Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T12:18:55.064Z Has data issue: false hasContentIssue false

Idea Formulation for Spoken Language Production: The Interface of Cognition and Language

Published online by Cambridge University Press:  15 November 2019

Megan S. Barker*
Affiliation:
School of Psychology, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia Taub Institute and Gertrude H. Sergievsky Center, Department of Neurology, Columbia University Medical Center, New York, NY 10032, USA
Nicole L. Nelson
Affiliation:
School of Psychology, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
Gail A. Robinson
Affiliation:
School of Psychology, Faculty of Health and Behavioural Sciences, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia Queensland Brain Institute, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
*
*Correspondence and reprint requests to: Megan S. Barker, PhD or Gail A. Robinson, PhD, School of Psychology, The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia. E-mail: [email protected] or [email protected]

Abstract

Background:

Language and communication are fundamental to the human experience, and, traditionally, spoken language is studied as an isolated skill. However, before propositional language (i.e., spontaneous, voluntary, novel speech) can be produced, propositional content or ‘ideas’ must be formulated.

Objective:

This review highlights the role of broader cognitive processes, particularly ‘executive attention’, in the formulation of propositional content (i.e., ‘ideas’) for propositional language production.

Conclusions:

Several key lines of evidence converge to suggest that the formulation of ideas for propositional language production draws on executive attentional processes. Larger-scale clinical research has demonstrated a link between attentional processes and language, while detailed case studies of neurological patients have elucidated specific idea formulation mechanisms relating to the generation, selection and sequencing of ideas for expression. Furthermore, executive attentional processes have been implicated in the generation of ideas for propositional language production. Finally, neuroimaging studies suggest that a widely distributed network of brain regions, including parts of the prefrontal and parietal cortices, supports propositional language production.

Implications:

Theoretically driven experimental research studies investigating mechanisms involved in the formulation of ideas are lacking. We suggest that novel experimental approaches are needed to define the contribution of executive attentional processes to idea formulation, from which comprehensive models of spoken language production can be developed. Clinically, propositional language impairments should be considered in the context of broader executive attentional deficits.

Type
Critical Review
Copyright
Copyright © INS. Published by Cambridge University Press, 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alajouanine, T., Sabouraud, O., & de Ribaucourt, B. (1952). Le jargon des aphasiques: de´ sinte´gration anosognosique des valeurs se´mantiques du language. I. Analyse des aspects principaux. II. Observations commente´es [The jargon of aphasics; anosognosic disintegration of the semantic values of language. I. Analysis of principal aspects. II. Discussed observations]. J de Psychologie Normale et Pathologique. 45(I), 158180. 45(II), 293–329.Google Scholar
Alexander, M.P. (2006). Impairments of procedures for implementing complex language are due to disruption of frontal attention processes. Journal of the International Neuropsychological Society, 12, 236247. doi: 10.1017/S1355617706060309 CrossRefGoogle ScholarPubMed
Alexander, M.P., Benson, F.D., & Stuss, D.T. (1989). Frontal lobes and language. Brain and Language, 37, 656691. doi: 10.1016/0093-934X(89)90118-1 CrossRefGoogle Scholar
Andres, P. & Van der Linden, M. (2000). Age-related differences in supervisory attentional system functions. Journal of Gerontology: Psychological Sciences, 55B, 373380. doi: 10.1093/geronb/55.6.P373.CrossRefGoogle Scholar
Arbuckle, T.Y., Nohara-LeClair, M., & Pushkar, D. (2000). Effect of off-target verbosity on communication efficiency in a referential communication task. Psychology and Aging, 15(1), 65.CrossRefGoogle Scholar
Aron, A.R., Robbins, T.W., & Poldrack, R.A. (2014). Inhibition and the right inferior frontal cortex: One decade on. Trends in Cognitive Science, 18, 177184. doi: 10.1016/j.tics.2013.12.003.CrossRefGoogle Scholar
Awad, M., Warren, J.E., Scott, S.K., Turkheimer, F.E., & Wise, R.J. (2007). A common system for the comprehension and production of narrative speech. Journal of Neuroscience, 27, 1145511464. doi: 10.1523/JNEUROSCI.5257-06.2007 CrossRefGoogle ScholarPubMed
Barker, M.S., Nelson, N.L., O’Sullivan, J.D., Adam, R., & Robinson, G.A. (2018). Energization and spoken language generation: Evidence from progressive supranuclear palsy. Neuropsychologia, 119, 349362. doi: 10.1016/j.neuropsychologia.2018.09.004 CrossRefGoogle Scholar
Barker, M.S. & Robinson, G.A. (2019). Selection for sentence generation in the context of severe anomia: A case series of left temporal patients. Journal of Clinical and Experimental Neuropsychology, 41, 353363. doi: 10.1080/13803395.2018.1562050 CrossRefGoogle ScholarPubMed
Barker, M.S., Young, B., & Robinson, G.A. (2017). Cohesive and coherent connected speech deficits in mild stroke. Brain and Language, 168, 2336. doi: 10.1016/j.bandl.2017.01.004 CrossRefGoogle ScholarPubMed
Bartels-Tobin, L.R. & Hinckley, J.J. (2005). Cognition and discourse production in right hemisphere disorder. Journal of Neurolinguistics, 18, 461477. doi: 10.1016/j.jneuroling.2005.04.001 CrossRefGoogle Scholar
Blank, S.C., Scott, S.K., Murphy, K., Warburton, E., & Wise, R.J. (2002). Speech production: Wernicke, Broca and beyond. Brain, 125, 18291838. doi: 10.1093/brain/awf191 CrossRefGoogle ScholarPubMed
Bloom, R.L., Borod, J., Obler, L., & Gerstman, L. (1993). Suppression and facilitation of pragmatic performance: Effects of emotional content on discourse following right and left brain damage. Journal of Speech and Hearing Research, 36, 12271235. doi: 10.1044/jshr.3606.1227 CrossRefGoogle ScholarPubMed
Bormann, T., Wallesch, C.W., & Blanken, G. (2008). Verbal planning in a case of Dynamic Aphasia: An impairment at the level of macroplanning. Neurocase, 14, 431450. doi: 10.1080/13554790802459478 CrossRefGoogle Scholar
Borovsky, A., Saygin, A.P., Bates, E., & Dronkers, N. (2007). Lesion correlates of conversational speech production deficits. Neuropsychologia, 45, 25252533. doi: 10.1016/j.neuropsychologia.2007.03.023 CrossRefGoogle ScholarPubMed
Bosco, F.M., Parola, A., Sacco, K., Zettin, M., & Angeleri, R. (2017). Communicative-pragmatic disorders in traumatic brain injury: The role of theory of mind and executive functions. Brain and Language, 168, 7383. doi: 10.1016/j.bandl.2017.01.007 CrossRefGoogle ScholarPubMed
Brady, M., Armstrong, L., & Mackenzie, C. (2006). An examination over time of language and discourse production abilities following right hemisphere brain damage. Journal of Neurolinguistics, 19, 291310. doi: 10.1016/j.jneuroling.2005.12.001 CrossRefGoogle Scholar
Braun, A.R., Guillemin, A., Hosey, L., & Varga, M. (2001). The neural organization of discourse: An H2 15O-PET study of narrative production in English and American Sign Language. Brain, 124, 20282044. doi: 10.1093/brain/124.10.2028 CrossRefGoogle ScholarPubMed
Braver, T.S. (2012). The variable nature of cognitive control: A dual mechanisms framework. Trends in Cognitive Sciences, 16(2), 106113.CrossRefGoogle ScholarPubMed
Broadbent, D.E. (1957). A mechanical model for human attention and immediate memory. Psychological Review, 64, 205. doi: 10.1037/h0047313 CrossRefGoogle ScholarPubMed
Broca, P. (1861a). Perte de la parole: Ramollissement chronique et destruction partielle du lobe anterieur gauche du cerveau. Bulletins de la Societe d’anthropologie, 1re serie, 2, 235238.Google Scholar
Broca, P. (1861b). Remarques sur le sie‘ge de la faculté du langage articulé, suivies d’une observation d’aphé mie (perte de la parole). Bulletins de la Societe d’anatomie (Paris), 2e serie, 6, 330357.Google Scholar
Brownsett, S.L. & Wise, R.J. (2010). The contribution of the parietal lobes to speaking and writing. Cerebral Cortex, 20, 517523. doi: 10.1093/cercor/bhp120 CrossRefGoogle ScholarPubMed
Buckner, R.L., Andrews-Hanna, J.R., & Schacter, D.L. (2008). The brain’s default network. Annals of the New York Academy of Sciences, 1124, 138. doi: 10.1196/annals.1440.011 CrossRefGoogle ScholarPubMed
Butterworth, B. (1980). Some constraints on models of language production. In Butterworth, B. (Ed.), Language production, Vol. 1: Speech and talk (pp. 423459). London: Academic Press.Google Scholar
Cannizzaro, M.S. & Coelho, C.A. (2013). Analysis of narrative discourse structure as an ecologically relevant measure of executive function in adults. Journal of Psycholinguistic Research, 42(6), 527549.CrossRefGoogle ScholarPubMed
Coelho, C.A. (2002). Story narratives of adults with closed head injury and non-brain injured adults: Influence of socioeconomic status, elicitation task, and executive functioning. Journal of Speech, Language, and Hearing Research, 45, 12321248.CrossRefGoogle ScholarPubMed
Coelho, C.A., Grela, B., Corso, M., Gamble, A., & Feinn, R. (2005). Microlinguistic deficits in the narrative discourse of adults with traumatic brain injury. Brain Injury, 19, 11391145. doi:10.1080/02699050500110678 CrossRefGoogle ScholarPubMed
Corbetta, M. & Shulman, G.L. (2002). Control of goal-directed and stimulus-driven attention in the brain. Nature Reviews Neuroscience, 3, 201215. doi: 10.1038/nrn755 CrossRefGoogle Scholar
Costello, A.L. & Warrington, E.K. (1989). Dynamic aphasia: The selective impairment of verbal planning. Cortex, 25, 103114. doi: 10.1016/S0010-9452(89)80010-3 CrossRefGoogle ScholarPubMed
Crescentini, C., Lunardelli, A., Mussoni, A., Zanini, A., & Shallice, T. (2008). A left basal ganglia case of dynamic aphasia or impairment of extra-language cognitive processes? Neurocase, 14, 184203. doi: 10.1080/13554790802108380 CrossRefGoogle ScholarPubMed
Davis, G.A. & Coelho, C. (2004). Referential cohesion and logical coherence of narration after closed head injury. Brain and Language, 89, 508523.CrossRefGoogle ScholarPubMed
Dell, G.S. (1986). A spreading activation theory of retrieval in sentence production. Psychological Review, 93, 283321. doi: 10.1037/0033-295X.93.3.CrossRefGoogle ScholarPubMed
Dell, G.S., Chang, F., & Griffin, Z.M. (1999). Connectionist models of language production: Lexical access and grammatical encoding. Cognitive Science, 23, 517542. doi: 10.1016/S0364-0213(99)00014-2 CrossRefGoogle Scholar
Duncan, J. (2006). EPS Mid-Career Award 2004: Brain mechanisms of attention. The Quarterly Journal of Experimental Psychology, 59, 227. doi: 10.1080/17470210500260674 CrossRefGoogle Scholar
Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4), 172179.CrossRefGoogle ScholarPubMed
Duncan, J., Johnson, R., Swales, M., & Freer, C. (1997). Frontal lobe deficits after head injury: Unity and diversity of function. Cognitive Neuropsychology, 14, 713741.Google Scholar
Engelman, M., Agree, E.M., Meoni, L.A., & Klag, M. J. (2010). Propositional density and cognitive function in later life: Findings from the Precursors Study. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 65, 706711.CrossRefGoogle ScholarPubMed
Erickson, R.J., Goldinger, S.D., & LaPointe, L.L. (1996). Auditory vigilance in aphasic individuals: Detecting nonlinguistic stimuli with full or divided attention. Brain and Cognition, 30, 244253. doi: 10.1006/brcg.1996.0016 CrossRefGoogle ScholarPubMed
Esmonde, T., Giles, E., Xuereb, J., & Hodges, J. (1996). Progressive supranuclear palsy presenting with dynamic aphasia. Journal of Neurology, Neurosurgery & Psychiatry, 60, 403410.CrossRefGoogle ScholarPubMed
Farias, S.T., Chand, V., Bonnici, L., Baynes, K., Harvey, D., Mungas, D., Simon, C., & Reed, B. (2012). Idea density measured in late life predicts subsequent cognitive trajectories: Implications for the measurement of cognitive reserve. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 67, 677686.CrossRefGoogle ScholarPubMed
Frederiksen, C.H., Bracewell, R.J., Breuleux, A., & Renaud, A. (1990). The cognitive representation and processing of discourse: function and dysfunction. In Joanette, Y. & Brownell, H. (Eds.), Discourse ability and brain damage: theoretical and empirical perspectives (pp. 69110). New York: Springer Verlag.CrossRefGoogle Scholar
Friedman, N.P. & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186204.CrossRefGoogle ScholarPubMed
Garrett, M.F. (1980). Levels of processing in sentence production. In Butterworth, B. (Ed.), Language production: Speech and talk (pp. 177220). London: Academic Press.Google Scholar
Garrett, M.F. (2000). Remarks on the architecture of language processing systems. In Grodzinsky, Y., Shapiro, L., & Swinney, D. (Eds.) Language and brain (pp. 3160). San Diego, CA: Academic Press.CrossRefGoogle Scholar
Glosser, G. & Deser, T. (1991). Patterns of discourse production among neurological patients with fluent language disorders. Brain and Language, 40, 6788. doi: 10.1016/0093-934X(91)90117-J CrossRefGoogle ScholarPubMed
Gold, D., Andres, D., Arbuckle, T., & Schwartzman, A. (1988). Measurement and correlates of verbosity in elderly people. Journal of Gerontology, 43, 2733.CrossRefGoogle ScholarPubMed
Gold, M., Nadeau, S.E., Jacobs, D.H., Adair, J.C., Rothi, L.J.G., & Heilman, K.M. (1997). Adynamic aphasia: A transcortical motor aphasia with defective semantic strategy formation. Brain and Language, 57, 374393. doi: 10.1006/brln.1997.1750 CrossRefGoogle ScholarPubMed
Golden, C. (2002) Stroop Color and Word Test. Austin, TX: Pro-Ed.Google Scholar
Goldstein, K. (1948). Language and Language Disturbances. New York: Grune & Stratton.Google Scholar
Gorno-Tempini, M.L., Ogar, J.M., Brambati, S.M., Wang, P., Jeong, J.H., Rankin, K.P., Dronkers, N. F., & Miller, B.L. (2006). Anatomical correlates of early mutism in progressive nonfluent aphasia. Neurology, 67, 18491851. doi: 10.1212/01.wnl.0000237038.55627.5b CrossRefGoogle ScholarPubMed
Gracco, V.L., Tremblay, P., & Pike, B. (2005). Imaging speech production using fMRI. Neuroimage, 26, 294301. doi: 10.1016/j.neuroimage.2005.01.033 CrossRefGoogle ScholarPubMed
Grande, M., Meffert, E., Schoenberger, E., Jung, S., Frauenrath, T., Huber, W., Hussmann, K., Moormann, M., & Heim, S. (2012). From a concept to a word in a syntactically complete sentence: An fMRI study on a spontaneous language production in an overt picture description task. Neuroimage, 61, 702714. doi: 10.1016/j.neuroimage.2012.03.087 CrossRefGoogle Scholar
Hasher, L. & Zacks, R.T. (1988). Working memory, comprehension, and aging: A review and a new view. In Bower, G.H. (Ed.), The psychology of learning and motivation, Vol. 22, (pp. 193226). New York: Academic Press.Google Scholar
Head, H. (1926). Aphasia and Kindred Disorders of Speech, Vols. 1 & 2. London and New York: Cambridge University Press.Google Scholar
Hula, W.D. & McNeil, M.R. (2008). Models of attention and dual-task performance as explanatory constructs in aphasia. Seminars in Speech and Language, 29, 169187. DOI:10.1055/s-0028-1082882 CrossRefGoogle ScholarPubMed
Jackson, J.H. (1879). On affections of speech from disease of the brain. Brain, 2, 203222.CrossRefGoogle Scholar
Jakobson, R. (1980). The Framework of Language. Ann Arbor, MI: University of Michigan Press.Google Scholar
Jefferies, E., Baker, S.S., Doran, M., & Lambon Ralph, M.A. (2007). Refractory effects in stroke aphasia: A consequence of poor semantic control. Neuropsychologia, 45, 10651079. doi: 10.1016/j.neuropsychologia.2006.09.009 CrossRefGoogle ScholarPubMed
Jefferies, E. & Lambon Ralph, M.A. (2006). Semantic impairment in stroke aphasia versus semantic dementia: A case-series comparison. Brain, 129, 21322147. doi: 10.1093/brain/awl153 CrossRefGoogle ScholarPubMed
Jefferies, E., Patterson, K., & Lambon Ralph, M.A. (2008). Deficits of knowledge versus executive control in semantic cognition: Insights from cued naming. Neuropsychologia, 46, 649658. doi: 10.1016/j.neuropsychologia.2007.09.007 CrossRefGoogle ScholarPubMed
Kane, M.J., Bleckley, M.K., Conway, A.R., & Engle, R.W. (2001). A controlled-attention view of working-memory capacity. Journal of Experimental Psychology: General, 130(2), 169.CrossRefGoogle ScholarPubMed
Kane, M.J. & Engle, R.W. (2002). The role of prefrontal cortex in working-memory capacity, executive attention, and general fluid intelligence: An individual-differences perspective. Psychonomic Bulletin & Review, 9, 637671. doi: 10.3758/BF03196323 CrossRefGoogle Scholar
Kane, M.J. & Engle, R.W. (2003). Working-memory capacity and the control of attention: The contributions of goal neglect, response competition, and task set to Stroop interference. Journal of Experimental Psychology: General, 132(1), 47.CrossRefGoogle ScholarPubMed
Kemper, S., Kynette, D., Rash, S., O’Brien, K., & Sprott, R. (1989). Life-span changes to adults’ language: Effects of memory and genre. Applied Psycholinguistics, 10(1), 4966. doi: 10.1017/S0142716400008419 CrossRefGoogle Scholar
Kemper, S., Herman, R.E., & Lian, C.H. (2003). The costs of doing two things at once for young and older adults: Talking while walking, finger tapping, and ignoring speech of noise. Psychology and Aging, 18, 181.CrossRefGoogle Scholar
Kemper, S., Herman, R.E., & Nartowicz, J. (2005). Different effects of dual task demands on the speech of young and older adults. Aging, Neuropsychology, and Cognition, 12(4), 340358.CrossRefGoogle ScholarPubMed
Kemper, S., Hoffman, L., Schmalzried, R., Herman, R., & Kieweg, D. (2011). Tracking talking: Dual task costs of planning and producing speech for young versus older adults. Aging, Neuropsychology, and Cognition, 18(3), 257279.CrossRefGoogle ScholarPubMed
Kemper, S., Schmalzried, R., Herman, R., Leedahl, S., & Mohankumar, D. (2009). The effects of aging and dual task demands on language production. Aging, Neuropsychology, and Cognition, 16(3), 241259.CrossRefGoogle ScholarPubMed
Kemper, S. & Sumner, A. (2001). The structure of verbal abilities in young and older adults. Psychology and Aging, 16(2), 312.CrossRefGoogle ScholarPubMed
Kemper, S., Thompson, M., & Marquis, J. (2001). Longitudinal change in language production: Effects of aging and dementia on grammatical complexity and propositional content. Psychology and Aging, 16(4), 600.CrossRefGoogle ScholarPubMed
Kintsch, W. (1994). Text comprehension, memory, and learning. American Psychologist, 49, 294303. doi: 10.1037/0003-066X.49.4.294 CrossRefGoogle ScholarPubMed
Kintsch, W. & Keenan, J. (1973). Reading rate and retention as a function of the number of propositions in the base structure of sentences. Cognitive Psychology, 5(3), 257274.CrossRefGoogle Scholar
Kintsch, W. & Van Dijk, T. (1978). Toward a model of text comprehension and production. Psychological Review, 85, 363394. doi: 10.1037/0033-295X.85.5.363 CrossRefGoogle Scholar
Laures, J.S. (2005). Reaction time and accuracy in individuals with aphasia during auditory vigilance tasks. Brain and Language, 95, 353357. doi: 10.1016/j.bandl.2005.01.011 CrossRefGoogle ScholarPubMed
Levelt, W.J.M. (1989). Speaking: from Intention to Articulation. Cambridge, MA: MIT Press.Google Scholar
Levelt, W.J.M. (1993). Lexical Access in Speech Production. Cambridge: Blackwell.CrossRefGoogle Scholar
Levelt, W.J.M. (1999). A blueprint of the speaker. In Brown, C. & Hagoort, P. (Eds.), The neurocognition of language (pp. 83122). Oxford: Oxford Press.Google Scholar
Levelt, W.J.M. (2001). Spoken word production: A theory of lexical access. Proceedings of the National Academy of Sciences of the United States of America, 98, 1346413471. doi: 10.1073/pnas.231459498 CrossRefGoogle ScholarPubMed
Levelt, W.J.M., Roelofs, A., & Meyer, A.S. (1999). A theory of lexical access in speech production. Behavioral and Brain Sciences, 22, 138. doi: 10.1017/S0140525X99001776 CrossRefGoogle ScholarPubMed
Logie, R.H. (2016). Retiring the central executive. The Quarterly Journal of Experimental Psychology, 69(10), 20932109. doi: 10.1080/17470218.2015.1136657 CrossRefGoogle ScholarPubMed
Luria, A.R. (1970). Traumatic Aphasia. The Hague: Mouton.CrossRefGoogle Scholar
Madden, D.L., Sale, M.V., & Robinson, G.A. (2018). Age-related differences in idea generation and selection for propositional language. Aging, Neuropsychology and Cognition. doi: 10.1080/13825585.2018.1476668 CrossRefGoogle Scholar
Madden, D.M., Sale, M.V., & Robinson, G.A. (2019). Improved conceptual generation and selection with transcranial direct current stimulation in older adults. Journal of Clinical and Experimental Neuropsychology, 41(1), 4357.CrossRefGoogle ScholarPubMed
Marie, P. (1906). La troisième circonvolution frontale gauche ne joue aucun rôle spécial dans la fonction du langage. Semaine médicale, 26, 241247.Google Scholar
Marini, A. (2012). Characteristics of narrative discourse processing after damage to the right hemisphere. Seminars in Speech and Language, 33, 6878. doi: 10.1055/s-0031-1301164 Google ScholarPubMed
Marini, A., Andreetta, S., Del Tin, S., & Carlomagno, S. (2011). A multi-level approach to the analysis of narrative language in aphasia. Aphasiology, 25, 13721392. doi: 10.1080/02687038.2011.584690 CrossRefGoogle Scholar
Marini, A., Carlomagno, S., Caltagirone, C., & Nocentini, U. (2005). The role played by the right hemisphere in the organization of complex textual structures. Brain and Language, 93, 4654. doi: 10.1016/j.bandl.2004.08.002 CrossRefGoogle ScholarPubMed
Marini, A., Galetto, V., Zampieri, E., Vorano, L., Zettin, M., & Carlomagno, S. (2011). Narrative language in traumatic brain injury. Neuropsychologia, 49, 29042910.CrossRefGoogle ScholarPubMed
Marshall, J. (2006). Jargon aphasia: What have we learned? Aphasiology, 20, 387410.CrossRefGoogle Scholar
Mesulam, M.M. (1985). Patterns in behavioural neurology. In Mesulam, M.M. (Ed.), Principles of behavioural neurology (pp. 170). Philadelphia, PA: F. A Davis.Google Scholar
Miyake, A. & Friedman, N.P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21(1), 814.CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., & Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49100.CrossRefGoogle ScholarPubMed
Moses, M.S., Nickels, L.A., & Sheard, C. (2004). Disentangling the web: Neologistic perseverative errors in jargon aphasia. Neurocase, 10, 452461.CrossRefGoogle ScholarPubMed
Murray, L.L. (2012). Attention and other cognitive deficits in aphasia: Presence and relation to language and communication measures. American Journal of Speech-Language Pathology, 21, S51S64. doi: 10.1044/1058-0360(2012/11-0067)CrossRefGoogle ScholarPubMed
Murray, L.L., Holland, A.L., & Beeson, P.M. (1997). Auditory processing in individuals with mild aphasia: A study of resource allocation. Journal of Speech, Language, and Hearing Research, 40, 792808. doi: 10.1044/jslhr.4004.792 CrossRefGoogle ScholarPubMed
Naeser, M.A., Martin, P.I., Baker, E.H., Hodge, S.M., Sczerzenie, S.E., Nicholas, M., Palumbo, C.L., Goodglass, H., Wingfield, A., Samaraweera, R., Harris, G., Baird, A., Renshaw, P., & Yurgelun-Todd, D. (2004). Overt propositional speech in chronic nonfluent aphasia studied with the dynamic susceptibility contrast fMRI method. Neuroimage, 22(1), 2941.CrossRefGoogle ScholarPubMed
Nozari, N., Arnold, J.E., & Thompson-Schill, S.L. (2014). The effects of anodal stimulation of the left prefrontal cortex on sentence production. Brain Stimulation, 7(6), 784792. doi: 10.1016/j.brs.2014.07.035 CrossRefGoogle ScholarPubMed
Pashler, H. (1984). Processing stages in overlapping tasks: Evidence for a central bottleneck. Journal of Experimental Psychology: Human Perception and Performance, 10, 358377. doi: 10.1037/0096-1523.10.3.358 Google ScholarPubMed
Peach, R.K., Newhoff, M., & Rubin, S.S. (1993). Attention in aphasia as revealed by event-related potentials: A preliminary investigation. Clinical Aphasiology, 21, 323333.Google Scholar
Posner, M.I. (1980). Orienting of attention. Quarterly Journal of Experimental Psychology, 32(1), 325. doi: 10.1080/00335558008248231 CrossRefGoogle ScholarPubMed
Posner, M.I. (1988). Structures and functions of selective attention. In Boll, T. & Bryant, B.K. (Eds.), Clinical neuropsychology and brain function: Research, management & practice (pp. 173202). Washington DC: American Psychological Association.CrossRefGoogle Scholar
Posner, M.I. & Petersen, S.E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542. doi: 10.1146/annurev.ne.13.030190.000325 CrossRefGoogle ScholarPubMed
Price, C.J. (2012). A review and synthesis of the first 20 years of PET and fMRI studies of heard speech, spoken language and reading. Neuroimage, 62, 816847. doi: 10.1016/j.neuroimage.2012.04.062 CrossRefGoogle ScholarPubMed
Pushkar, D., Basevitz, P., Arbuckle, T., Nohara-LeClair, M., Lapidus, S., & Peled, M. (2000). Social behavior and off-target verbosity in elderly people. Psychology and Aging, 15(2), 361.CrossRefGoogle ScholarPubMed
Reynolds, C.R. (2002). Comprehensive Trail Making Test. Austin, TX: Pro-Ed.Google Scholar
Robin, D.A. & Rizzo, M. (1989). The effect of focal cerebral lesions on intramodal and cross-modal orienting of attention. Clinical Aphasiology, 18, 6174.Google Scholar
Robinson, G.A. (2013). Primary progressive dynamic aphasia and Parkinsonism: Generation, selection and sequencing deficits. Neuropsychologia, 51, 25342547. doi: 10.1016/j.neuropsychologia.2013.09.038 CrossRefGoogle ScholarPubMed
Robinson, G.A., Blair, J., & Cipolotti, L. (1998). Dynamic aphasia: An inability to select between competing verbal responses. Brain, 121, 7789. doi: 10.1093/brain/121.1.77 CrossRefGoogle ScholarPubMed
Robinson, G.A., Butterworth, B., & Cipolotti, L. (2015). “My mind is doing it all”: No “brake” to stop speech generation in jargon aphasia. Cognitive and Behavioral Neurology, 28, 229241. doi: 10.1097/WNN.0000000000000080 CrossRefGoogle ScholarPubMed
Robinson, G.A., Shallice, T., Bozzali, M., & Cipolotti, L. (2010). Conceptual proposition selection and the LIFG: Neuropsychological evidence from a focal frontal group. Neuropsychologia, 48, 16521663. doi: 10.1016/j.neuropsychologia.2010.02.010 CrossRefGoogle ScholarPubMed
Robinson, G.A., Shallice, T., & Cipolotti, L. (2005). A failure of high level verbal response selection in progressive dynamic aphasia. Cognitive Neuropsychology, 22, 661694. doi: 10.1080/02643290442000239 CrossRefGoogle ScholarPubMed
Robinson, G.A., Shallice, T., & Cipolotti, L. (2006). Dynamic aphasia in progressive supranuclear palsy: A deficit in generating a fluent sequence of novel thought. Neuropsychologia, 44, 13441360. doi: 10.1016/j.neuropsychologia.2006.01.002 CrossRefGoogle ScholarPubMed
Robinson, G.A., Spooner, D., & Harrison, W. J. (2015). Frontal dynamic aphasia in progressive supranuclear palsy: Distinguishing between generation and fluent sequencing of novel thoughts. Neuropsychologia, 77, 6275. doi: 10.1016/j.neuropsychologia.2015.08.001 CrossRefGoogle ScholarPubMed
Rogalski, Y., Altmann, L.J., Plummer-D’Amato, P., Behrman, A.L., & Marsiske, M. (2010). Discourse coherence and cognition after stroke: A dual task study. Journal of Communication Disorders, 43(3), 212224.CrossRefGoogle ScholarPubMed
Saffran, E.M., Berndt, R.S., & Schwartz, M.F. (1989). The quantitative analysis of agrammatic production: Procedure and data. Brain and Language, 37, 440479. doi: 10.1016/0093-934X(89)90030-8 CrossRefGoogle ScholarPubMed
Schnur, T.T., Lee, E., Coslett, H.B., Schwartz, M.F., & Thompson-Schill, S. (2005). When lexical selection gets tough, the LIFG gets going: A lesion analysis study of interference during word production. Brain and Language, 95, 1213. doi: 10.1016/j.bandl.2005.07.008 CrossRefGoogle Scholar
Schnur, T.T., Schwartz, M.F., Brecher, A., & Hodgson, C. (2006). Semantic interference during blocked-cyclic naming: Evidence from aphasia. Journal of Memory and Language, 54(2), 199227. doi: 10.1016/j.jml.2005.10.002 CrossRefGoogle Scholar
Schnur, T.T., Schwartz, M.F., Kimberg, D.Y., Hirshorn, E.A., Coslett, H.B., & Thompson-Schill, S. (2009). Localizing interference during naming: Convergent neuroimaging and neuropsychological evidence for the function of Broca’s area. Proceedings of the National Academy of Science USA, 106(1), 322327. doi: 10.1073/pnas.0805874106 CrossRefGoogle ScholarPubMed
Shallice, T. & Burgess, P. (1996). The domain of supervisory processes and temporal organization of behaviour. Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences, 351(1346), 14051412.Google ScholarPubMed
Sherratt, S. (2007). Multi-level discourse analysis: A feasible approach. Aphasiology, 21, 375393. doi: 10.1080/02687030600911435 CrossRefGoogle Scholar
Sherratt, S. & Bryan, K. (2012). Discourse production after right brain damage: Gaining a comprehensive picture using a multi-level processing model. Journal of Neurolinguistics, 25, 127. doi: 10.1016/j.jneuroling.2012.01.001 CrossRefGoogle Scholar
Snowden, J.S., Griffiths, H.L., & Neary, D. (1996). Progressive language disorder associated with frontal lobe degeneration. Neurocase, 2, 429440. doi: 10.1080/13554799608402417 CrossRefGoogle Scholar
Snowdon, D.A., Kemper, S.J., Mortimer, J.A., Greiner, L.H., Wekstein, D.R., & Markesbery, W.R. (1996). Linguistic ability in early life and cognitive function and Alzheimer’s disease in late life: Findings from the Nun Study. Jama, 275(7), 528532.CrossRefGoogle ScholarPubMed
Soares, F.C., de Oliveira, T.C., de Macedo, L.D., Tomás, A.M., Picanço-Diniz, D.L., Bento-Torres, J., Bento-Torres, N.V., & Picanço-Diniz, C.W. (2015). CANTAB object recognition and language tests to detect aging cognitive decline: An exploratory comparative study. Journal of Clinical Interventions in Aging, 10, 3748. DOI:10.2147/CIA.S68186 Google ScholarPubMed
Sohlberg, M.M. & Mateer, C.A. (1989). Introduction to Cognitive Rehabilitation: Theory and Practice. New York: Guilford.Google Scholar
Sohlberg, M.M. & Mateer, C.A. (2001). Cognitive Rehabilitation: An Integrative Neuropsychological Approach. New York: Guilford.Google Scholar
Stuss, D.T. (2011). Functions of the frontal lobes: relation to executive functions. Journal of the International Neuropsychological Society, 17, 759765. doi: 10.1017/S1355617711000695 CrossRefGoogle ScholarPubMed
Stuss, D.T. & Alexander, M.P. (2007). Is there a dysexecutive syndrome?. Philosophical Transactions of the Royal Society of London B: Biological Sciences, 362, 901915. doi: 10.1098/rstb.2007.2096 CrossRefGoogle Scholar
Stuss, D.T., Alexander, M.P., Shallice, T., Picton, T.W., Binns, M.A., Macdonald, R., Borowiec, A., & Katz, D.I. (2005). Multiple frontal systems controlling response speed. Neuropsychologia, 43, 396417. doi: 10.1016/j.neuropsychologia.2004.06.010 CrossRefGoogle ScholarPubMed
Stuss, D.T., Shallice, T., Alexander, M.P., & Picton, T.W. (1995). A multidisciplinary approach to anterior attentional functions. Annals of the New York Academy of Sciences, 769, 191212. doi: 10.1111/j.1749-6632.1995.tb38140.x CrossRefGoogle ScholarPubMed
Thompson-Schill, S.L., Swick, D., Farah, M.J., D’Esposito, M., Kan, I.P., & Knight, R.T. (1998). Verb generation in patients with focal frontal lesions: A neuropsychological test of neuroimaging findings. Proceedings of the National Academy of Science USA, 95, 1585515860. doi: 10.1073/pnas.95.26.15855 CrossRefGoogle ScholarPubMed
Tremblay, P. & Small, S.L. (2011). Motor response selection in overt sentence production: A functional MRI study. Frontiers in Psychology, 2, 253. doi: 10.3389/fpsyg.2011.00253 CrossRefGoogle ScholarPubMed
Troche, M.S. & Altmann, L.J. (2012). Sentence production in Parkinson disease: Effects of conceptual and task complexity. Applied Psycholinguistics, 33(2), 225251.CrossRefGoogle Scholar
Troiani, V., Fernandez-Seara, M.A., Wang, Z., Detre, J.A., Ash, S., & Grossmann, M. (2008). Narrative speech production: An fMRI study using continuous arterial spin labeling. Neuroimage, 40, 932939. doi: 10.1016/j.neuroimage.2007.12.002 CrossRefGoogle ScholarPubMed
Ulatowska, H.K., North, A.J., & Macalusco-Haynes, A. (1981). Production of narrative and procedural discourse in aphasia. Brain and Language, 13, 345371. doi: 10.1016/0093-934X(81)90100-0 CrossRefGoogle ScholarPubMed
Villard, S. & Kiran, S. (2017). To what extent does attention underlie language in aphasia?. Aphasiology, 31, 12261245. doi: 10.1080/02687038.2016.1242711 CrossRefGoogle Scholar
Wise, R.J. & Geranmayeh, F. (2016). Sentence and narrative speech production: investigations with PET and fMRI. In Hickok, G. & Small, S.L. (Eds.) Neurobiology of Language (pp. 751762). doi: 10.1016/B978-0-12-407794-2.00093-6 CrossRefGoogle Scholar
Wright, H.H., Capilouto, G.J., Srinivasan, C., & Fergadiotis, G. (2011). Story processing ability in cognitively healthy younger and older adults. Journal of Speech, Language, and Hearing Research, 54(3), 900917.CrossRefGoogle ScholarPubMed
Wright, H.H., Koutsoftas, A.D., Capilouto, G.J., & Fergadiotis, G. (2014). Global coherence in younger and older adults: Influence of cognitive processes and discourse type. Aging, Neuropsychology, and Cognition, 21(2), 174196.CrossRefGoogle ScholarPubMed