Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-23T04:46:44.114Z Has data issue: false hasContentIssue false

The influence of pre-deployment neurocognitive functioning on post-deployment PTSD symptom outcomes among Iraq-deployed Army soldiers

Published online by Cambridge University Press:  01 November 2009

BRIAN P. MARX*
Affiliation:
VA Boston Healthcare System, Behavioral Science Division, National Center for PTSD, Boston, Massachusetts Department of Psychology, VA Boston Healthcare System, Boston, Massachusetts Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
SUSAN DORON-LAMARCA
Affiliation:
VA Boston Healthcare System, Behavioral Science Division, National Center for PTSD, Boston, Massachusetts Department of Psychology, VA Boston Healthcare System, Boston, Massachusetts Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
SUSAN P. PROCTOR
Affiliation:
Department of Psychology, VA Boston Healthcare System, Boston, Massachusetts Military Performance Division, U.S. Army Research Institute of Environmental Medicine, Natick, Massachusetts Department of Environmental Health, Boston University School of Public Health, Boston, Massachusetts
JENNIFER J. VASTERLING
Affiliation:
VA Boston Healthcare System, Behavioral Science Division, National Center for PTSD, Boston, Massachusetts Department of Psychology, VA Boston Healthcare System, Boston, Massachusetts Department of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
*
*Correspondence and reprint requests: Brian P. Marx, Ph.D., National Center for PTSD (116B-2), VA Boston Healthcare System, 150 South Huntington Avenue, Boston MA 02130. E-mail: [email protected]

Abstract

This study evaluated associations between pre-deployment neurocognitive performance and post-deployment posttraumatic stress disorder (PTSD) symptoms in a sample of deployed active duty Army soldiers. As part of a larger longitudinal study, each participant completed baseline measures of memory, executive attention, and response inhibition, and baseline and post-deployment self-report measures of PTSD symptom severity. Data were subjected to multiple regression analyses that examined associations between baseline neurocognitive performances and longitudinal PTSD symptom outcome. Results revealed that pre-trauma immediate recall of visual information was associated with post-deployment PTSD symptom severity, even after controlling for pre-deployment PTSD symptom levels, combat intensity, age, gender, and test-retest interval. There was also an interaction between pre-deployment PTSD symptom severity and pre-deployment immediate visual recall and verbal learning, indicating that neurocognitive performances were more strongly (and negatively) associated with residualized post-deployment PTSD symptoms at higher levels of pre-deployment PTSD symptoms. These findings highlight the potential role of pre-trauma neurocognitive functioning in moderating the effects of trauma exposure on PTSD symptoms.(JINS, 2009, 15, 840–852.)

Type
Symposia
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

American Psychiatric Association. (1994). Diagnostic and statistical manual of mental disorders (4thed.). Washington, DC: Author.Google Scholar
Arnsten, A.F.T., & Goldman-Rakic, P.S. (1998). Noise stress impairs prefrontal cortical cognitive function in monkeys: Evidence for a hyperdopaminergic mechanism. Archives of General Psychiatry, 55(4), 362368.CrossRefGoogle ScholarPubMed
Astur, R.S., Taylor, L.B., Mamelak, A.N., Philpott, L., & Sutherland, R.J. (2002). Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behavior and Brain Research, 132(1), 77–84.CrossRefGoogle Scholar
Bernstein, E.M., & Putnam, F.W. (1986). Development, reliability, and validity of a dissociation scale. Journal of Nervous and Mental Disease, 174(12), 727–735.Google Scholar
Birnbaum, S., Gobeske, K.T., Auerbach, J., Taylor, J.R., & Arnsten, A.F.T. (1999). A role for norepinephrine in stress-induced cognitive deficits: α-1-Adrenoceptor mediation in the prefrontal cortex. Biological Psychiatry, 46(9), 1266–1274.Google Scholar
Blake, D.D., Keane, T.M., Wine, P.R., & Mora, C. (1990). Prevalence of PTSD symptoms in combat veterans seeking medical treatment. Journal of Traumatic Stress, 3(1), 15–27.CrossRefGoogle Scholar
Blanchard, E.B., Jones-Alexander, J., Buckley, T.C., & Forneris, C.A. (1996). Psychometric properties of the PTSD Checklist (PCL). Behaviour Research and Therapy, 34(8), 669–673.CrossRefGoogle ScholarPubMed
Bonne, O., Grillon, C., Vythilingam, M., Neumeister, A., & Charney, D.S. (2004). Adaptive and maladaptive psychobiological responses to severe psychological stress: Implications for the discovery of novel pharmacotherapy. Neuroscience and Biobehavioral Reviews, 28(1), 65–94.CrossRefGoogle ScholarPubMed
Bowman, M.L. (1997). Individual differences in posttraumatic response: Problems with the adversity-distress connection. Mahwah, NJ: Erlbaum.Google Scholar
Bremner, J.D., Innis, R.B., Southwich, S.M., Staib, L., Zoghbi, S., & Charney, D.S. (2000). Decreased benzodiazepine receptor binding in prefrontal cortex in combat-related posttraumatic stress disorder. American Journal of Psychiatry, 157(7), 1120–1126.Google Scholar
Bremner, J.D., Krystal, J.H., Putnam, F., Southwick, S.M., Marmar, C., & Charney, D.S. (1998). Measurement of dissociative states with the Clinician Administered Dissociative States Scale (CADSS). Journal of Traumatic Stress, 11(1), 125–136.Google Scholar
Breslau, N., Kessler, R.C., & Chilcoat, H.D. (1998). Trauma and posttraumatic stress disorder in the community: The 1996 Detroit Area Survey of Trauma. Archives of General Psychiatry, 55(7), 626–632.Google Scholar
Brewin, C.R. (2008). What is it that a neurobiological model of PTSD must explain? Progress in Brain Research, 167, 217–228.Google Scholar
Brewin, C.R., Andrews, B., & Valentine, J.D. (2000). Meta-analysis of risk factors for posttraumatic stress disorder in trauma-exposed adults. Journal of Consulting and Clinical Psychology, 68(5), 748–766.CrossRefGoogle ScholarPubMed
Brewin, C.R., Kleiner, J.S., Vasterling, J.J., & Field, A.P. (2007). Memory for emotionally neutral information in posttraumatic stress disorder: A meta-analytic investigation. Journal of Abnormal Psychology, 116(3), 448–463.Google Scholar
Carrion, V.G., Weems, C.F., Eliez, S., Patwardhan, A., Brown, W., Ray, R.D., & Reiss, A.L. (2001). Attenuation of frontal asymmetry in pediatric posttraumatic stress disorder. Biological Psychiatry, 50(12), 943–951.CrossRefGoogle ScholarPubMed
Constans, J.I., McCloskey, M.S., Vasterling, J.J., Brailey, K., & Mathews, A. (2004). Suppression of attentional bias in PTSD. Journal of Abnormal Psychology, 113(2), 315–323.CrossRefGoogle ScholarPubMed
Dalgleish, T., Taghavi, R., Neshat-Doost, H., Moradi, A., Canterbury, R., & Yule, W. (2003). Patterns of processing bias for emotional information across clinical disorders: A comparison of attention, memory, and prospective cognition in children and adolescents with depression, generalized anxiety, and posttraumatic stress disorder. Journal of Clinical Child and Adolescent Psychology, 32(1), 10–21.CrossRefGoogle ScholarPubMed
De Bellis, M.D., Keshavan, M.S., Shifflett, H., Iyengar, S., Beers, S.R., Hall, J., & Moritz, G. (2002). Brain structures in pediatric maltreatment-related posttraumatic stress disorder: A sociodemographically matched study. Biological Psychiatry, 52(11), 1066–1078.CrossRefGoogle ScholarPubMed
Dohrenwend, B.P., Turner, J.B., Turse, N.A., Adams, B.G., Koenen, K.C., & Marshall, R. (2006). The psychological risks of Vietnam for U.S. veterans: A revisit with new data and methods. Science, 313(5789), 979–982.Google Scholar
Dunmore, E., Clark, D.M., & Ehlers, A. (1999). Cognitive factors involved in the onset and maintenance of posttraumatic stress disorder (PTSD) after physical or sexual assault. Behaviour Research and Therapy, 37(9), 809–829.Google Scholar
Ehlers, A., & Clark, D. (2000). A cognitive model of posttraumatic stress disorder. Behaviour Research and Therapy, 38(4), 319–345.Google Scholar
Foa, E.B., Feske, U., Murdock, T.B., Kozak, M.J., & McCarthy, P.R. (1991). Processing of threat-related information in rape victims. Journal of Abnormal Psychology, 100(2), 156–162.Google Scholar
Foa, E.B., & Jaycox, L.H. (1999). Cognitive-behavioral theory and treatment of posttraumatic stress disorder. In Spiegel, D. (Ed.), Efficacy and cost-effectiveness of psychotherapy (pp. 23–61). Arlington, VA: American Psychiatric Publishing.Google Scholar
Foa, E.B., & Riggs, D.S. (1994). Posttraumatic stress disorder and rape. In Pynoos, R. (Ed.), Posttraumatic stress disorder: A clinical review (pp. 133–163). Baltimore, MD: Sidran Press.Google Scholar
Forbes, D., Creamer, M., & Biddle, D. (2001). The validity of the PTSD checklist as a measure of symptomatic change in combat-related PTSD. Behaviour Research and Therapy, 39(8), 977–986.Google Scholar
Frankland, P.W., Cestari, V., Filipkowski, R.K., McDonald, R.J., & Silva, A.J. (1998). The dorsal hippocampus is essential for context discrimination but not for contextual conditioning. Behavioral Neuroscience, 112(4), 863–874.Google Scholar
Gale, C.R., Deary, I.J., Boyle, S.H., Barefoot, J., Mortensen, L.H., & Batty, G.D. (2008). Cognitive ability in early adulthood and risk of five specific psychiatric disorders in middle age: The Vietnam experience study. Archives of General Psychiatry, 65(12), 1410–1418.CrossRefGoogle Scholar
Gilbertson, M.W., Gurvits, T.V., Lasko, N.B., Orr, S.P., & Pitman, R.K. (2001). Multivariate assessment of explicit memory function in combat veterans with posttraumatic stress disorder. Journal of Traumatic Stress, 14(2), 413–431.Google Scholar
Gilbertson, M.W., Paulus, L.A., Williston, S.K., Gurvits, T.V., Lasko, N.B., Pitman, R.K., & Orr, S.P. (2006). Neurocognitive function in monozygotic twins discordant for combat exposure: Relationship to posttraumatic stress disorder. Journal of Abnormal Psychology, 115(3), 484–495.Google Scholar
Gilbertson, M.W., Shenton, M.E., Ciszewski, A., Kasai, K., Lasko, N.B., Orr, S.P., & Pitman, R.K. (2002). Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nature Neuroscience, 5(11), 1242–1247.Google Scholar
Gilbertson, M.W., Williston, S.K., Paulus, L.A., Lasko, N.B., Gurvits, T.V., Shenton, M.E., & Orr, S.P. (2007). Configural cue performance in identical twins discordant for posttraumatic stress disorder: Theoretical implications for the role of hippocampal function. Biological Psychiatry, 62(5), 513–520.Google Scholar
Greenberg, D.L., & Rubin, D.C. (2003). The neuropsychology of autobiographical memory. Cortex, 39(4–5), 687–728.CrossRefGoogle ScholarPubMed
Hoge, C.W., Castro, C.A., Messer, S.C., McGurk, D., Cotting, D.I., & Koffman, R.L. (2004). Combat duty in Iraq and Afghanistan, mental health problems, and barriers to care. New England Journal of Medicine, 351(1), 13–22.Google Scholar
Hoge, C.W., McGurk, D., Thomas, J.L., Cox, A.L., Engel, C.C., & Castro, C.A. (2008). Mild traumatic brain injury in U.S. Soldiers returning from Iraq. New England Journal of Medicine, 358(5), 453–463.Google Scholar
Holmes, E.A., & Mathews, A. (2005). Mental imagery and emotion: A special relationship? Emotion, 5(4), 489–497.Google Scholar
Holmes, E.A., Mathews, A., Dalgleish, T., & Mackintosh, B. (2006). Positive interpretation training: Effects of mental imagery versus verbal training on positive mood. Behavior Therapy, 37(3), 237–247.Google Scholar
Isaac, C.L., Cushway, D., & Jones, G.V. (2006). Is posttraumatic stress disorder associated with specific deficits in episodic memory? Clinical Psychology Review, 26(8), 939–955.CrossRefGoogle ScholarPubMed
Jelinek, L., Jacobsen, D., & Kellner, M. (2006). Verbal and nonverbal memory functioning in posttraumatic stress disorder. Journal of Clinical and Experimental Neuropsychology, 28(6), 940–948.CrossRefGoogle ScholarPubMed
Jenkins, M.A., Langlais, P.J., Delis, D., & Cohen, R. (1998). Learning and memory in rape victims with posttraumatic stress disorder. American Journal of Psychiatry, 155(2), 278–279.Google Scholar
Jenkins, M.A., Langlais, P.J., Delis, D., & Cohen, R.A. (2000). Attentional dysfunction associated with posttraumatic stress disorder among rape survivors. Clinical Neuropsychologist, 14(1), 7–12.CrossRefGoogle ScholarPubMed
Kang, H.K., Natelson, B.H., Mahan, C.M., Lee, K.Y., & Murphy, F.M. (2003). Post-traumatic stress disorder and chronic fatigue syndrome-like illness among Gulf War veterans: A population-based survey of 30,000 veterans. American Journal of Epidemiology, 157(2), 141–148.Google Scholar
Karl, A., Schaefer, M., Malta, L.S., Dorfel, D., Rohleder, N., & Werner, A. (2006). A meta-analysis of structural brain abnormalities in PTSD. Neuroscience and Biobehavioral Reviews, 30(7), 1004–1031.Google Scholar
Kessler, R.C., Sonnega, A., Bromet, E., Hughes, M., & Nelson, C.B. (1995). Posttraumatic stress disorder in the National Comorbidity Survey. Archives of General Psychiatry, 52(12), 1048–1060.Google Scholar
Kessler, R.C., Sonnega, A., Bromet, E., Hughes, M., Nelson, C.B., & Breslau, N. (1999). Epidemiological risk factors for trauma and PTSD. In Yehuda, R. (Ed.), Risk factors for posttraumatic stress disorder (pp. 23–59). Washington, DC: American Psychiatric Association.Google Scholar
King, D.W., King, L.A., & Vogt, D.S. (2003). Manual for the Deployment Risk and Resilience Inventory (DRRI): A collection of measures for studying deployment-related experiences in military veterans. Boston, MA: National Center for PTSD.Google Scholar
King, L.A., King, D.W., Vogt, D.S., Knight, J., & Samper, R.E. (2006). Deployment Risk and Resilience Inventory: A collection of measures for studying deployment-related experiences of military personnel and veterans. Military Psychology, 18(2), 89–120.CrossRefGoogle Scholar
Koenen, K.C., Driver, K.L., Oscar-Berman, M., Wolfe, J., Folsom, S., Huang, M.T., & Schlesinger, L. (2001). Measures of prefrontal system dysfunction in posttraumatic stress disorder. Brain and Cognition, 45(1), 64–78.Google Scholar
Koenen, K.C., Stellman, J.M., Stellman, S.D., & Sommer, J.F. (2003). Risk factors for course of posttraumatic stress disorder among Vietnam veterans: A 14-year follow-up of American Legionnaires. Journal of Consulting and Clinical Psychology, 71(6), 980–986.Google Scholar
Kremen, W.S., Koenen, K.C., Boake, C., Purcell, S., Eisen, S.A., Franz, C.E., et al. (2007). Pretrauma cognitive ability and risk for posttraumatic stress disorder. Archives of General Psychiatry, 64(3), 361–368.CrossRefGoogle ScholarPubMed
Leskin, L.P., & White, P.M. (2007). Attentional networks reveal executive function deficits in posttraumatic stress disorder. Neuropsychology, 21(3), 275–284.Google Scholar
Letz, R. (2000). NES3 user’s manual. Atlanta, GA: Neurobehavioral Systems, Inc.Google Scholar
Macklin, M.L., Metzger, L.J., Litz, B.T., McNally, R.J., Lasko, N.B., Orr, S.P., & Pitman, R.K. (1998). Lower precombat intelligence is a risk factor for posttraumatic stress disorder. Journal of Consulting and Clinical Psychology, 66(2), 323–326.CrossRefGoogle ScholarPubMed
McFarlane, A.C., Weber, D.L., & Clark, C.R. (1993). Abnormal stimulus processing in posttraumatic stress disorder. Biological Psychiatry, 34(5), 311–320.Google Scholar
McNally, R.J., Kaspi, S.P., Riemann, B.C., & Zeitlin, S.B. (1990). Selective processing of threat cues in posttraumatic stress disorder. Journal of Abnormal Psychology, 99(4), 398–402.Google Scholar
McNally, R.J., Lasko, N.B., Macklin, M.L., & Pitman, R.K. (1995). Autobiographical memory disturbance in combat-related posttraumatic stress disorder. Behaviour Research and Therapy, 33(6), 619–630.CrossRefGoogle ScholarPubMed
O’Bryant, S.E., Engel, L.R., Kleiner, J.S., Vasterling, J.J., & Black, F.W. (2007). Test of memory malingering (TOMM) trial 1 as a screening measure for insufficient effort. Clinical Neuropsychologist, 21(3), 511–521.Google Scholar
Ohl, F., Michaelis, T., Vollmann-Honsdorf, G.K., Kirschbaum, C., & Fuchs, E. (2000). Effect of chronic psychosocial stress and long-term cortisol treatment on hippocampus-mediated memory and hippocampal volume: A pilot-study in tree shrews. Psychoneuroendocrinology, 25(4), 357–363.Google Scholar
Orcutt, H.K., Erickson, D.J., & Wolfe, J. (2004). The course of PTSD symptoms among Gulf War veterans: A growth mixture modeling approach. Journal of Traumatic Stress, 17(3), 195–202.Google Scholar
Ozer, E.J., Best, S.R., Lipsey, T.L., & Weiss, D.S. (2003). Predictors of posttraumatic stress disorder and symptoms in adults: A meta-analysis. Psychological Bulletin, 129(1), 52–73.Google Scholar
Parslow, R.A., & Jorm, A.F. (2007). Pretrauma and posttrauma neurocognitive functioning and PTSD symptoms in a community sample of young adults. American Journal of Psychiatry, 164(3), 509–515.Google Scholar
Perconte, S.T., Wilson, A.T., Pontius, E.B., Dietrick, A.L., & Spiro, K.J. (1993). Psychological and war stress symptoms among deployed and non-deployed reservists following the Persian Gulf War. Military Medicine, 158(8), 516–521.CrossRefGoogle ScholarPubMed
Rasmusson, A.M., Vythilingam, M., & Morgan, C.A. (2003). The neuroendocrinology of posttraumatic stress disorder: New directions. CNS Spectrums, 8(9), 651–667.CrossRefGoogle ScholarPubMed
Rauch, S.L., van der Kolk, B.A., Fisler, R.E., Alpert, N.M., Orr, S.P., Savage, C.R., et al. (1996). A symptom provocation study of posttraumatic stress disorder using positron emission tomography and script-driven imagery. Archives of General Psychiatry, 53(5), 380–387.Google Scholar
Reitan, R.M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271–276.Google Scholar
Rubin, D.C., Burt, C.D.B., & Fifeld, S.J. (2003). Experimental manipulations of the phenomenology of memory. Memory and Cognition, 31(6), 877–886.Google Scholar
Ruggiero, K.J., Del Ben, K., Scotti, J.R., & Rabalais, A.E. (2003). Psychometric properties of the PTSD Checklist-Civilian Version. Journal of Traumatic Stress, 16(5), 495–502.Google Scholar
Schlenger, W.E., Kulka, R.A., Fairbank, J.A., Hough, R.L., Jordan, B.K., Marmar, C.R., & Weiss, D.S. (1992). The prevalence of post-traumatic stress disorder in the Vietnam generation: A multimethod, multisource assessment of psychiatric disorder. Journal of Traumatic Stress, 5(3), 333–363.Google Scholar
Schnurr, P.P., Lunney, C.A., & Sengupta, A. (2004). Risk factors for the development versus maintenance of posttraumatic stress disorder. Journal of Traumatic Stress, 17(2), 85–95.Google Scholar
Shansky, R.M., Glavis-Bloom, C., Lerman, D., McRae, P., Benson, C., Miller, K., et al. (2004). Estrogen mediates sex differences in stress-induced prefrontal cortex dysfunction. Molecular Psychiatry, 9(5), 531–538.CrossRefGoogle ScholarPubMed
Shin, L.M., Orr, S.P., Carson, M.A., Rauch, S.L., Macklin, M.L., Lasko, N.B., et al. (2004). Regional cerebral blood flow in the amygdala and medial prefrontal cortex during traumatic imagery in male and female Vietnam veterans with PTSD. Archives of General Psychiatry, 61(2), 168–176.Google Scholar
Southwick, S.M., Rasmusson, A., Barron, J., & Arnsten, A. (2005). Neurobiological and neurocognitive alterations and PTSD: A focus on norepinephrine, serotonin, and the HPA axis. In Vasterling, J.J. & Brewin, C.R. (Eds.), The neuropsychology of PTSD: Biological, cognitive, and clinical perspectives. New York: Guilford Press.Google Scholar
Thompson, W.W., & Gottesman, I.I. (2008). Challenging the conclusion that lower preinduction cognitive ability increases risk for combat-related post-traumatic stress disorder in 2,375 combat-exposed, Vietnam War veterans. Military Medicine, 173(6), 576–582.CrossRefGoogle Scholar
Tombaugh, T.N. (1997). The Test of Memory Malingering (TOMM): Normative data from cognitively intact and cognitively impaired individuals. Psychological Assessment, 9(3), 260–268.CrossRefGoogle Scholar
Uddo, M., Vasterling, J.J., Brailey, K., & Sutker, P.B. (1993). Memory and attention in combat-related post-traumatic stress disorder (PTSD). Journal of Psychopathology and Behavioral Assessment, 15(1), 43–52.Google Scholar
Vasterling, J.J., & Brailey, K. (2005). Neuropsychological findings in adults with PTSD. In Vasterling, J.J. & Brewin, C.R. (Eds.), Neuropsychology of PTSD: Biological, cognitive, and clinical perspectives (pp. 178–207). New York: Guilford Press.Google Scholar
Vasterling, J.J., Brailey, K., Constans, J.I., & Sutker, P.B. (1998). Attention and memory dysfunction in posttraumatic stress disorder. Neuropsychology, 12(1), 125–133.Google Scholar
Vasterling, J.J., Brailey, K., & Sutker, P.B. (2000). Olfactory identification in combat-related posttraumatic stress disorder. Journal of Traumatic Stress, 13(2), 241–253.Google Scholar
Vasterling, J.J., Duke, L.M., Brailey, K., Constans, J.I., Allain, A.N., & Sutker, P.B. (2002). Attention, learning, and memory performances and intellectual resources in Vietnam veterans: PTSD and no disorder comparisons. Neuropsychology, 16(1), 5–14.Google Scholar
Vasterling, J.J., Duke, L.M., Tomlin, H., Lowery, N., & Kaplan, E. (2004). Global-local visual processing in posttraumatic stress disorder. Journal of the International Neuropsychological Society, 10(5), 709–718.Google Scholar
Vasterling, J.J., Proctor, S.P., Amoroso, P., Kane, R., Gackstetter, G., Ryan, M.A.K., & Friedman, M.J. (2006a). The Neurocognition Deployment Health Study: A prospective cohort study of Army soldiers. Military Medicine, 171(3), 253–260.Google Scholar
Vasterling, J.J., Proctor, S.P., Amoroso, P., Kane, R., Heeren, T., & White, R.F. (2006b). Neuropsychological outcomes of Army personnel following deployment to the Iraq War. Journal of the American Medical Association (JAMA), 296(5), 519–529.CrossRefGoogle Scholar
Weathers, F., Litz, B.T., Herman, D.S., Huska, J.A., & Keane, T.M. (1993, November). The PTSD Checklist (PCL): Reliability, validity, and diagnostic utility. Paper presented at the Ninth Annual Meeting of the International Society for Traumatic Stress Studies, San Antonio, TX.Google Scholar
Wechsler, D. (1945). A standardized memory scale for clinical use. Journal of Psychology, 19, 87–95.Google Scholar
Wechsler, D. (1997). Wechsler Memory Scale (3rd ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
Yehuda, R. (2002). Current status of cortisol findings in post-traumatic stress disorder. Psychiatric Clinics of North America, 25(2), 341–368.Google Scholar
Yehuda, R., Golier, J.A., Halligan, S.L., & Harvey, P.D. (2004). Learning and memory in Holocaust survivors with posttraumatic stress disorder. Biological Psychiatry, 55(3), 291–295.Google Scholar
Yehuda, R., Keefe, R.S., Harvey, P.D., Levengood, R.A., Gerber, D.K., Geni, J., & Siever, L.J. (1995). Learning and memory in combat veterans with posttraumatic stress disorder. American Journal of Psychiatry, 152(1), 137–139.Google ScholarPubMed