doi: 10.1177/0891988709332939 Google Scholar
Benton, A.L. (1994). Neuropsychological assessment. Annual Review of Psychology, 45, 123. doi: 10.1146/Annurev.Ps.45.020194.000245 CrossRefGoogle ScholarPubMed
Benton, A.L., Hamsher, K.S., Varney, N., & Spreen, O. (1983). Contributions to neuropsychological assessment: A clinical manual. Oxford, UK: Oxford University Press.Google Scholar
Bezdicek, O., Motak, L., Axelrod, B.N., Preiss, M., Nikolai, T., Vyhnalek, M., & Ruzicka, E. (2012). Czech version of the Trail Making Test: Normative data and clinical utility. Archives of Clinical Neuropsychology, 27(8), 906914. doi: 10.1093/arclin/acs084 CrossRefGoogle ScholarPubMed
Bezdicek, O., Stepankova, H., Motak, L., Axelrod, B.N., Woodard, J.L., Preiss, M., & Poreh, A. (2014). Czech version of Rey Auditory Verbal Learning test: Normative data. Aging Neuropsychology and Cognition, 21(6), 693721. doi: 10.1080/13825585.2013.865699 CrossRefGoogle ScholarPubMed
Bigler, E.D. (2007). A motion to exclude and the ‘fixed’ versus ‘flexible’ battery in ‘forensic’ neuropsychology: Challenges to the practice of clinical neuropsychology. Archives of Clinical Neuropsychology, 22(1), 4551. doi: 10.1016/j.acn.2006.06.019 Google Scholar
Brouliette, R.M., Foil, H., Fontenot, S., Correro, A., Allen, R., Martin, C.K., & Keller, J.N. (2013). Feasibilty, reliability, and validity of a smartphone based application for the assessment of cognitive function in the elderly. PLoS One, 8(6), e65925.Google Scholar
Carey, C.L., Woods, S.P., Rippeth, J.D., Heaton, R.K., Grant, I., & HIV Neurobehavioral Research Center (HNRC) Group. (2006). Prospective memory in HIV-1 infection. Journal of Clinical and Experimental Neuropsychology, 28(4), 536548.CrossRefGoogle ScholarPubMed
Carter, C.S., & Barch, D.M. (2007). Cognitive neuroscience-based approaches to measuring and improving treatment effects on cognition in schizophrenia: The CNTRICS initiative. Schizophrenia Bulletin, 33(5), 11311137.CrossRefGoogle ScholarPubMed
Cassitto, M.G., Camerino, D., Hanninen, H., & Anger, W.K. (1990). International collaboration to evaluate the Who Neurobehavioral Core Test Battery. In B.L. Johnson, W.K. Anger, A. Durao & C. Xintaras (Eds.), Advances in neurobehavioral toxicology: Applications in environmental and occupational health (pp. 203223). Chelsea, MI: Lewis.Google Scholar
Chelune, G.J., Naugle, R.I., Luders, H., Selak, J., & Awad, I.A. (1993). Individual change after epilepsy surgery: Practice effects and base-rate information. Neuropsychology, 7, 4152.Google Scholar
Crawford, J.R., & Garthwaite, P.H. (2007). Using regression equations built from summary data in the neuropsychological assessment of the individual case. Neuropsychology, 21(5), 611620. doi: 10.1037/0894-4105.21.5.611 Google Scholar
Crawford, J.R., Garthwaite, P.H., Denham, A.K., & Chelune, G.J. (2012). Using regression equations built from summary data in the psychological assessment of the individual case: Extension to multiple regression. Psychological Assessment, 24(4), 801814. doi: 10.1037/a0027699 CrossRefGoogle ScholarPubMed
Cutler, N.R., Shrotriya, R.C., Sramek, J.J., Veroff, A.E., Seifert, R.D., Reich, L.A., && Hironaka, D.Y. (1993). The use of the Computerized Neuropsychological Test Battery (CNTB) in an efficacy and safety trial of BMY 21,502 in Alzheimer’s disease. Annals of the New York Academy of Sciences, 695, 332336.CrossRefGoogle Scholar
Cysique, L.A., Franklin, D. Jr., Abramson, I., Ellis, R.J., Letendre, S., Collier, A., & Simpson, D. (2011). Normative data and validation of a regression based summary score for assessing meaningful neuropsychological change. Journal of Clinical and Experimental Neuropsychology, 33(5), 505522.CrossRefGoogle ScholarPubMed
Damasio, A.R., & Tranel, D. (1993). Nouns and verbs are retrieved with differently distributed neural systems. Proceedings of the National Academy of Sciences of the United States of America, 90(11), 49574960. doi: 10.1073/Pnas.90.11.4957 CrossRefGoogle ScholarPubMed
de Almeida, S.M., Ribeiro, C.E., de Pereira, A.P., Badiee, J., Cherner, M., Smith, D., & Heaton, R.K. (2013). Neurocognitive impairment in HIV-1 clade C-versus B-infected individuals in Southern Brazil. Journal of Neurovirology, 19(6), 550556.Google Scholar
Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (1987). California Verbal Learning Test: Adult version. Manual. San Antonio, TX: Psychological Corportation.Google Scholar
Delis, D., Kramer, J.H., Kaplan, E., & Ober, B. (2000). The California Verbal Learning Test–Second edition. San Antonio, TX: The Psychological Corporation.Google Scholar
Delis, D., Kaplan, E., & Kramer, J. (2001). Delis-Kaplan Executive Function System. San Antonio, TX: The Psychological Corporation.Google Scholar
Draper, I.T. (1976). Luria’s neuropsychological investigation. Journal of Neurology, Neurosurgery, and Psychiatry, 39(4), 409410.Google Scholar
Deuel, R.K. (1971). Assessment of brain damage: A neuropsychological key approach. Archives of Neurology, 25(1), 9595.Google Scholar
Einstein, G.O., & Mcdaniel, M.A. (1990). Normal aging and prospective memory. Journal of Experimental Psychology. Learning Memory and Cognition, 16(4), 717726. doi: 10.1037/0278-7393.16.4.717 Google Scholar
Ekman, P., & Friesen, W.V. (1976). Pictures of facial affect. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Ellis, J., & Kvavilashvili, L. (2000). Prospective memory in 2000: Past, present, and future directions. Applied Cognitive Psychology, 14, S1S9. doi: 10.1002/Acp.767.Abs Google Scholar
Elwood, R.W. (2001). MicroCog: Assessment of cognitive functioning. Neuropsychology Review, 11(2), 89100. doi: 10.1023/A:1016671201211 CrossRefGoogle ScholarPubMed
Fasfous, A.F., Al-Joudi, H.F., Puente, A.E., & Perez-Garcia, M. (2017). Neuropsychological measures in the Arab World: A systematic review. Neuropsychology Review, 27, 158173. doi: 10.1007/s11065-017-9347-3 CrossRefGoogle ScholarPubMed
Finkelstein, J.N. (1977). BRAIN: A computer program for interpretation of the Halstead-Reitan Neuropsychological Test Battery. New York, NY: Columbia University, University Microfilms.Google Scholar
Flores, I., Casaletto, K.B., Marquine, M.J., Umlauf, A., Moore, D.J., Mungas, D., & Heaton, R.K. (2017). Performance of Hispanics and Non-Hispanic Whites on the NIH Toolbox Cognition Battery: The roles of ethnicity and language backgrounds. The Clinical Neuropsychologist, 31, 783797. doi: 10.1080/13854046.2016.1276216 Google Scholar
Fratti, S., Bowden, S.C., & Cook, M.J. (2016). Reliability and validity of the CogState computerized battery in patients with seizure disorders and healthy young adults: Comparison with standard neuropsychological tests. Clin Neuropsychol, 31, 569586. doi: 10.1080/13854046.2016.1256435 CrossRefGoogle ScholarPubMed
Fuiji, D. (2017). Conducting a culturally informed neuropsychological evaluation. Washington, DC: American Psychological Association.Google Scholar
Gershon, R.C., Wagster, M.V., Hendrie, H.C., Fox, N.A., Cook, K.F., & Nowinski, C.J. (2013). NIH toolbox for assessment of neurological and behavioral function. Neurology, 80, S2S6. doi: 10.1212/WNL.0b013e3182872e5f Google Scholar
Ghate, M., Mehendale, S., Meyer, R., Umlauf, A., Deutsch, R., Kamat, R., & Alexander, T. (2015). The effects of antiretroviral treatment initiation on cognition in HIV-infected individuals with advanced disease in Pune, India. Journal of Neurovirology, 21(4), 391398.CrossRefGoogle ScholarPubMed
Golden, C.J., Purisch, A.D., & Hammeke, T.A. (1979). The Luria-Nebraska Neuropsychological Battery: A manual for clinical and experimental uses. Lincoln, NE: University of Nebraska Press.Google Scholar
Grant, I., & Heaton, R.K. (2015). Ralph M. Reitan: A founding father of neuropsychology. Archives of Clinical Neuropsychology, 30(8), 760761. doi: 10.1093/arclin/acv077 Google Scholar
Green, M.F., Nuechterlein, K.H., Gold, J.M., Barch, D.M., Cohen, J., Essock, S., & Marder, S.R. (2004). Approaching a consensus cognitive battery for clinical trials in schizophrenia: The NIMH-MATRICS conference to select cognitive domains and test criteria. Biological Psychiatry, 56(5), 301307. doi: 10.1016/j.biopsych.2004.06.023 Google Scholar
Green, M.F., Olivier, B., Crawley, J.N., Penn, D.L., & Silverstein, S. (2005). Social cognition in schizophrenia: Recommendations from the measurement and treatment research to improve cognition in schizophrenia new approaches conference. Schizophrenia Bulletin, 31(4), 882887. doi: 10.1093/schbul/sbi049 Google Scholar
Greenwald, A.G., McGhee, D.E., & Schwartz, J.L.K. (1998). Measuring individual differences in implicit cognition: The implicit association test. Journal of Personality and Social Psychology, 74(6), 14641480. doi: 10.1037/0022-3514.74.6.1464 CrossRefGoogle ScholarPubMed
Gupta, S., Iudicello, J.E., Shi, C., Letendre, S., Knight, A., Li, J., & Atkinson, J.H. (2014). Absence of neurocognitive impairment in a large Chinese sample of HCV-infected injection drug users receiving methadone treatment. Drug and Alcohol Dependence, 137, 2935.Google Scholar
Harris, M.E., Ivnik, R.J., & Smith, G.E. (2002). Mayo’s older americans normative studies: Expanded AVLT recognition trial norms for ages 57 to 98. Journal of Clinical and Experimental Neuropsychology, 24(2), 214220. doi: 10.1076/Jcen.24.2.214.995 Google Scholar
Heaton, R.K., Grant, I., & Matthews, C.G. (1991). Comprehensive norms for an expanded Halstead-Reitan battery: Demographic corrections, research findings, and clinical applications. Odessa, FL: Psychological Assessment Resources.Google Scholar
Heaton, R.K., Temkin, N., Dikmen, S., Avitable, N., Taylor, M.J., Marcotte, T.D., & Grant, I. (2001). Detecting change: A comparison of three neuropsychological methods, using normal and clinical samples. Archives of Clinical Neuropsychology, 16(1), 7591. doi: 10.1016/S0887-6177(99)00062-1 CrossRefGoogle Scholar
Heaton, R.K., Miller, S.W., Taylor, J.T., & Grant, I. (2004). Revised comprehensive norms for an expanded Halstead-Reitan Battery: Demographically adjusted neuropsychological norms for African American and Caucasian adults. Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
Heaton, R.K., Cysique, L.A., Jin, H., Shi, C., Yu, X., Letendre, S., & Marcotte, T.D. (2008). Neurobehavioral effects of human immunodeficiency virus infection among former plasma donors in rural China. Journal of Neurovirology, 14(6), 536549.Google Scholar
Hermann, B.P., Seidenberg, M., Schoenfeld, J., Peterson, J., Leveroni, C., & Wyler, A.R. (1996). Empirical techniques for determining the reliability, magnitude, and pattern of neuropsychological change after epilepsy surgery. Epilepsia, 37(10), 942950.CrossRefGoogle ScholarPubMed
Hestad, K.A., Menon, J.A., Serpell, R., Kalungwana, L., Mwaba, S.O., Kabuba, N., & Heaton, R.K. (2016). Do neuropsychological test norms from African Americans in the United States generalize to a Zambian population?. Psychological Assessment, 28(1), 18.Google Scholar
Holtzer, R., Goldin, Y., Zimmerman, M., Katz, M., Buschke, H., & Lipton, R.B. (2008). Robust norms for selected neuropsychological tests in older adults. Archives of Clinical Neuropsychology, 23(5), 531541. doi: 10.1016/j.acn.2008.05.004 CrossRefGoogle ScholarPubMed
Homer, B.D., Solomon, T.M., Moeller, R.W., Mascia, A., DeRaleau, L., & Halkitis, P.N. (2008). Methamphetamine abuse and impairment of social functioning: A review of the underlying neurophysiological causes and Behavioral implications. Psychological Bulletin, 134(2), 301310. doi: 10.1037/0033-2909.134.2.301 Google Scholar
Ivnik, R.J., Malec, J.F., Smith, G.E., Tangalos, E.G., Petersen, R.C., Kokmen, E., && Kurland, L.T. (1992a). Mayo’s Older Americans Normative Studies: WAIS-R norms for ages 56 to 97. The Clinical Neuropsychologist, 6(S1), 130.Google Scholar
Ivnik, R.J., Malec, J.F., Smith, G.E., Tangalos, E.G., Petersen, R.C., Kokmen, E., && Kurland, L.T. (1992b). Mayo’s Older Americans Normative Studies: Updated AVLT norms for ages 56 to 97. The Clinical Neuropsychologist, 6(S1), 83104.Google Scholar
Jacobson, N.S., & Truax, P. (1991). Clinical-significance - A statistical approach to defining meaningful change in psychotherapy-research. Journal of Consulting and Clinical Psychology, 59(1), 1219. doi: 10.1037//0022-006x.59.1.12 Google Scholar
Kabuba, N., Menon, J.A., Franklin, D.R., Heaton, R.K., & Hestad, K.A. (2017). Use of Western neuropsychological test battery in detecting hiv-associated neurocognitive disorders (HAND) in Zambia. AIDS and Behavior, 21(6), 17171727.CrossRefGoogle ScholarPubMed
Kamat, R., Ghate, M., Gollan, T.H., Meyer, R., Vaida, F., Heaton, R.K., & Mehendale, S. (2012). Effects of Marathi-Hindi bilingualism on neuropsychological performance. Journal of the International Neuropsychological Society, 18(2), 305313.Google Scholar
Kamat, R., McCutchan, A., Kumarasamy, N., Marcotte, T.D., Umlauf, A., Selvamuthu, P., & Bharti, A.R. (2017). Neurocognitive functioning among HIV-positive adults in southern India. Journal of Neurovirology. [Epub ahead of print].CrossRefGoogle Scholar
Kaplan, E. (1988). The process approach to neuropsychological assessment. Aphasiology, 2(3-4), 309311. doi: 10.1080/02687038808248930 Google Scholar
Kaplan, E., Fein, D., Morris, R., & Delis, D. (1991). The WAIS-R as a neuropsychological instrument. San Antonio, TX: Psychological Corporation.Google Scholar
Kliegel, M., Altgassen, M., Hering, A., & Rose, N.S. (2011). A process-model based approach to prospective memory impairment in Parkinson’s disease. Neuropsychologia, 49(8), 21662177. doi: 10.1016/j.neuropsychologia.2011.01.024 CrossRefGoogle ScholarPubMed
Ko, J., Rosen, A.B., Simpson, K.J., & Brown, C.N. (2014). Cross-cultural adaption and reliability of the Korean version of the identification of functional ankle instability. Medicine and Science in Sports and Exercise, 46(5), 203203.Google Scholar
Kramer, J.H., Mungas, D., Possin, K.L., Rankin, K.P., Boxer, A.L., Rosen, H.J., & Widmeyer, M. (2014). NIH EXAMINER: Conceptualization and development of an executive function battery. Journal of the International Neuropsychological Society, 20(1), 1119.Google Scholar
Kreutzer, J.S., DeLuca, J., & Caplan, B. (Eds) 2011). Encyclopedia of Clinical Neuropsychology. Halstead-Reitan Neuropsychology Test Battery (pp. 12011205). New York: Springer.Google Scholar
Larrabee, G.J. (2008). Flexible vs. fixed batteries in forensic neuropsychological assessment: Reply to Bigler and Hom. Archives of Clinical Neuropsychology, 23(7-8), 763776. doi: 10.1016/j.acn.2008.09.004 CrossRefGoogle Scholar
Lenehan, M.E., Summers, M.J., Saunders, N.L., Summers, J.J., & Vickers, J.C. (2016). Does the Cambridge Automated Neuropsychological Test Battery (CANTAB) distinguish between cognitive domains in healthy older adults? Assessment, 23(2), 163172. doi: 10.1177/1073191115581474 CrossRefGoogle ScholarPubMed
Lezak, M.D. (1976). Neuropsychological assessment. Oxford, England: Oxford University Press.Google Scholar
Loftus, E. (1971). Memory for intentions: The effect of presence of a cue and interpolated activity. Psychonomic Science, 23, 315316.Google Scholar
Lucas, J.A., Ivnik, R.J., Willis, F.B., Ferman, T.J., Smith, G.E., Parfitt, F.C., & Graff-Radford, N.R. (2005). Mayo’s older African Americans normative studies: Normative data for commonly used clinical neuropsychological measures. Clinical Neuropsychologist, 19(2), 162183. doi: 10.1080/13854040590945265 Google Scholar
Luria, A.R. (1966). Higher cortical functions in man. New York: Springer.Google Scholar
Machulda, M.M., Ivnik, R.J., Smith, G.E., Ferman, T.J., Boeve, B.F., Knopman, D., & Tangalos, E.G. (2008). Mayo’s older Americans normative studies: Visual form discrimination and copy trial of the Rey-Osterrieth complex figure. Journal of Clinical and Experimental Neuropsychology, 29(5), 377384. doi: 10.1080/13803390701850817 Google Scholar
Malda, M., van de Vijver, F.J.R., Srinivasan, K., Transler, C., & Sukumar, P. (2010). Traveling with cognitive tests: Testing the validity of a KABC-II adaptation in India. Assessment, 17(1), 107115. doi: 10.1177/1073191109341445 Google Scholar
Manly, J.J. (2008). Critical issues in cultural neuropsychology: Profit from diversity. Neuropsychology Review, 18(3), 179.Google Scholar
Manly, J.J., Jacobs, D.M., Touradji, P., Small, S.A., & Stern, Y. (2002). Reading level attenuates differences in neuropsychological test performance between African American and White elders. Journal of the International Neuropsychological Society, 8(3), 341348.CrossRefGoogle ScholarPubMed
Marcotte, T.D., & Grant, I. (Eds.) (2009). Neuropsychology of everyday functioning. New York: Guilford Press.Google Scholar
McCaffrey, R.J. (Ed.) (2007). Automated neuropsychological assessment metrics [Special issue]. Archives of Clinical Neuropsychology, 22S, S1.Google Scholar
McDonald, S. (2017). Emotions are rising: The growing field of affect neuropsychology. Journal of the International Neuropsychological Society, 23, 719731.Google Scholar
McDonald, S., Flanagan, S., & Rollins, J. (2011). The awareness of social inference test (Revised). Sydney, Australia: Pearson Assessment.Google Scholar
McDonald, S., Flanagan, S., Rollins, J., & Kinch, J. (2003). TASIT: A new clinical tool for assessing social perception after traumatic brain injury. Journal of Head Trauma Rehabilitation, 18, 219238.Google Scholar
McSweeny, A.J., Naugle, R.I., Chelune, G.J., & Luders, H. (1993). “T scores for change”: An illustration of a regression approach to depicting change in clinical neuropsychology. The Clinical Neuropsychologist, 7(3), 300312.Google Scholar
Merikle, P.M., Smilek, D., & Eastwood, J.D. (2001). Perception without awareness: Perspectives from cognitive psychology. Cognition, 79(1), 115134.Google Scholar
Moore, D.J., Palmer, B.W., Patterson, T.L., & Jeste, D.V. (2007). A review of performance-based measures of functional living skills. Journal of Psychiatric Research, 41(1-2), 97118. doi: 10.1016/j.psychires.2005.10.008 Google Scholar
Nell, V. (1999). Luria in Uzbekistan: The vicissitudes of cross-cultural neuropsychology. Neuropsychology Review, 9(1), 4552. doi: 10.1023/A:1025643004782 CrossRefGoogle ScholarPubMed
Nell, V., Myers, J., Colvin, M., & Rees, D. (1994). Neuropsychological assessment of organic solvent effects in South-Africa - Test selection, adaptation, scoring, and validation issues. Environmental Research, 63, 301318.Google Scholar
Nuechterlein, K.H., Green, M.F., Kern, R.S., Baade, L.E., Barch, D.M., Cohen, J.D., & Marder, S.R. (2008). The MATRICS consensus cognitive battery, part 1: Test selection, reliability, and validity. American Journal of Psychiatry, 165(2), 203213. doi: Doi 10.1176/Appi.Ajp.2007.07010042 Google Scholar
Parsey, C.M., & Schmitter-Edgecombe, M. (2013). Applications of technology in neuropsychological assessment. The Clinical Neuropsychologist, 27(8), 13281361. doi: 10.1080/13854046.2013.834971 Google Scholar
Parsons, T.D. (2015). Virtual reality for enhanced ecological validity and experimental control in the clinical, affective and social neurosciences. Frontiers in Human Neuroscience, 9, 660. doi: Artn 66010.3389/Fnhum.2015.00660 CrossRefGoogle ScholarPubMed
Piatt, A.L., Fields, J.A., Paolo, A.M., Koller, W.C., & Troster, A.I. (1999). Lexical, semantic, and action verbal fluency in Parkinson’s disease with and without dementia. Journal of Clinical and Experimental Neuropsychology, 21(4), 435443. doi: 10.1076/Jcen.21.4.435.885 Google Scholar
Piatt, A.L., Fields, J.A., Paolo, A.M., & Troster, A.I. (1999). Action (verb naming) fluency as an executive function measure: Convergent and divergent evidence of validity. Neuropsychologia, 37(13), 14991503. doi: 10.1016/S0028-3932(99)00066-4 Google Scholar
Pijnenborg, G.H., Withaar, F.K., Evans, J.J., van den Bosch, R.J., Timmerman, M.E., & Brouwer, W.H. (2009). The predictive value of measures of social cognition for community functioning in schizophrenia: Implications for neuropsychological assessment. Journal of the International Neuropsychological Society, 15(2), 239247. doi: 10.1017/S1355617709090341 Google Scholar
Pinkham, A.E., Hopfinger, J.B., Pelphrey, K.A., Piven, J., & Penn, D.L. (2008). Neural bases for impaired social cognition in schizophrenia and autism spectrum disorders. Schizophrenia Research, 99(1-3), 164175. doi: 10.1016/j.schres.2007.10.024 CrossRefGoogle ScholarPubMed
Purisch, A.D. (2001). Misconceptions about the Luria-Nebraska Neuropsychological Battery. NeuroRehabilitation, 16(4), 275280.CrossRefGoogle ScholarPubMed
Raskin, S.A. (2004). Memory for intentions screening test. Paper presented at the Journal of the International Neuropsychological Society.Google Scholar
Reeves, D.L., Winter, K.P., Bleiberg, J., & Kane, R.L. (2007). ANAM Genogram: Historical perspectives, description and current endeavors. Archives of Clinical Neuropsychology, 22(Suppl. 1), S15S37.Google Scholar
Reitan, R.M. (1985). Halstead-Reitan Neuropsychological Test Battery: Theory and clinical interpretation. Tuscon, AZ: Neuropsychology Press.Google Scholar
Reitan, R.M. (1994). Ward Halstead’s contributions to neuropsychology and the Halstead-Reitan Neuropsychological Test Battery. Journal of Clinical Psychology, 50(1), 4770. doi: 10.1002/1097-4679(199401)50:1<47::Aid-Jclp2270500106>3.0.Co;2-X 3.0.CO;2-X>CrossRefGoogle ScholarPubMed
Reitan, R.M., & Davidson, L.D. (1974). Clinical neuropsychology: Current status and applications. Washington, DC: Winston.Google Scholar
Ruffieux, N., Njamnshi, A.K., Mayer, E., Sztajzel, R., Eta, S.C., Doh, R.F., & Hauert, C.A. (2010). Neuropsychology in Cameroon: First normative data for cognitive tests among school-aged children. Child Neuropsychology, 16(1), 119. doi: 10.1080/09297040902802932 Google Scholar
Russell, E.W., Neuringer, C., & Goldstein, G. (1970). Assessment of brain damage: A neuropsychological key approach. New York: Interscience.Google Scholar
Sahakian, B.J., & Owen, A.M. (1992). Computerized assessment in neuropsychiatry using CANTAB: Discussion paper. Journal of the Royal Society of Medicine, 85(7), 399402.Google Scholar
Sawrie, S.M., Chelune, G.J., Naugle, R.I., & Luders, H.O. (1996). Empirical methods for assessing meaningful neuropsychological change following epilepsy surgery. Journal of the International Neuropsychological Society, 2(6), 556564.Google Scholar
Shany-Ur, T., & Rankin, K.P. (2011). Personality and social cognition in neurodegenerative disease. Current Opinion in Neurology, 24(6), 550555. doi: 10.1097/WCO.0b013e32834cd42a Google Scholar
Shi, C., Kang, L., Yao, S., Ma, Y., Li, T., Liang, Y., & Zhang, C. (2015). The MATRICS consensus cognitive battery (MCCB): Co-norming and standardization in China. Schizophrenia Research, 169(1), 109115.Google Scholar
Sliwinski, M.J., Mogle, J.A., Hyun, J., Munoz, E., Smyth, J.M., & Lipton, R.B. (2016). Reliability and validity of ambulatory cognitive assessments. Assessment. [Epub ahead of print]. doi: 10.1177/1073191116643164 Google Scholar
Smith, G.E., Wong, J.S., Ivnik, R.J., & Malec, J.F. (1997). Mayo’s older American normative studies: Separate norms for WMS-R logical memory stories. Assessment, 4(1), 7986.Google Scholar
Tate, R. (2010). A compendium of tests, scales and questionnaires: The practitioner’s guide to measuring outcomes after acquired brain impairment. New York: Psychology Press.Google Scholar
Temkin, N.R., Heaton, R.K., Grant, I., & Dikmen, S.S. (1999). Detecting significant change in neuropsychological test performance: A comparison of four models. Journal of the International Neuropsychological Society, 5(4), 357369.Google Scholar
Tranel, D. (2009). The Iowa-Benton School of Neuropsychological Assessment. In I. Grant & K.M. Adams (Eds.), Neuropsychological assessment of neuropsychiatric and neuromedical disorders. New York: Oxford University Press.Google Scholar
Twamley, E.W., Woods, S.P., Dawson, M.S., Narvaez, J.M., & Jeste, D.V. (2007). Remembering to remember: Prospective memory impairment in schizophrenia. Schizophrenia Bulletin, 33(2), 578578.Google Scholar
Valciukas, J.A., Levin, S.M., Nicholson, W.J., & Selikoff, I.J. (1986). Neurobehavioral assessment of Mohawk Indians for subclinical indications of methyl mercury neurotoxicity. Archives of Environmental Health, 41(4), 269272.Google Scholar
Weinstein, C.S., Fucetola, R., & Mollica, R. (2001). Neuropsychological issues in the assessment of refugees and victims of mass violence. Neuropsychology Review, 11(3), 131141. doi: 10.1023/A:1016650623996 Google Scholar
Wilson, B., Alderman, N., Burgess, P., Emslie, H., & Evans, J.J. (1996). Behavioural assessment of the Dysexecutive Syndrome (BADS). Manual. London: Harcourt Assessment.Google Scholar
Woods, S.P., Carey, C.L., Troster, A.I., Grant, I., & HIV Neurobehavioral Research Center Group. (2005). Action (verb) generation in HIV-1 infection. Neuropsychologia, 43(8), 11441151. doi: 10.1016/j.neuropsychologia.2004.11.018 Google Scholar
Woods, S.P., Dawson, M.S., Weber, E., Gibson, S., Grant, I., Atkinson, J.H., & HIV Neurobehavioral Research Center Group. (2009). Timing is everything: Antiretroviral nonadherence is associated with impairment in time-based prospective memory. Journal of the International Neuropsychological Society, 15(1), 4252. doi: 10.1017/S1355617708090012 Google Scholar
Woods, S.P., Iudicello, J.D., Dawson, M.S., Moran, L.M., Carey, C.L., Letendre, S.L., & Grant, I. (2007). HIV-associated prospective memory deficits predict functional dependence. Clinical Neuropsychologist, 21(4), 701701.Google Scholar
Woods, S.P., Iudicello, J.E., Moran, L.M., Carey, C.L., Dawson, M.S., Grant, I., & HIV Neurobehavioral Research Center Group. (2008). HIV-Associated prospective memory impairment increases risk of dependence in everyday functioning. Neuropsychology, 22(1), 110117. doi: 10.1037/0894-4105.22.1.110 Google Scholar
Woods, S.P., Iudicello, J.E., Morgan, E.E., Cameron, M.V., Doyle, K.L., Smith, T.V., & HIV Neurobehavioral Research Center Group. (2016). Health-related everyday functioning in the internet age: HIV-associated neurocognitive disorders disrupt online pharmacy and health chart navigation skills. Archives of Clinical Neuropsychology, 31(2), 176185. doi: 10.1093/arclin/acv090 Google Scholar
Woods, S.P., Morgan, E.E., Dawson, M., Scott, J.C., & Grant, I., HIV Neurobehavioral Research Center Group. (2006). Action (verb) fluency predicts dependence in instrumental activities of daily living in persons infected with HIV-1. Journal of Clinical and Experimental Neuropsychology, 28(6), 10301042. doi: 10.1080/13803390500350985 Google Scholar
Woods, S.P., Scott, J.C., Sires, D.A., Grant, I., Heaton, R.K., & Troster, A.I., HIV Neurobehavioral Research Center Group. (2005). Action (verb) fluency: Test-retest reliability, normative standards, and construct validity. Journal of the International Neuropsychological Society, 11(4), 408415. doi: 10.1017/S1355617705050460 Google Scholar
Woods, S.P., Iudicello, J.E., Morgan, E.E., Verduzco, M., Smith, T.V., & Cushman, C., HIV Neurobehavioral Research Center Group. (In press). Household everyday functioning in the Internet age: Online shopping and banking skills are affected in HIV-associated neurocognitive disorders. Journal of the International Neuropsychological Society.Google Scholar
Zhu, J.J., & Tulsky, D.S. (2000). Co-norming the WAIS-III and WMS-III: Is there a test-order effect on IQ and memory scores? Clinical Neuropsychologist, 14(4), 461467. doi: 10.1076/Clin.14.4.461.7197 Google Scholar
Zogg, J.B., Woods, S.P., Sauceda, J.A., Wiebe, J.S., & Simoni, J.M. (2012). The role of prospective memory in medication adherence: A review of an emerging literature. Journal of Behavioral Medicine, 35(1), 4762. doi: 10.1007/s10865-011-9341-9 Google Scholar