Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-25T22:44:50.808Z Has data issue: false hasContentIssue false

Introduction to the JINS Special Issue: Motor Cognition

Published online by Cambridge University Press:  16 February 2017

Guy Vingerhoets*
Affiliation:
Department of Experimental Psychology, Ghent University, Belgium
Deborah Harrington
Affiliation:
Research Service, VA San Diego Healthcare System, San Diego, California Department of Radiology, University of California, San Diego, California
*
Correspondence and reprint requests to: Guy Vingerhoets, Department of Experimental Psychology, Henri Dunantlaan 2, B-9000 Ghent, Belgium. E-mail: [email protected]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Introduction
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aflalo, T., Kellis, S., Klaes, C., Lee, B., Shi, Y., Pejsa, K., & Andersen, R.A. (2015). Decoding motor imagery from the posterior parietal cortex of a tetraplegic human. Science, 348(6237), 906910. doi: 10.1126/science.aaa5417 Google Scholar
Binkofski, F., & Buxbaum, L.J. (2013). Two action systems in the human brain. Brain and Language, 127(2), 222229.Google Scholar
Buxbaum, L.J., Kyle, K., Grossman, M., & Coslett, H.B. (2007). Left inferior parietal representations for skilled hand-object interactions: Evidence from stroke and corticobasal degeneration. Cortex, 43(3), 411423.Google Scholar
Castiello, U. (2005). The neuroscience of grasping. Nature Reviews Neuroscience, 6(9), 726736.Google Scholar
Collinger, J.L., Wodlinger, B., Downey, J.E., Wang, W., Tyler-Kabara, E.C., Weber, D.J., & Schwartz, A.B. (2013). High-performance neuroprosthetic control by an individual with tetraplegia. Lancet, 381(9866), 557564. doi: 10.1016/S0140-6736(12)61816-9 Google Scholar
Elsinger, C.L., Harrington, D.L., & Rao, S.M. (2006). From preparation to online control: Reappraisal of neural circuitry mediating internally generated and externally guided actions. Neuroimage, 31(3), 11771187. doi: 10.1016/j.neuroimage.2006.01.041 Google Scholar
Gallese, V., Murata, A., Kaseda, M., Niki, N., & Sakata, H. (1994). Deficit of hand preshaping after muscimol injection in monkey parietal cortex. Neuroreport, 5(12), 15251529.Google Scholar
Ganis, G., Keenan, J.P., Kosslyn, S.M., & Pascual-Leone, A. (2000). Transcranial magnetic stimulation of primary motor cortex affects mental rotation. Cerebral Cortex, 10(2), 175180. doi: 10.1093/cercor/10.2.175 Google Scholar
Georgopoulos, A.P. (2000). Neural aspects of cognitive motor control. Current Opinion in Neurobiology, 10(2), 238241. doi: 10.1016/S0959-4388(00)00072-6 Google Scholar
Georgopoulos, A.P., Taira, M., & Lukashin, A. (1993). Cognitive neurophysiology of the motor cortex. Science, 260(5104), 4752. doi: 10.1126/science.8465199 CrossRefGoogle ScholarPubMed
Goldenberg, G. (2003a). Apraxia and beyond: Life and work of Hugo Liepmann. Cortex, 39(3), 509524.Google Scholar
Goldenberg, G. (2003b). Pantomime of object use: A challenge to cerebral localization of cognitive function. Neuroimage, 20, S101S106.Google Scholar
Goldenberg, G. (2013). Apraxia. The cognitive side of motor control. Oxford: Oxford University Press.Google Scholar
Goldenberg, G., Daumuller, M., & Hagmann, S. (2001). Assessment and therapy of complex activities of daily living in apraxia. Neuropsychological Rehabilitation, 11(2), 147169.Google Scholar
Goodale, M.A., Jakobson, L.S., & Servos, P. (1996). The visual pathways mediating perception and prehension. In A.M. Wing, P. Haggard & J.R. Flanagan (Eds.), Hand and brain: The neurophysiology and psychology of hand movements (pp. 1531). San Diego: Academic Press.Google Scholar
Haaland, K.Y., Harrington, D.L., & Knight, R.T. (2000). Neural representations of skilled movement. Brain, 123, 23062313.Google Scholar
Hanna-Pladdy, B., Heilman, K.M., & Foundas, A.L. (2001). Cortical and subcortical contributions to ideomotor apraxia – Analysis of task demands and error types. Brain, 124, 25132527.Google Scholar
Hartmann, K., Goldenberg, G., Daumuller, M., & Hermsdorfer, J. (2005). It takes the whole brain to make a cup of coffee: The neuropsychology of naturalistic actions involving technical devices. Neuropsychologia, 43(4), 625637.Google Scholar
Helmich, R.C., de Lange, F.P., Bloem, B.R., & Toni, I. (2007). Cerebral compensation during motor imagery in Parkinson’s disease. Neuropsychologia, 45(10), 22012215. doi: 10.1016/j.neuropsychologia.2007.02.024 Google Scholar
Hermsdorfer, J., Terlinden, G., Muhlau, M., Goldenberg, G., & Wohlschlager, A.M. (2007). Neural representations of pantomimed and actual tool use: Evidence from an event-related fMRI study. Neuroimage, 36, T109T118.Google Scholar
Hoeren, M., Kummerer, D., Bormann, T., Beume, L., Ludwig, V.M., Vry, M.S., & Weiller, C. (2014). Neural bases of imitation and pantomime in acute stroke patients: Distinct streams for praxis. Brain, 137, 27962810.Google Scholar
Jeannerod, M. (1997). The cognitive neuroscience of action. Cambridge: Blackwell.Google Scholar
Jeannerod, M., Arbib, M.A., Rizzolatti, G., & Sakata, H. (1995). Grasping objects – The cortical mechanisms of visuomotor transformation. Trends in Neurosciences, 18(7), 314320.Google Scholar
Johnson-Frey, S.H. (2004). The neural bases of complex tool use in humans. Trends in Cognitive Sciences, 8(2), 7178.Google Scholar
Kang, N., Summers, J.J., & Cauraugh, J.H. (2016). Non-invasive brain stimulation improves paretic limb force production: A systematic review and meta-analysis. Brain Stimulation, 9(5), 662670. doi: 10.1016/j.brs.2016.05.005 CrossRefGoogle ScholarPubMed
Kosslyn, S.M., Digirolamo, G.J., Thompson, W.L., & Alpert, N.M. (1998). Mental rotation of objects versus hands: Neural mechanisms revealed by positron emission tomography. Psychophysiology, 35(2), 151161. doi: 10.1017/S0048577298001516 Google Scholar
Kosslyn, S.M., Thompson, W.L., Wraga, M., & Alpert, N.M. (2001). Imagining rotation by endogenous versus exogenous forces: Distinct neural mechanisms. Neuroreport, 12(11), 25192525. doi: 10.1097/00001756-200108080-00046 Google Scholar
Kroliczak, G., & Frey, S.H. (2009). A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cerebral Cortex, 19(10), 23962410.Google Scholar
Lewis, J.W. (2006). Cortical networks related to human use of tools. Neuroscientist, 12(3), 211231.Google Scholar
Oostra, K.M., Oomen, A., Vanderstraeten, G., & Vingerhoets, G. (2015). Influence of motor imagery training on gait rehabilitation in sub-acute stroke: A randomized controlled trial. Journal of Rehabilitation Medicine, 47(3), 204209. doi: 10.2340/16501977-1908 Google Scholar
Osiurak, F. (2014). What neuropsychology tells us about human tool use? The Four Constraints Theory (4CT): Mechanics, space, time, and effort. Neuropsychology Review, 24(2), 88115. doi: 10.1007/s11065-014-9260-y CrossRefGoogle ScholarPubMed
Osiurak, F., Jarry, C., Allain, P., Aubin, G., Etcharry-Bouyx, F., Richard, I., & Le Gall, D. (2009). Unusual use of objects after unilateral brain damage. The technical reasoning model. Cortex, 45(6), 769783.Google Scholar
Osiurak, F., Jarry, C., & Le Gall, D. (2011). Re-examining the gesture engram hypothesis. New perspectives on apraxia of tool use. Neuropsychologia, 49(3), 299312.Google Scholar
Parsons, L.M. (1994). Temporal and kinematic properties of motor behavior reflected in mentally simulated action. Journal of Experimental Psychology-Human Perception and Performance, 20(4), 709730.Google Scholar
Paulsen, J.S., Long, J.D., Ross, C.A., Harrington, D.L., Erwin, C.J., & Williams, J.K., … PREDICT-HD Investigators and Coordinators of the Huntington Study Group. (2014). Prediction of manifest Huntington’s disease with clinical and imaging measures: A prospective observational study. Lancet Neurology, 13(12), 11931201. doi: 10.1016/S1474-4422(14)70238-8 Google Scholar
Pellizzer, G., Sargent, P., & Georgopoulos, A.P. (1995). Motor cortical activity in a context-recall task. Science, 269(5224), 702705. doi: 10.1126/science.7624802 Google Scholar
Rizzolatti, G., Fogassi, L., & Gallese, V. (2001). Neurophysiological mechanisms underlying the understanding and imitation of action. Nature Reviews Neuroscience, 2(9), 661670. doi: 10.1038/35090060 Google Scholar
Schubotz, R.I. (2007). Prediction of external events with our motor system: Towards a new framework. Trends in Cognitive Sciences, 11(5), 211218. doi: 10.1016/j.tics.2007.02.006 CrossRefGoogle ScholarPubMed
Smyrnis, N., Taira, M., Ashe, J., & Georgopoulos, A.P. (1992). Motor cortical activity in a memorized delay task. Experimental Brain Research, 92(1), 139151.Google Scholar
Vingerhoets, G. (2014). Contribution of the posterior parietal cortex in reaching, grasping, and using objects and tools. Frontiers in Psychology, 5, 151.Google Scholar
Wang, W., Collinger, J.L., Degenhart, A.D., Tyler-Kabara, E.C., Schwartz, A.B., Moran, D.W., & Boninger, M.L. (2013). An electrocorticographic brain interface in an individual with tetraplegia. Plos One, 8(2), e55344. doi: ARTN e55344 Google Scholar
Wise, S.P., Moody, S.L., Blomstrom, K.J., & Mitz, A.R. (1998). Changes in motor cortical activity during visuomotor adaptation. Experimental Brain Research, 121(3), 285299.CrossRefGoogle ScholarPubMed