Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-03T19:51:14.853Z Has data issue: false hasContentIssue false

Music Playing and Interhemispheric Communication: Older Professional Musicians Outperform Age-Matched Non-Musicians in Fingertip Cross-Localization Test

Published online by Cambridge University Press:  24 September 2020

Massimo Piccirilli*
Affiliation:
School of Medicine, University of Perugia, Perugia, Italy
Maria Teresa Palermo
Affiliation:
Music Therapist, Palliative Care, Antea Hospice, Campus Bio-Medico University Hospital, Roma, Italy
Alessandro Germani
Affiliation:
Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
Maria Laura Bertoli
Affiliation:
Music Therapist, Milano, Italy
Viola Ancarani
Affiliation:
Degree Course in Speech and Language Therapy, University of Perugia, Perugia, Italy
Livia Buratta
Affiliation:
Department of Philosophy, Social Sciences and Education, University of Perugia, Perugia, Italy
Maria Stefania Dioguardi
Affiliation:
Department of Neuroscience, “Santa Maria” Hospital, Terni, Italy
Laura Scarponi
Affiliation:
ASST Papa Giovanni XXIII, Psychiatry Unit 1, Bergamo Hospital, Bergamo, Italy
Patrizia D’Alessandro
Affiliation:
Neurologist, Perugia, Italy
*
*Correspondence and reprint requests to: Prof Massimo Piccirilli, Via Sicilia 39 06128Perugia, Italy. Email: [email protected]; [email protected]

Abstract

Objective:

Numerous investigations have documented that age-related changes in the integrity of the corpus callosum are associated with age-related decline in the interhemispheric transfer of information. Conversely, there is accumulating evidence for more efficient white matter organization of the corpus callosum in individuals with extensive musical training. However, the relationship between making music and accuracy in interhemispheric transfer remains poorly explored.

Methods:

To test the hypothesis that musicians show enhanced functional connectivity between the two hemispheres, 65 professional musicians (aged 56–90 years) and 65 age- and sex-matched non-musicians performed the fingertip cross-localization test. In this task, subjects must respond to a tactile stimulus presented to one hand using the ipsilateral (intra-hemispheric test) or contralateral (inter-hemispheric test) hand. Because the transfer of information from one hemisphere to another may imply a loss of accuracy, the value of the difference between the intrahemispheric and interhemispheric tests can be utilized as a reliable measure of the effectiveness of hemispheric interactions.

Results:

Older professional musicians show significantly greater accuracy in tactile interhemispheric transfer than non-musicians who suffer from age-related decline.

Conclusions:

Musicians have more efficient interhemispheric communication than age-matched non-musicians. This finding is in keeping with studies showing that individuals with extensive musical training have a larger corpus callosum. The results are discussed in relation to relevant data suggesting that music positively influences aging brain plasticity.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aboitiz, F. & Montiel, J. (2003). One hundred million years of interhemispheric communication: The history of the corpus callosum. Brazilian Journal of Medical and Biological Research, 36, 409420. doi: 10.1590/s0100-879x2003000400002 CrossRefGoogle ScholarPubMed
Balbag, M.A., Pedersen, N.L., & Gatz, M. (2014). Playing a musical instrument as a protective factor against dementia and cognitive impairment: A population-based twin study. International Journal of Alzheimer’s Disease, 2014, 836748. doi: 10.1155/2014/836748 Google ScholarPubMed
Bangert, M. & Altenmuller, E.O. (2003). Mapping perception to action in piano practice: A longitudinal DC-EEG study. BMC Neuroscience, 4, 26. doi: 10.1186/1471-2202-4-26 CrossRefGoogle ScholarPubMed
Bangert, M., Peschel, T., Schlaug, G., Rotte, M., Drescher, D., Hinrichs, H., …, Altenmüller, E. (2006). Shared networks for auditory and motor processing in professional pianista: Evidence from fMRI conjunction. Neuroimage, 30, 917926. doi: 10.1016/j.neuroimage.2005.10.044 CrossRefGoogle ScholarPubMed
Bangert, M. & Schlaug, G. (2006). Specialization of the specialized in features of external human brain morphology. The European Journal of Neuroscience, 24, 18321834. doi: 10.1111/j.1460-9568.2006.05031.x CrossRefGoogle ScholarPubMed
Barulli, D. & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: Emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17, 502509. doi: 10.1016/j.tics.2013.08.012 CrossRefGoogle ScholarPubMed
Baumann, S., Koeneke, S., Schmidt, C.F., Meyer, M., Lutz, K., & Jäncke, L.L. (2007). A network for audio-motor coordination in skilled pianists and non-musicians. Brain Research, 1161, 6578. doi: 10.1016/j.brainres.2007.05.045 CrossRefGoogle ScholarPubMed
Bellis, T.J. & Wilber, L.A. (2001). Effects of aging and gender on interhemispheric function. Journal of Speech, Language and Hearing Research, 44, 246263. doi: 10.1044/1092-4388(2001/021) CrossRefGoogle ScholarPubMed
Bennett, I.J. & Madden, D.J. (2014). Disconnected aging: Cerebral white matter integrity and age-related differences in cognition. Neuroscience, 276, 187205. doi: 10.1016/j.neuroscience.2013.11.026 CrossRefGoogle ScholarPubMed
Bentin, S., Sahar, A., & Moscovitch, M. (1984). Intermanual information transfer in patients with lesions in the trunk of the corpus callosum. Neuropsychologia, 22, 601611. doi: 10.1016/0028-3932(84)90024-1 CrossRefGoogle ScholarPubMed
Bogen, J.E. (1979). The callosal syndrome. In Heilman, K.M. & Valenstein, E. (Eds.), Clinical neuropsychology (pp. 295338). New York: Oxford University Press.Google Scholar
Boyke, J., Driemeyer, J., Gaser, C., Büchel, C., & May, A. (2008). Training-induced brain structure changes in the elderly. The Journal of Neuroscience, 28, 70317035. doi: 10.1523/JNEUROSCI.0742-08.2008 CrossRefGoogle ScholarPubMed
Boyson, A. (2013). The effect of age on interhemispheric transfer time: An event related potential study. The Plymouth Student Scientist, 6, 7997.Google Scholar
Brown, W.S. & Paul, L.K. (2019). The neuropsychological syndrome of agenesis of the corpus callosum. Journal of International Neuropsychological Society, 25, 324330. doi: 10.1017/S135561771800111X CrossRefGoogle ScholarPubMed
Bugos, JA., Perlstein, W.M., McCrae, C.S., Brophy, T.S., & Bedenbaugh, P.H. (2007). Individualized piano instruction enhances executive functioning and working memory in older adults. Aging and Mental Health, 11, 464471. doi: 10.1080/13607860601086504 CrossRefGoogle ScholarPubMed
Caillé, S., Sauerwein, H.C., Schiavetto, A., Villemure, J.G., & Lassonde, M. (2005). Sensory and motor interhemispheric integration after section of different portions of the anterior corpus callosum in nonepileptic patients. Neurosurgery, 57, 5059. doi: 10.1227/01.neu.0000163089.31657.08 CrossRefGoogle ScholarPubMed
Christie, G.J., Hamilton, T., Manor, B.D., Farb, N.A.S., Farzan, F., Sixsmith, A., …, Moreno, S. (2017). Do lifestyle activities protect against cognitive decline in aging? A review. Frontiers in Aging Neuroscience, 9, 381. doi: 10.3389/fnagi.2017.00381 CrossRefGoogle ScholarPubMed
Cohen, J. (1988). Statistical Power Analysis for the Behavioral Sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Davis, S.W., Kragel, J.E., Madden, D.J., & Cabeza, R. (2012). The architecture of cross-hemispheric communication in the aging brain: Linking behavior to functional and structural connectivity. Cerebral Cortex, 22, 232242. doi: 10.1093/cercor/bhr123 CrossRefGoogle ScholarPubMed
de Manzano, Ö. & Ullén, F. (2018). Same genes, different brains: Neuroanatomical differences between monozygotic twins discordant for musical training. Cerebral Cortex, 28, 387394. doi: 10.1093/cercor/bhx299 CrossRefGoogle ScholarPubMed
Devinsky, O. & Laff, R. (2003). Callosal lesions and behavior: History and modern concepts. Epilepsy & Behavior, 4, 607617. doi: 10.1016/j.yebeh.2003.08.029 CrossRefGoogle ScholarPubMed
Diaz Abrahan, V, Shifres, F, & Justel, N. (2019). Cognitive benefits from a musical activity in older adults. Frontiers in Psychology, 10, 652. doi: 10.3389/fpsyg.2019.00652 CrossRefGoogle ScholarPubMed
Elbert, T., Pantev, C., Wienbruch, C., Rockstroh, B., & Taub, E. (1995). Increased cortical representation of the fingers of the left hand in string players. Science, 270, 305307. doi: 10.1126/science.270.5234.305 CrossRefGoogle ScholarPubMed
Fabbro, F., Pesenti, S., Facoetti, A., Bonanomi, M., Libera, L., & Lorusso, M.L. (2001). Callosal transfer in different subtypes of developmental dyslexia. Cortex, 37, 6573. doi: 10.1016/s0010-9452(08)70558-6 CrossRefGoogle ScholarPubMed
Fabri, M., Del Pesce, M., Paggi, A., Polonara, G., Bartolini, M., Salvolini, U., & Manzoni, T. (2005). Contribution of posterior corpus callosum to the interhemispheric transfer of tactile information. Cognitive Brain Research, 24, 7380. doi: 10.1016/j.cogbrainres.2004.12.003 CrossRefGoogle ScholarPubMed
Fauvel, B., Groussard, M., Eustache, F., Desgranges, B., & Platel, H. (2013). Neural implementation of musical expertise and cognitive transfers: Could they be promising in the framework of normal cognitive aging? Frontiers in Human Neuroscience, 7, 693. doi: 10.3389/fnhum.2013.00693 CrossRefGoogle ScholarPubMed
Fling, B.W. & Seidler, R.D. (2011). Fundamental differences in callosal structure, neuro-physiologic function, and bimanual control in young and older adults. Cerebral Cortex, 22, 26432652. doi: 10.1093/cercor/bhr349 CrossRefGoogle Scholar
Fukui, H. & Toyoshima, K. (2008). Music facilitate the neurogenesis, regeneration and repair of neurons. Medical Hypotheses, 71, 765769. doi: 10.1016/j.mehy.2008.06.019 CrossRefGoogle ScholarPubMed
Funnell, M.G., Corballis, P.M., & Gazzaniga, M.S. (2000). Cortical and subcortical interhemispheric interactions following partial and complete callosotomy. Archives of Neurology, 57, 185189. doi: 10.1001/archneur.57.2.185 CrossRefGoogle ScholarPubMed
Galin, D., Johnston, J., Nakell, L., & Herron, J. (1979). Development of the capacity for tactile information transfer between hemispheres in normal children. Science, 204, 13301332. doi: 10.1126/science.451542 CrossRefGoogle ScholarPubMed
Gaser, C. & Schlaug, G. (2003). Brain structures differ between musicians and non-musicians. The Journal of Neuroscience, 23, 92409245. doi: 10.1523/JNEUROSCI.23-27-09240.2003 CrossRefGoogle ScholarPubMed
Gazzaniga, M.S. (2000). Cerebral specialization and interhemispheric communication: Does the corpus callosum enable the human condition? Brain, 123, 12931326. doi: 10.1093/brain/123.7.1293 CrossRefGoogle ScholarPubMed
Gazzaniga, M.S. (2005). Forty-five years of split-brain research and still going strong. Nature. Reviews of Neuroscience, 6, 653659. doi: 10.1038/nrn1723 CrossRefGoogle ScholarPubMed
Geffen, G., Nilsson, J., Quinn, K., & Teng, E.L. (1985). The effect of lesions of the corpus callosum on finger localization. Neuropsychologia, 23, 497514. doi: 10.1016/0028-3932(85)90004-1 CrossRefGoogle ScholarPubMed
Gow, A.J., Bastin, M.E., Muñoz Maniega, S., Valdés Hernández, M.C., Morris, Z., Murray, C., …, Wardlaw, J.M. (2012). Neuroprotective lifestyles and the aging brain: Activity, atrophy, and white matter integrity. Neurology, 79, 18021808. doi: 10.1212/WNL.0b013e3182703fd2 CrossRefGoogle ScholarPubMed
Hallam, B.J., Brown, W.S., Ross, C., Buckwalter, J.G., Bigler, E.D., Tschanz, J., … Breitner, J.C.S. (2008). Regional atrophy of the corpus callosum in dementia. Journal of International Neuropsychological Society, 14, 414423. doi: 10.1017/S1355617708080533 CrossRefGoogle ScholarPubMed
Halwani, G., Loui, T., Rüber, P., & Schlaug, G. (2011). Effects of practice and experience on the arcuate fasciculus: Comparing singers, instrumentalists and non musicians. Frontiers in Psychology, 2, 156. doi: 10.3389/fpsyg.2011.00156 CrossRefGoogle ScholarPubMed
Hanna-Pladdy, B. & Gajewski, B. (2012). Recent and past musical activity predicts cognitive aging variability: Direct comparison with general lifestyle activities. Frontiers in Human Neuroscience, 6, 198. doi: 10.3389/fnhum.2012.00198 CrossRefGoogle ScholarPubMed
Hanna-Pladdy, B. & MacKay, A. (2011). The relation between instrumental musical activity and cognitive aging. Neuropsychology, 25, 378386. doi: 10.1037/a0021895 CrossRefGoogle ScholarPubMed
Hasan, K.M., Kamali, A., Kramer, L.A., Papnicolaou, A.C., Fletcher, J.M., & Ewing-Cobbs, L. (2008). Diffusion tensor quantification of the human midsagittal corpus callosum subdivisions across the lifespan. Brain Research, 1227, 5267. doi: 10.1016/j.brainres.2008.06.030 CrossRefGoogle ScholarPubMed
Herholz, S.C. & Zatorre, R.J. (2012). Musical training as a framework for brain plasticity: Behavior, function, and structure. Neuron, 76, 486502 CrossRefGoogle Scholar
Hofer, S. & Frahm, J. (2006). Topography of the human corpus callosum revisited: Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging. Neuroimage, 32, 989994. doi: 10.1016/j.neuroimage.2006.05.044 CrossRefGoogle ScholarPubMed
Hou, J. & Pakkenberg, B. (2012). Age-related degeneration of corpus callosum in the 90+ years measured with stereology. Neurobiology of Aging, 33, 1009.e11009.e9. doi: 10.1016/j.neurobiolaging.2011.10.017 CrossRefGoogle ScholarPubMed
Hyde, K.L., Lerch, J., Norton, A., Forgeard, M., Winner, E., Evans, A.C., & Schlaug, G. (2009). Musical training shapes structural brain development. The Journal of Neuroscience, 29, 30193025. doi: 10.1523/JNEUROSCI.5118-08.2009 CrossRefGoogle ScholarPubMed
Innocenti, G.M. (1981). The development of interhemispheric connections. Trends in Neurosciences, 4, 142144. doi: 10.1016/0166-2236(81)90047-3 CrossRefGoogle Scholar
Jäncke, L. (2009). Music drives brain plasticity. F1000 Biology Reports, 1, 78. doi: 10.3410/B1-78 CrossRefGoogle ScholarPubMed
Jäncke, L (2013) Music making and the aging brain. Zeitschrift für Neuropsychologie, 24, 113121. doi: 10.1024/1016-264X/a000095 CrossRefGoogle Scholar
Jeeves, M.A. & Moes, P. (1996). Interhemispheric transfer time differences related to aging and gender. Neuropsychologia, 34, 627636. doi: 10.1016/0028-3932(95)00157-3 CrossRefGoogle ScholarPubMed
Johansen-Berg, H., Della-Maggiore, V., Behrens, T.E., Smith, S.M., & Paus, T.J. (2007). Integrity of white matter in the corpus callosum correlates with bimanual co-ordination skills. Neuroimage, 36, T16T21. doi: 10.1016/j.neuroimage.2007.03.041 CrossRefGoogle ScholarPubMed
Kennedy, K.M. & Raz, N. (2009). Aging white matter and cognition: Differential effects of regional variations in diffusion properties on memory, executive functions, and speed. Neuropsychologia, 47, 916927. doi: 10.1016/j.neuropsychologia.2009.01.001 CrossRefGoogle ScholarPubMed
Koelsch, S. (2009). A neuroscientific perspective on music therapy. Annals of New York Academy of Sciences, 1169, 374384. doi: 10.1111/j.1749-6632.2009.04592.x CrossRefGoogle ScholarPubMed
Lassonde, M., Sauerwein, H., Geoffroy, G., & Décarie, M. (1986). Effects of early and late transection of the corpus callosum in children: A study of tactile and tactuomotor transfer and integration. Brain, 109, 953967. doi: 10.1093/brain/109.5.953 CrossRefGoogle Scholar
Madden, D.J., Spaniol, J., Costello, M.C., Bucur, B., White, L.E., Cabeza, R., …, Huettel, S.A. (2009). Cerebral white matter integrity mediates adult age differences in cognitive performance. Journal of Cognitive Neuroscience, 21, 289302. doi: 10.1162/jocn.2009.21047 CrossRefGoogle ScholarPubMed
Magni, E., Binetti, G., Bianchetti, A., Rozzini, R., & Trabucchi, M. (1996). Mini-mental state examination: A normative study in Italian elderly population. European Journal of Neurology, 3, 198202. doi: 10.1111/j.1468-1331.1996.tb00423.x CrossRefGoogle ScholarPubMed
Merrett, D.L., Peretz, I., & Wilson, S.J. (2013). Moderating variables of music training-induced neuroplasticity: A review and discussion. Frontiers in Psychology, 4, 606. doi: 10.3389/fpsyg.2013.00606 CrossRefGoogle ScholarPubMed
Moore, E., Schaefer, R.S., Bastin, M.E., Roberts, N., & Overy, K. (2014). Can musical training influence brain connectivity? Evidence from diffusion tensor MRI. Brain Sciences, 4, 405427. doi: 10.3390/brainsci4020405 CrossRefGoogle ScholarPubMed
Münte, T.F., Altenmüller, E., & Jäncke, L. (2002). The musician’s brain as a model of neuroplasticity. Nature Reviews Neuroscience, 3, 473478. doi: 10.1038/nrn843 CrossRefGoogle ScholarPubMed
Myers, J.J. & Sperry, R.W. (1985). Interhemispheric communication after section of the forebrain commissures. Cortex, 21, 249260. doi: 10.1016/s0010-9452(85)80030-7 CrossRefGoogle ScholarPubMed
Oechslin, M.S., Imfeld, A., Loenneker, T., Meyer, M., & Jäncke, L. (2010). The plasticity of the superior longitudinal fasciculus as a function of musical expertise: A diffusion tensor imaging study. Frontiers in Human Neuroscience, 3, 76. doi: 10.3389/neuro.09.076.2009 CrossRefGoogle ScholarPubMed
Oechslin, M.S., Van De Ville, D., Lazeyras, F., Hauert, C.A., & James, C.E. (2013). Degree of musical expertise modulates higher order brain functioning. Cerebral Cortex, 23, 22132224. doi: 10.1093/cercor/bhs206 CrossRefGoogle ScholarPubMed
Oldfield, R.C. (1971). The assessment and analysis of handedness: The Edinburgh inventory. Neuropsychologia, 9, 97113. doi: 10.1016/0028-3932(71)90067-4 CrossRefGoogle ScholarPubMed
O’Leary, D.S. (1980). Development study of interhemispheric transfer in children aged 5 to 10. Child Development, 51, 743750.CrossRefGoogle Scholar
O’Sullivan, M., Jones, D.K., Summers, P.E., Morris, R.G., Williams, S.C.R., & Markus, H.S. (2001). Evidence for cortical “disconnection” as a mechanism of age-related cognitive decline. Neurology, 57, 632638. doi: 10.1212/wnl.57.4.632 CrossRefGoogle ScholarPubMed
Oztürk, A.H., Tasçioglu, B., Aktekin, M., Kurtoglu, Z., & Erden, I. (2002). Morphometric comparison of the human corpus callosum in professional musicians and non-musicians by using in vivo magnetic resonance imaging. Journal of Neuroradiology, 29, 2934.Google ScholarPubMed
Pantev, C., Oostenveld, R., Engelien, A., Ross, B., Roberts, L.E., Hoke, M. (1998). Increased auditory cortical representation in musicians. Nature, 392, 811814. doi: 10.1038/33918 CrossRefGoogle ScholarPubMed
Park, D.C. & Bischof, G.N. (2013). The aging mind: Neuroplasticity in response to cognitive training. Dialogues in Clinical Neuroscience, 15, 109119.Google ScholarPubMed
Park, D.C. & Reuter-Lorenz, P. (2009). The adaptive brain: Aging and neurocognitive scaffolding. Annual Review of Psychology, 60, 173196. doi: 10.1146/annurev.psych.59.103006.093656 CrossRefGoogle ScholarPubMed
Patel, A.D. (2019). Music as a transformative technology of the mind: An update. In Honing, H. (Ed.), The origins of musicality (pp. 141156). Cambridge, MA: MIT Press.Google Scholar
Penke, L., Muñoz Maniega, S., Houlihan, L.M., Murray, C., Gow, A.J., Clayden, J.D., …, Deary, I.J. (2010). White matter integrity in the splenium of the corpus callosum is related to successful cognitive aging and partly mediates the protective effect of an ancestral polymorphism in ADRB2. Behavior Genetics, 40, 146156. doi: 10.1007/s10519-009-9318-4 CrossRefGoogle ScholarPubMed
Peretz, I. & Zatorre, R.J. (2005). Brain organization for music processing. Annual Review of Psychology, 56, 89114. doi: 10.1146/annurev.psych.56.091103.070225 CrossRefGoogle ScholarPubMed
Persson, J., Nyberg, L., Lind, J., Larsson, A., Nilsson, L.G., Ingvar, M., & Buckner, R.L. (2006). Structure-function correlates of cognitive decline in aging. Cerebral Cortex, 16, 907915. doi: 10.1093/cercor/bhj036 CrossRefGoogle Scholar
Piccirilli, M., D’Alessandro, P., Germani, A., Boccardi, V., Pigliautile, M., Ancarani, V., & Dioguardi, M.S. (2020). Age-related decline in interhemispheric transfer of tactile information: The fingertip cross-localization task. Journal of Clinical Neuroscience, 77, 7580. doi: 10.1016/j.jocn.2020.05.035 CrossRefGoogle ScholarPubMed
Piccirilli, M., Finali, G., & Sciarma, T. (1989). Negative evidence of difference between right- and left- handers in interhemispheric transfer of information. Neuropsychologia, 27, 10231026. doi: 10.1016/0028-3932(89)90079-1 CrossRefGoogle ScholarPubMed
Piccirilli, M., Pigliautile, M., Arcelli, P., Baratta, I., & Ferretti, S. (2019). Improvement in cognitive performance and mood in healthy older adults: A multimodal approach. European Journal of Ageing, 16, 327336. doi: 10.1007/s10433-019-00503-3 CrossRefGoogle ScholarPubMed
Poffenberger, A.T. (1912). Reaction time to retinal stimulation with special reference to the time lost in conduction through nervous centers. Archives of Psychology, 23, 173 Google Scholar
Polonara, G., Mascioli, G., Foschi, N., Salvolini, U., Pierpaoli, C., Manzoni, T., …, Barbaresi, P. (2015). Further evidence for the topography and connectivity of the corpus callosum: An FMRI study of patients with partial callosal resection. Journal of Neuroimaging, 25, 465473. doi: 10.1111/jon.12136 CrossRefGoogle ScholarPubMed
Quinn, K. & Geffen, G. (1986). The development of tactile transfer of information. Neuropsychologia, 24, 793804. doi: 10.1016/0028-3932(86)90078-3 CrossRefGoogle ScholarPubMed
Ragert, P., Schmidt, A., Altenmüller, E., & Dinse, H.R. (2004). Superior tactile performance and learning in professional pianists: Evidence for meta-plasticity in musicians. The European Journal of Neuroscience, 19, 473478. doi: 10.1111/j.0953-816x.2003.03142.x CrossRefGoogle ScholarPubMed
Raz, N., Ghisletta, P., Rodrigue, K.M., Kennedy, K.M., & Lindenberger, U. (2010). Trajectories of brain aging in middle-aged and older adults: Regional and individual differences. Neuroimage, 51, 501511. doi: 10.1016/j.neuroimage.2010.03.020 CrossRefGoogle ScholarPubMed
Reuter-Lorenz, P.A. & Stanczak, L. (2000). Differential effects of aging on the functions of the corpus callosum. Developmental Neuropsychology, 18, 113137. doi: 10.1207/S15326942DN1801_7 CrossRefGoogle ScholarPubMed
Riise, J. & Pakkenberg, B. (2011). Stereological estimation of the total number of myelinated callosal fibers in human subjects. Journal of Anatomy, 218, 277284.CrossRefGoogle ScholarPubMed
Roebuck, T.M., Mattson, S.N., & Riley, E.P. (2002). Interhemispheric transfer in children with heavy prenatal alcohol exposure. Alcoholism: Clinical and Experimental Research, 26, 18631871. doi: 10.1097/01.ALC.0000042219.73648.46 CrossRefGoogle ScholarPubMed
Rogenmoser, L., Kernbach, J., Schlaug, G., & Gaser, C. (2017). Keeping brains young with making music. Brain Structure and Function, 223, 297305. doi: 10.1007/s00429-017-1491-2 CrossRefGoogle ScholarPubMed
Ryberg, C., Rostrup, E., Paulson, O.B., Barkhof, F., Scheltens, P, van Straaten, E.C., …, LADIS Study Group. (2011). Corpus callosum atrophy as a predictor of age-related cognitive and motor impairment: A 3-year follow-up of the LADIS study cohort. Journal of Neurological Sciences, 307, 100105. doi: 10.1016/j.jns.2011.05.002 CrossRefGoogle ScholarPubMed
Salat, D.H., Tuch, D.S., Greve, D.N., van der Kouwe, A.J., Hevelone, N.D., Zaleta, A.K., …, Dale, A.M. (2005). Age-related alterations in white matter microstructure measured by diffusion tensor imaging. Neurobiology of Aging, 26, 12151227. doi: 10.1016/j.neurobiolaging.2004.09.017 CrossRefGoogle ScholarPubMed
Salthouse, T.A. (2011). Neuroanatomical substrates of age-related cognitive decline. Psychological Bulletin, 137, 753784. doi: 10.1037/a0023262 CrossRefGoogle ScholarPubMed
Saron, C.D. & Davidson, R.J. (1989). Visual evoked potential measures of interhemispheric transfer times in humans. Behavioural Neuroscience, 103, 11151138. doi: 10.1037//0735-7044.103.5.1115 CrossRefGoogle ScholarPubMed
Scally, B., Burke, M.R., Bunce, D., & Delvenne, J.F. (2018). Visual and visuomotor interhemispheric transfer time in older adults. Neurobiology of Aging, 65, 6976. doi: 10.1016/j.neurobiolaging.2018.01.005 CrossRefGoogle ScholarPubMed
Schlaug, G. (2015). Musicians and music making as a model for the study of brain plasticity. Progress in Brain Research, 217, 3755. doi: 10.1016/bs.pbr.2014.11.020 CrossRefGoogle Scholar
Schlaug, G., Jäncke, L., Huang, Y., Staiger, J.F., & Steinmetz, H. (1995). Increased corpus callosum size in musicians. Neuropsychologia, 33, 10471055. doi: 10.1016/0028-3932(95)00045-5 CrossRefGoogle ScholarPubMed
Schmithorst, V.J. & Wilke, M. (2002). Differences in white matter architecture between musicians and non-musicians: A diffusion tensor imaging study. Neuroscience Letters, 321, 5760. doi: 10.1016/s0304-3940(02)00054-x CrossRefGoogle ScholarPubMed
Schulte, T. & Müller-Oehring, E.M. (2010). Contribution of callosal connections to the interhemispheric integration of visuomotor and cognitive processes. Neuropsychology Review, 20, 174190. doi: 10.1007/s11065-010-9130-1 CrossRefGoogle ScholarPubMed
Schulte, T., Sullivan, E.V., Müller-Oehring, E.M., Adalsteinsson, E., & Pfefferbaum, A. (2005). Corpus callosal microstructural integrity influences interhemispheric processing: A diffusion tensor imaging study. Cerebral Cortex, 15, 13841392. doi: 10.1093/cercor/bhi020 CrossRefGoogle ScholarPubMed
Seinfeld, S., Figueroa, H., Ortiz-Gil, J., & Sanchez-Vives, M.V. (2013). Effects of music learning and piano practice on cognitive function, mood and quality of life in older adults. Frontiers in Psychology, 4, 810. doi: 10.3389/fpsyg.2013.00810 CrossRefGoogle ScholarPubMed
Skoe, E. & Kraus, N. (2012). A little goes a long way: How the adult brain is shaped by musical training in childhood. The Journal of Neuroscience, 32, 1150711510. doi: 10.1523/JNEUROSCI.1949-12.2012 CrossRefGoogle Scholar
Sluming, V., Barrick, T., Howard, M., Cezayirli, E., Mayes, A., & Roberts, N. (2002). Voxel-based morphometry reveals increased gray matter density in Broca’s area in male symphony orchestra musicians. Neuroimage, 17, 16131622. doi: 10.1006/nimg.2002.1288 CrossRefGoogle ScholarPubMed
Sperry, R.W., Gazzaniga, M.S., & Bogen, J.E. (1969). Interhemispheric relationships: The neocortical commissures syndromes of hemisphere disconnection. In Vinken, P.J. & Bruyn, C.W. (Eds.), Handbook of clinical neurology (pp. 273290). Amsterdam: North Holland.Google Scholar
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47, 20152028. doi: 10.1016/j.neuropsychologia.2009.03.004 CrossRefGoogle ScholarPubMed
Sullivan, E.V. & Pfefferbaum, A. (2006). Diffusion tensor imaging and aging. Neuroscience and Biobehavioral Reviews, 30, 749761. doi: 10.1016/j.neubiorev.2006.06.002 CrossRefGoogle ScholarPubMed
Tang, Y., Nyengaard, J.R., Pakkenberg, B., & Gundersen, H.J. (1997). Age-induced white matter changes in the human brain: A stereological investigation. Neurobiology of Aging, 18, 609615. doi: 10.1016/S0197-4580(97)00155-3 CrossRefGoogle ScholarPubMed
Thompson, P.M., Narr, K.L., Blanton, R.E., & Toga, A.W. (2003). Mapping structural alterations of the corpus callosum during brain development and degeneration. In Zaidel, E. & Iacoboni, M. (Eds.), The parallel brain: The cognitive neuroscience of the corpus callosum (pp. 93130). Cambridge, MA: MIT Press.Google Scholar
Valenzuela, M.J. (2008). Brain reserve and the prevention of dementia. Current Opinion in Psychiatry, 21, 296302. doi: 10.1097/YCO.0b013e3282f97b1f CrossRefGoogle ScholarPubMed
Vaquero, L., Hartmann, K., Ripollés, P., Rojo, N., Sierpowska, J., François, C., …, Altenmüller, E. (2016). Structural neuroplasticity in expert pianists depends on the age of musical training onset. Neuroimage, 126, 106119. doi:10.1016/j.neuroimage.2015.11.008 CrossRefGoogle ScholarPubMed
Wan, C.Y. & Schlaug, G. (2010). Music making as a tool for promoting brain plasticity across the life span. Neuroscientist, 16, 566577. doi: 10.1177/1073858410377805 CrossRefGoogle ScholarPubMed
Westerhausen, R., Kreuder, F., Woerner, W., Huster, R.J., Smit, C.M., Schweiger, E., & Wittling, W. (2006). Interhemispheric transfer time and structural properties of the corpus callosum. Neuroscience Letters, 409, 140145. doi: 10.1016/j.neulet.2006.09.028 CrossRefGoogle ScholarPubMed
Wirth, M., Haase, C.M., Villeneuve, S., Vogel, J., & Jagust, W.J. (2014). Neuroprotective pathways: Lifestyle activity, brain pathology, and cognition in cognitively normal older adults. Neurobiology of Aging, 35, 18731882. doi: 10.1016/j.neurobiolaging.2014.02.015 CrossRefGoogle ScholarPubMed
Wolf, D., Fischer, F.U., Fesenbeckh, J., Yakushev, I., Lelieveld, I.M., Scheurich, A., …, Fellgiebel, A. (2012). Structural integrity of the corpus callosum predicts long-term transfer of fluid intelligence-related training gains in normal aging. Human Brain Mapping, 35, 309318. doi: 10.1002/hbm.22177 CrossRefGoogle ScholarPubMed
Zahr, N.M., Rohlfing, T., Pfefferbaum, A., & Sullivan, E.V. (2009). Problem solving, working memory, and motor correlates of association and commissural fiber bundles in normal aging: A quantitative fiber tracking study. Neuroimage, 44, 10501062. doi: 10.1016/j.neuroimage.2008.09.046 CrossRefGoogle ScholarPubMed