Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-22T08:52:50.015Z Has data issue: false hasContentIssue false

Lower prospective memory is associated with higher neurocognitive dispersion in two samples of people with HIV: A conceptual replication study

Published online by Cambridge University Press:  08 February 2023

Andrea I. Mustafa
Affiliation:
Department of Psychology, University of Houston, 126 Heyne Building, Houston, TX 77204, USA
Steven Paul Woods*
Affiliation:
Department of Psychology, University of Houston, 126 Heyne Building, Houston, TX 77204, USA School of Psychological Science, University of Western Australia, Crawley, WA 6009, Australia
Shayne Loft
Affiliation:
School of Psychological Science, University of Western Australia, Crawley, WA 6009, Australia
Erin E. Morgan
Affiliation:
Department of Psychiatry, University of California, San Diego, San Diego, CA 92103, USA,
*
Corresponding author: Steven Paul Woods, Email: [email protected]

Abstract

Objectives:

People living with HIV (PLWH) often experience deficits in the strategic/executive aspects of prospective memory (PM) that can interfere with instrumental activities of daily living. This study used a conceptual replication design to determine whether cognitive intraindividual variability, as measured by dispersion (IIV-dispersion), contributes to PM performance and symptoms among PLWH.

Methods:

Study 1 included 367 PLWH who completed a comprehensive clinical neuropsychological test battery, the Memory for Intentions Test (MIsT), and the Prospective and Retrospective Memory Questionnaire (PRMQ). Study 2 included 79 older PLWH who completed the Cogstate cognitive battery, the Cambridge Prospective Memory Test (CAMPROMPT), an experimental measure of time-based PM, and the PRMQ. In both studies, a mean-adjusted coefficient of variation was derived to measure IIV-dispersion using normative T-scores from the cognitive battery.

Results:

Higher IIV-dispersion was significantly associated with lower time-based PM performance at small-to-medium effect sizes in both studies (mean r s  = −0.30). The relationship between IIV-dispersion and event-based PM performance was comparably small in magnitude in both studies (r s  = −0.19, −0.20), but it was only statistically significant in Study 1. IIV-dispersion showed very small, nonsignificant relationships with self-reported PM symptoms in both samples (r s < 0.10).

Conclusions:

Extending prior work in healthy adults, these findings suggest that variability in performance across a cognitive battery contributes to laboratory-based PM accuracy, but not perceived PM symptoms, among PLWH. Future studies might examine whether daily fluctuations in cognition or other aspects of IIV (e.g., inconsistency) play a role in PM failures in everyday life.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2023

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, A. E., Jones, J. D., Thaler, N. S., Kuhn, T. P., Singer, E. J., & Hinkin, C. H. (2018). Intraindividual variability in neuropsychological performance predicts cognitive decline and death in HIV. Neuropsychology, 32(8), 966972. https://doi.apa.org/doi/10.1037/neu0000482 CrossRefGoogle ScholarPubMed
Arce Rentería, M., Byrd, D., Coulehan, K., Miranda, C., Fuentes, A., Rosario, A. K., Morris, E. P., & Rivera Mindt, M. (2020). Neurocognitive intra-individual variability within HIV+ adults with and without current substance use. Neuropsychology, 14(3), 321330. https://doi.apa.org/doi/10.1037/neu0000612 CrossRefGoogle Scholar
Army Individual Test Battery. (1944) Manual of directions and scoring. Washington, DC: War Department, Adjunct General’s Office.Google Scholar
Avci, G., Sheppard, D. P., Tierney, S. M., Kordovski, V. M., Sullivan, K. L., & Woods, S. P. (2017). A systematic review of prospective memory in HIV disease: From the laboratory to daily life. The Clinical Neuropsychologist, 32(5), 858890. https://doi.org/10.1080/13854046.2017.1373860 CrossRefGoogle ScholarPubMed
Ball, B. H., & Brewer, G. A. (2018). Proactive control processes in event-based prospective memory: Evidence from intraindividual variability and ex-Gaussian analyses. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44(5), 793811. https://doi.apa.org/doi/10.1037/xlm0000489 Google ScholarPubMed
Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society: Series B (Methodological), 57 (1), 289300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x Google Scholar
Bunce, D. J., Warr, P. B., & Cochrane, T. (1993). Blocks in choice responding as a function of age and physical fitness. Psychology and Aging, 8(1), 2633. https://doi.org/10.1037//0882-7974.8.1.26 CrossRefGoogle ScholarPubMed
Carey, C. L., Woods, S. P., Rippeth, J. D., Heaton, R. K., Grant, I., & The HNRC Group. (2007). Prospective memory in HIV-1 Infection. Journal of Clinical and Experimental Neuropsychology, 28(4), 536548. https://doi.org/10.1080/13803390590949494 CrossRefGoogle Scholar
Culbertson, W. C., & Zillmer, E. A. (1999). The Tower of London Drexel University (TOL DX): Examiner’s manual. North Tonawanda, NY: Multi-Health Systems Incorporated (MHS).Google Scholar
Dawes, S., Suarez, P., Casey, C. Y., Cherner, M., Marcotte, T. D., Letendre, S., Grant, I., Heaton, R. K., & The HNRC Group. (2008). Variable patterns of neuropsychological performance in HIV-1 infection. Journal of Clinical and Experimental Neuropsychology, 30(6), 613626. https://doi.org/10.1080/13803390701565225 Google ScholarPubMed
Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (2000). California verbal learning test – Second edition. Adult version. Manual. San Antonio, TX: Psychological Corporation.Google Scholar
Doyle, K. L., Loft, S., Morgan, E. E., Weber, E., Cushman, C., Johnston, E., Grant, I., Woods, S. P., & The HNRC Group. (2013). Prospective memory in HIV-associated neurocognitive disorders (HAND): The neuropsychological dynamics of time monitoring. Journal of Clinical and Experimental Neuropsychology, 35(4), 359372. https://doi.org/10.1080/13803395.2013.776010 CrossRefGoogle ScholarPubMed
Doyle, K. L., Weber, E., Morgan, E. E., Loft, S., Cushman, C., Villalobos, J., Johnston, E., Woods, S. P., & The HNRP Group. (2015). Habitual prospective memory in HIV disease. Neuropsychology, 29(6), 909918. https://doi.org/10.1037/neu0000180 CrossRefGoogle ScholarPubMed
Ellis, R. J., Calero, P., & Stockin, M. D. (2009). HIV infection and the central nervous system: A primer. Neuropsychology Review, 19(2), 144151. https://doi.org/10.1007/s11065-009-9094-1 CrossRefGoogle ScholarPubMed
Field-Fote, E. E. (2019). Mediators and moderators, confounders and covariates: Exploring the variables that illuminate or obscure the “active ingredients” in neurorehabilitation. Journal of Neurological Physical Therapy, 43(2), 8384. https://doi.org/10.1097/npt.0000000000000275 CrossRefGoogle Scholar
Fellows, R. P., & Schmitter-Edgecombe, M. (2015). Between-domain cognitive dispersion and functional abilities in older adults. Journal of Clinical and Experimental Neuropsychology, 37(10), 10131023. https://doi.org/10.1080/13803395.2015.1050360 CrossRefGoogle ScholarPubMed
Gordon, B. A., Shelton, J. T., Bugg, J. M., McDaniel, M. A., & Head, D. (2011). Structural correlates of prospective memory. Neuropsychologia, 49(14), 37953800. https://doi.org/10.1016/j.neuropsychologia.2011.09.035 CrossRefGoogle ScholarPubMed
Halliday, D. W. R., Gawryluk, J. R., Garcia-Barrera, M. A., & MacDonald, S. W. S. (2019). White matter integrity is associated with intraindividual variability in neuropsychological test performance in healthy older adults. Frontiers in Human Neuroscience, 13, 352.CrossRefGoogle ScholarPubMed
Haynes, B. I., Kliegel, M., Zimprich, D., & Bunce, D. (2018). Intraindividual reaction time variability predicts prospective memory failures in older adults. Aging, Neuropsychology, and Cognition, 25(1), 132145. https://doi.org/10.1080/13825585.2016.1268674 CrossRefGoogle ScholarPubMed
Heaton, R. K., Miller, S. W., Taylor, M. J., & Grant, I. (2004). Revised comprehensive norms for an expanded Halstead Reitan battery: Demographically adjusted neuropsychological norms for African Americans and Caucasian adults. Lutz, FL: Psychological Assessment Resources.Google Scholar
Hill, B. D., Rohling, M. L., Boettcher, A. C., & Meyers, J. E. (2013). Cognitive intra-individual variability has a positive association with traumatic brain injury severity and suboptimal effort. Archives of Clinical Neuropsychology, 28(7), 640648. https://doi.org/10.1093/arclin/act045 CrossRefGoogle Scholar
Hilborn, J. V., Strauss, E., Hultsch, D. F., & Hunter, M. A. (2009). Intraindividual variability across cognitive domains: Investigation of dispersion levels and performance profiles in older adults. Journal of Clinical and Experimental Neuropsychology, 31(4), 412424. https://doi.org/10.1080/13803390802232659 CrossRefGoogle ScholarPubMed
Hines, L. J., Miller, E. N., Hinkin, C. H., Alger, J. R., Barker, P., Goodkin, K., Martin, E. M., Maruca, V., & Becker, J. T. (2016). Cortical brain atrophy and intra-individual variability in neuropsychological test performance in HIV disease. Brain Imaging and Behavior, 10(3), 640651. https://doi.org/10.1007/s11682-015-9441-1 CrossRefGoogle ScholarPubMed
Huang, T., Loft, S., & Humphreys, M.S. (2014). Internalizing versus externalizing control: Different ways to perform a time-based prospective memory task. Journal of Experimental Psychology: Learning, Memory and Cognition, 40, 10641071.Google ScholarPubMed
Hultsch, D. F., MacDonald, S. W. S., & Dixon, R. A. (2002). Variability in reaction time performance of younger and older adults. Journal of Gerontology, 57B(2), 101115. https://doi.org/10.1093/geronb/57.2.p101 CrossRefGoogle Scholar
Ihle, A., Ghisletta, P., & Kliegel, M. (2017). Prospective memory and intraindividual variability in ongoing task response times in an adult lifespan sample: The role of cue focality. Memory, 25(3), 370376. https://doi.org/10.1080/09658211.2016.1173705 CrossRefGoogle Scholar
Joly-Burra, E., Van der Linden, M., & Gisletta, P. (2018). Intraindividual variability in inhibition and prospective memory in healthy older adults: Insights from response regularity and rapidity. Journal of Intelligence, 6(1), 13. https://doi.org/10.3390%2Fjintelligence6010013 CrossRefGoogle ScholarPubMed
Jones, J. D., Kuhn, T., Mahmood, Z., Singer, E. J., Hinkin, C. H., & Thames, A. D. (2018). Longitudinal intra-individual variability in neuropsychological performance relates to white matter changes in HIV. Neuropsychology, 32(2), 206212. https://doi.apa.org/doi/10.1037/neu0000390 CrossRefGoogle ScholarPubMed
Kamat, R., Weinborn, M., Kellogg, E. J., Bucks, R. S., Velnoweth, A., & Woods, S. P. (2014). Construct validity of the Memory for Intentions Screening Test (MIST) in healthy older adults. Assessment, 21(6), 742753. https://doi.org/10.1177/1073191114530774 CrossRefGoogle ScholarPubMed
Kaplan, E.F., Goodglass, H. and Weintraub, S. (1983) The Boston Naming Test, 2nd Edition. Philadelphia: Lea & Febiger.Google Scholar
Kløve, H. (1963). Clinical neuropsychology . In Forster, F. M., (Ed.), The medical clinics of North America (pp. 16471658). New York, NY: Saunders.Google Scholar
Kordovski, V. M., Sullivan, K. L., Tierney, S. M., & Woods, S. P. (2020). One-year stability of prospective memory symptoms and performance in aging and HIV disease. Journal of Clinical and Experimental Neuropsychology, 42(2), 118130. https://doi.org/10.1080/13803395.2019.1687651 CrossRefGoogle ScholarPubMed
Lamichhane, B., McDaniel, M. A., Waldum, E. R., & Braver, T. S. (2018). Age-related changes in neural mechanisms of prospective memory. Cognitive, Affective & Behavioral Neuroscience, 18(5), 982999. https://doi.org/10.3758/s13415-018-0617-1 CrossRefGoogle ScholarPubMed
Lynch, J. G. Jr, Bradlow, E. T., Huber, J. C., & Lehmann, D. R. (2015). Reflections on the replication corner: In praise of conceptual replications. International Journal of Research in Marketing, 32(4), 333342. https://doi.org/10.1016/j.jijresmar.2015.09.006 CrossRefGoogle Scholar
Matchanova, A., Babicz, M. A., Medina, L. D., Rahman, S., Johnson, B., Thompson, J. L., Beltran-Najera, I., Brooks, J., Sullivan, K. J., Walker, R. L., Podell, K., & Woods, S. P. (2021). Latent structure of a brief clinical battery of neuropsychological tests administered in-home via telephone. Archives of Clinical Neuropsychology, 36(6), 874886. https://doi.org/10.1093/arclin/acaa111 CrossRefGoogle ScholarPubMed
McDaniel, M. A., & Einstein, G. O. (2000). Strategic and automatic processes in prospective memory retrieval: A multiprocess framework. Applied Cognitive Psychology, 14(7), S127S144. https://doi.org/10.1002/acp.775 CrossRefGoogle Scholar
Morgan, E. E., Woods, S. P., Delano-Wood, L., Bondi, M. W., Grant, I., & HNRP Group. (2011). Intraindividual variability in HIV infection: Evidence for greater neurocognitive dispersion in older HIV seropositive adults. Neuropsychology, 25(5), 645654. https://doi.org/10.1037/a0023792 CrossRefGoogle ScholarPubMed
Morgan, E. E., Woods, S. P., Grant, I., & The NIH Neurobehavioral Research Program. (2012). Intra-individual neurocognitive variability confers risk of dependence in activities of daily living among HIV-seropositive individuals without HIV-associated neurocognitive disorders. Archives of Clinical Neuropsychology, 27, 293303. https://doi.org/10.1093/arclin/acs003 CrossRefGoogle ScholarPubMed
Musso, M., Westervelt, H. J., Long, J. D., Morgan, E., Woods, S. P., Smith, M. M., Lu, W., & Paulsen, J. S. (2015). Intra-individual variability in prodromal Huntington disease and its relationship to genetic burden. Journal of the International Neuropsychological Society, 21(1), 821. https://doi.org/10.1017%2FS1355617714001076 CrossRefGoogle ScholarPubMed
Piatt, A. L., Fields, J. A., Paolo, A. M., & Tröster, A. I. (1999). Action (verb naming) fluency as an executive function measure: Convergent and divergent evidence of validity. Neuropsychologia, 37(13), 14991503. https://doi.org/10.1016/s0028-3932(99)00066-4 CrossRefGoogle ScholarPubMed
Randolph, C., Tierney, M. C., Mohr, E., & Chase, T. N. (1998). The Repeatable battery for the assessment of neuropsychological status (RBANS): Preliminary clinical validity. Journal of Clinical and Experimental Neuropsychology, 20(3), 310319. https://doi.org/10.1076/jcen.20.3.310.823 CrossRefGoogle ScholarPubMed
Raskin, S. A. (2009). Memory for intentions screening test: Psychometric properties and clinical evidence. Brain Impairment, 10(1), 2333. https://psycnet.apa.org/doi/10.1375/brim.10.1.23 CrossRefGoogle Scholar
Rummel, J., & McDaniel, M. A. (Eds). (2019). Current issues in memory: Prospective memory: Taylor and Francis. https://doi.org/10.4324/9781351000154 CrossRefGoogle Scholar
Scullin, M. K., McDaniel, M. A., & Shelton, J. T. (2013). The dynamic multiprocess framework: Evidence from prospective memory with contextual variability. Cognitive Psychology, 67(1–2), 5571. https://doi.org/10.1016/j.cogpsych.2013.07.001 CrossRefGoogle ScholarPubMed
Schmitter-Edgecombe, M., Sumida, C., & Cook, D. J. (2020). Bridging the gap between performance-based assessment and self-reported everyday functioning: An ecological momentary assessment approach. The Clinical Neuropsychologist, 34(4), 678699. https://doi.org/10.1080/13854046.2020.1733097 CrossRefGoogle ScholarPubMed
Sheppard, D. P., Matchanova, A., Sullivan, K. L., Kazimi, S. I., & Woods, S. P. (2020). Prospective memory partially mediates the association between aging and everyday functioning. The Clinical Neuropsychologist, 34(4), 755775. https://doi.org/10.1080/13854046.2019.1637461 CrossRefGoogle ScholarPubMed
Smith, G., Della Sala, S., Logie, R.H., & Maylor, E.A. (2000). Prospective and retrospective memory in normal aging and dementia: A questionnaire study. Memory, 8, 311321.CrossRefGoogle ScholarPubMed
Sorg, S. F., Merritt, V. C., Clark, A. L., Werhane, M. L., Holiday, K. A., Schiehser, D. M., Bondi, M., & Delano-Wood, L. (2021). Elevated intraindividual variability in executive functions and associations with white matter microstructure in veterans with mild traumatic brain injury. Journal of the International Neuropsychological Society, 27(4), 305314. https://doi.org/10.1017/s1355617720000879 CrossRefGoogle ScholarPubMed
Stuss, D. T., Murphy, K. J., Binns, M. A., & Alexander, M. P. (2003). Staying on the job: The frontal lobes control individual performance variability. Brain, 126(11), 23632380. https://doi.org/10.1093/brain/awg237 CrossRefGoogle ScholarPubMed
Sullivan, K. L., Woods, S. P., Bucks, R. S., Loft, S., & Weinborn, M. (2018). Intraindividual variability in neurocognitive performance is associated with time-based prospective memory in older adults. Journal of Clinical and Experimental Neuropsychology, 40(7), 733743. https://doi.org/10.1080/13803395.2018.1432571 CrossRefGoogle ScholarPubMed
Sullivan, K.L., Gallagher, M.W., Bucks, R.S., Weinborn, M., & Woods, S.P. (in press). Factor structure of the Memory for Intentions Test (MIsT): A conceptual replication in older adults and people with HIV disease. Journal of Clinical and Experimental Neuropsychology. doi: 10.1080/13803395.2022.2107183 Google Scholar
Thaler, N. S., Sayegh, P., Arentoft, A., Thames, A. D., Castellon, S. A., & Hinkin, C. H. (2015). Increased neurocognitive intra-individual variability is associated with declines in medication adherence in HIV-infected adults. Neuropsychology, 29(6), 919925. https://doi.apa.org/doi/10.1037/neu0000191 CrossRefGoogle ScholarPubMed
The Psychological Corporation. (2001). Wechsler test of adult reading. San Antonio, TX: Harcourt Assessment.Google Scholar
Vance, D. E., Del Bene, V. A., Sandson Frank, J., Billings, R., Triebel, K., Buchholz, A., Rubin, L. H., Woods, S. P., Li, W., Fazeli, P. L., & Fazeli, P. L. (in press). Cognitive intra-individual variability in HIV: An integrative review. Neuropsychology Review. https://doi.org/10.1007/s11065-021-09528-x Google Scholar
Webber, T.A., Kiselica, A.M., Mikula, C., & Woods, S.P. (in press). Dispersion-based cognitive intra-individual variability in Dementia with Lewy Bodies. Neuropsychology.Google Scholar
Wechsler, D. (1997). WMS-III administration and scoring manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Wilson, B., Emslie, H. C., Foley, J. A., Shiel, A., Watson, P., Hawkins, K., & Groot, Y. (2005). The Cambridge prospective memory test: CAMPROMPT. London: Harcourt Assessment.Google Scholar
Wisdom, N. M., Mignogna, J., & Collins, R. L. (2012). Variability in Wechsler adult intelligence scale-IV subtest performance across age. Archives of Clinical Neuropsychology: The official journal of the National Academy of Neuropsychologists, 27(4), 389397. https://doi.org/10.1093/arclin/acs041 CrossRefGoogle ScholarPubMed
Woods, S. P., Carey, C. L., Moran, L. M., Dawson, M. S., Letendre, S. L., Grant, I., & The HNRC Group. (2007). Frequency and predictors of self-reported prospective memory complaints in individuals infected with HIV. Archives of Clinical Neuropsychology, 22(2), 187195. https://doi.org/10.1016/j.acn.2006.12.006 CrossRefGoogle ScholarPubMed
Woods, S. P., Cobb Scott, J., Sires, D. A., Grant, I., Heaton, R. K., Tröster, A. I., & The HIV Neurobehavioral Research Center Group. (2005). Action (verb) fluency: Test-retest reliability, normative standards, and construct validity. Journal of the International Neuropsychological Society, 11(4), 408415.CrossRefGoogle ScholarPubMed
Woods, S. P., Dawson, M. S., Weber, E., Gibson, S., Grant, I., Atkinson, J. H., & The HNRC Group. (2009). Timing is everything: Antiretroviral nonadherence is associated with impairment in time-based prospective memory. Journal of the International Neuropsychological Society, 15(1), 4252. https://doi.org/10.1017/S1355617708090012 CrossRefGoogle ScholarPubMed
Woods, S. P., Dawson, M. S., Weber, E., Grant, I., & The HNRP Group. (2010). The semantic relatedness of cue-intention pairings influences event-based prospective memory failures in older adults with HIV infection. Journal of Clinical and Experimental Neuropsychology, 32(4), 398407. https://doi.org/10.1080/13803390903130737 CrossRefGoogle ScholarPubMed
Woods, S. P., Iudicello, J. E., Moran, L. M., Carey, C. L., Dawson, M. S., Grant, I., & The HNRC Group. (2008a). HIV-associated prospective memory impairment increases risk dependence in everyday functioning. Neuropsychology, 22(1), 110117. https://doi.org/10.1037%2F0894-4105.22.1.110 CrossRefGoogle ScholarPubMed
Woods, S. P., Moran, L. M., Dawson, M. S., Carey, C. L., Grant, I., & The HNRC Group. (2008b). Psychometric characteristics of the memory for intentions screening test. The Clinical Neuropsychologist, 22(5), 864878. https://doi.org/10.1080%2F13854040701595999 CrossRefGoogle ScholarPubMed
Woods, S. P., Morgan, E. E., Loft, S., Matchanova, A., Verduzco, M., & Cushman, C. (2020). Supporting strategic processes can improve time-based prospective memory in the laboratory among older adults with HIV disease. Neuropsychology, 34(3), 249263. https://doi.org/10.1037/neu0000602 CrossRefGoogle ScholarPubMed
Woods, S. P., Morgan, E. E., Loft, S., Matchanova, A., Verduzco, M., & Cushman, C. (2021). Enhancing cue salience improves aspects of naturalistic time-based prospective memory in older adults with HIV disease. Neuropsychology, 35(1), 111122. https://psycnet.apa.org/doi/10.1037/neu0000644 CrossRefGoogle ScholarPubMed
Woods, S. P., Weber, E., Weisz, B. M., Twamley, E. W., Grant, I., & The HNRP Group. (2011). Prospective memory deficits are associated with unemployment in persons living with HIV infection. Rehabilitation Psychology, 56(1), 7784. https://doi.org/10.1037/a0022753 CrossRefGoogle ScholarPubMed
World Health Organization (WHO). (1998). Composite international diagnostic interview (CIDI, version 2.1). Geneva, Switzerland: World Health Organization.Google Scholar
Zogg, J. B., Woods, S. P., Weber, E., Doyle, K., Grant, I., & The HNRP Group. (2011). Are time- and event-based prospective memory comparably affected in HIV infection? Archives of Clinical Neuropsychology, 26(3), 250259. https://doi.org/10.1093/arclin/acr020 CrossRefGoogle ScholarPubMed
Zogg, J. B., Woods, S. P., Weber, E., Iudicello, J. E., Dawson, M. S., Grant, I., & HIV Neurobehavioral Research Center Group. (2010). HIV-associated prospective memory impairment in the laboratory predicts failures on a semi-naturalistic measure of health care compliance. The Clinical neuropsychologist, 24(6), 945962. https://doi.org/10.1080/13854046.2010.501343 CrossRefGoogle ScholarPubMed