Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T08:54:34.940Z Has data issue: false hasContentIssue false

Hippocampal volume and declarative memory function in combat-related PTSD

Published online by Cambridge University Press:  01 November 2009

STEVEN H. WOODWARD*
Affiliation:
Dissemination and Training Division, National Center for PTSD, VA Palo Alto Health Care System, Palo Alto, California
DANNY G. KALOUPEK
Affiliation:
Behavioral Science Division, National Center for PTSD, VA New England Health Care System, Boston, Massachusetts Division of Psychiatry, Boston University School of Medicine, Boston, Massachusetts
LAURA J. GRANDE
Affiliation:
Psychology Service, VA New England Health Care System, Boston, Massachusetts
WENDY K. STEGMAN
Affiliation:
Earth Systems, Melbourne, Australia
CATHERINE J. KUTTER
Affiliation:
Psychology Service, White River Junction Veterans Affairs Medical Center, White River Junction, Vermont
LORAINE LESKIN
Affiliation:
Psychology Service, VA Greater Los Angeles Health Care System, Los Angeles, California
REBECCA PRESTEL
Affiliation:
Behavioral Science Division, National Center for PTSD, VA New England Health Care System, Boston, Massachusetts
MARIE SCHAER
Affiliation:
Department of Psychiatry, University of Geneva, Geneva, Switzerland Signal Processing Laboratory, Swiss Federal Institute of Technology, Lausanne, Switzerland
ALLAN L. REISS
Affiliation:
Department of Psychiatry and Behavioral Sciences, Stanford University Medical School, Stanford, California
STEPHAN ELIEZ
Affiliation:
Department of Psychiatry, University of Geneva, Geneva, Switzerland
*
*Correspondence and reprint requests to: Steven H. Woodward, Ph.D., Dissemination and Training Division, National Center for PTSD, Mail Code 334 PTSD, VA Palo Alto HCS, 3801 Miranda Avenue, Palo Alto, CA 94304. E-mail: [email protected]

Abstract

The proposition that declarative memory deficits are systematically related to smaller hippocampal volume was tested in a relatively large sample (n = 95) of U.S. military veterans with and without combat-related posttraumatic stress disorder. This correlative analysis was extended by including multiple measures of verbal and visual declarative memory and multiple memory-relevant regional brain volumes that had been shown to exhibit main effects of PTSD in prior work. Small-to-moderate effects were observed on verbal declarative memory in line with a recent meta-analysis; nevertheless, little or no evidence of systematic linear covariation between memory measures and brain volumes was observed. (JINS, 2009, 15, 830–839.)

Type
Symposia
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Andreasen, N., Flaum, M., Swayze, V.N., O’Leary, D., Alliger, R., Cohen, G., et al. . (1993). Intelligence and brain structure in normal individuals. American Journal of Psychiatry, 150, 130–134.Google Scholar
Beck, A.T., Ward, C.H., Mendelson, M., Mock, J., & Erbaugh, J. (1961). An inventory for measuring depression. Archives of General Psychiatry, 4, 561–571.CrossRefGoogle ScholarPubMed
Bilkey, D.K. (2007). Space and context in the temporal cortex. Hippocampus, 17(9), 813–825.CrossRefGoogle ScholarPubMed
Blake, D., Weathers, F., Nagy, L., Kaloupek, D., Klauminzer, G., Charney, D., et al. . (2000). Clinician-Administered PTSD Scale (CAPS) instructional manual: National Center for PTSD.Google Scholar
Blake, D.D., Weathers, F.W., Nagy, L.M., Kaloupek, D.G., Charney, D.S., & Keane, T.M. (1997). Clinician-Administered PTSD Scale for DSM-IV: Current and Lifetime Version: Boston: Behavioral Science Division, Boston VA Medical Center/Neurosciences Division, West Haven VA Medical Center.Google Scholar
Bonne, O., Vythilingam, M., Inagaki, M., Wood, S., Neumeister, A., Nugent, A.C., et al. . (2008). Reduced posterior hippocampal volume in posttraumatic stress disorder. Journal of Clinical Psychiatry, 69(7), 1087–1091.CrossRefGoogle ScholarPubMed
Bossini, L., Tavanti, M., Calossi, S., Lombardelli, A., Polizzotto, N.R., Galli, R., et al. . (2008). Magnetic resonance imaging volumes of the hippocampus in drug-naive patients with post-traumatic stress disorder without comorbidity conditions. Journal of Psychiatric Research, 42(9), 752–762.Google Scholar
Brandt, J. (1991). The Hopkins Verbal Learning Test: Development of a new memory test with six equivalent forms. Clinical Neuropsychology, 5, 125–142.CrossRefGoogle Scholar
Bremner, J.D., Randall, P., Scott, T.M., Bronen, R.A., Seibyl, J.P., Southwick, S.M., et al. . (1995). MRI-based measurement of hippocampal volume in patients with combat- related posttraumatic stress disorder. American Journal of Psychiatry, 152(7), 973–981.Google Scholar
Bremner, J.D., Randall, P., Vermetten, E., Staib, L., Bronen, R.A., Mazure, C., et al. . (1997). Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse–a preliminary report. Biological Psychiatry, 41(1), 23–32.Google Scholar
Bremner, J.D., Vythilingam, M., Vermetten, E., Southwick, S.M., McGlashan, T., Nazeer, A., et al. . (2003). MRI and PET study of deficits in hippocampal structure and function in women with childhood sexual abuse and posttraumatic stress disorder. American Journal of Psychiatry, 160(5), 924–932.Google Scholar
Brewin, C.R., Kleiner, J.S., Vasterling, J.J., & Field, A.P. (2007). Memory for emotionally neutral information in posttraumatic stress disorder: A meta-analytic investigation. Journal of Abnormal Psychology, 116(3), 448–463.Google Scholar
Coburn-Litvak, P.S., Tata, D.A., Gorby, H.E., McCloskey, D.P., Richardson, G., & Anderson, B.J. (2004). Chronic corticosterone affects brain weight, and mitochondrial, but not glial volume fraction in hippocampal area CA3. Neuroscience, 124(2), 429–438.CrossRefGoogle Scholar
Convit, A., de Leon, M.J., Tarshish, C., De Santi, S., Kluger, A., Rusinek, H., & George, A.E. (1995). Hippocampal volume losses in minimally impaired elderly. Lancet, 345(8944), 266.CrossRefGoogle ScholarPubMed
Dale, A.M., Fischl, B., & Sereno, M.I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179–194.Google Scholar
Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., et al. . (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968–980.Google Scholar
First, M.B., Spitzer, M.B., Gibbon, M., & Williams, J.B.W. (1995). Structured clinical interview for DSM-IV axis II personality disorders – patient (SCID-I/P), Version 2.0. New York: New York State Psychiatric Institute.Google Scholar
Fischl, B., & Dale, A.M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Science of the USA, 97(20), 11050–11055.CrossRefGoogle ScholarPubMed
Fischl, B., Sereno, M.I., & Dale, A.M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195–207.Google Scholar
Fischl, B., Sereno, M.I., Tootell, R.B., & Dale, A.M. (1999). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8(4), 272–284.Google Scholar
Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D.H., et al. . (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 11–22.Google Scholar
Fortin, M., Voss, P., Lord, C., Lassonde, M., Pruessner, J., Saint-Amour, D., et al. . (2008). Wayfinding in the blind: Larger hippocampal volume and supranormal spatial navigation. Brain, 131(Pt. 11), 2995–3005.Google Scholar
Gilbertson, M.W., Williston, S.K., Paulus, L.A., Lasko, N.B., Gurvits, T.V., Shenton, M.E., et al. . (2007). Configural cue performance in identical twins discordant for posttraumatic stress disorder: Theoretical implications for the role of hippocampal function. Biological Psychiatry, 62(5), 513–520.CrossRefGoogle ScholarPubMed
Golier, J.A., Harvey, P.D., Legge, J., & Yehuda, R. (2006). Memory performance in older trauma survivors: Implications for the longitudinal course of PTSD. Annals of the New York Academy of Science, 1071, 54–66.Google Scholar
Gould, E., & Tanapat, P. (1999). Stress and hippocampal neurogenesis. Biological Psychiatry, 46(11), 1472–1479.CrossRefGoogle ScholarPubMed
Gurvits, T.V., Shenton, M.E., Hokama, H., Ohta, H., Lasko, N.B., Gilbertson, M.W., et al. . (1996). Magnetic resonance imaging study of hippocampal volume in chronic, combat-related posttraumatic stress disorder. Biological Psychiatry, 40(11), 1091–1099.Google Scholar
Han, X., Jovicich, J., Salat, D., van der Kouwe, A., Quinn, B., Czanner, S., et al. . (2006). Reliability of MRI-derived measurements of human cerebral cortical thickness: The effects of field strength, scanner upgrade and manufacturer. Neuroimage, 32(1), 180–194.Google Scholar
Harris, G.J., Jaffin, S.K., Hodge, S.M., Kennedy, D., Caviness, V.S., Marinkovic, K., et al. . (2008). Frontal white matter and cingulum diffusion tensor imaging deficits in alcoholism. Alcohol Clinical Experimental Research, 32(6), 1001–1013.CrossRefGoogle ScholarPubMed
Karl, A., Schaefer, M., Malta, L.S., Dorfel, D., Rohleder, N., & Werner, A. (2006). A meta-analysis of structural brain abnormalities in PTSD. Neuroscience and Biobehavior Review, 30(7), 1004–031.CrossRefGoogle ScholarPubMed
Kates, W.R., Abrams, M.T., Kaufmann, W.E., Breiter, S.N., & Reiss, A.L. (1997). Reliability and validity of MRI measurement of the amygdala and hippocampus in children with fragile X syndrome. Psychiatry Research, 75(1), 31–48.CrossRefGoogle ScholarPubMed
Keane, T.M., Caddell, J.M., & Taylor, K.L. (1988). Mississippi Scale for Combat-Related Posttraumatic Stress Disorder: Three studies in reliability and validity. Journal of Consulting and Clinical Psychology, 56(1), 85–90.Google Scholar
Keane, T.M., Fairbank, J.A., Caddell, J.M., Zimering, R.T., Taylor, K.L., & Mora, C.A. (1989). Clinical evaluation of a measure to assess combat exposure. Psychological Assessment, 1(1), 53–55.CrossRefGoogle Scholar
Kirschbaum, C., Wolf, O.T., May, M., Wippich, W., & Hellhammer, D.H. (1996). Stress- and treatment-induced elevations of cortisol levels associated with impaired declarative memory in healthy adults. Life Sciences, 58(17), 1475–1483.Google Scholar
Laakso, M.P., Soininen, H., Partanen, K., Helkala, E.L., Hartikainen, P., Vainio, P., et al. . (1995). Volumes of hippocampus, amygdala and frontal lobes in the MRI-based diagnosis of early Alzheimer’s disease: Correlation with memory functions. Journal of Neural Transmission, Parkinson’s Disease and Dementia Section, 9(1), 73–86.Google Scholar
Lang, S., Kroll, A., Lipinski, S.J., Wessa, M., Ridder, S., Christmann, C., et al. . (2009). Context conditioning and extinction in humans: Differential contribution of the hippocampus, amygdala and prefrontal cortex. European Journal of Neuroscience, 29(4), 823–832.Google Scholar
Marquis, S., Moore, M.M., Howieson, D.B., Sexton, G., Payami, H., Kaye, J.A., & Camicioli, R. (2002). Independent predictors of cognitive decline in healthy elderly persons. Archives of Neurology, 59(4), 601–606.CrossRefGoogle ScholarPubMed
McEwen, B.S., & Magarinos, A.M. (1997). Stress effects on morphology and function of the hippocampus. Annals of the New York Academy of Science, 821, 271–284.CrossRefGoogle ScholarPubMed
McNally, R.J. (1998). Experimental approaches to cognitive abnormality in posttraumatic stress disorder. Clinical Psychology Review, 18(8), 971–982.CrossRefGoogle ScholarPubMed
Metzger, L.J., Orr, S.P., Lasko, N.B., McNally, R.J., & Pitman, R.K. (1997). Seeking the source of emotional Stroop interference effects in PTSD: A study of P3s to traumatic words. Integrative Physiological and Behavioral Science, 32(1), 43–51.Google Scholar
Nakano, T., Wenner, M., Inagaki, M., Kugaya, A., Akechi, T., Matsuoka, Y., et al. . (2002). Relationship between distressing cancer-related recollections and hippocampal volume in cancer survivors. American Journal of Psychiatry, 159(12), 2087–2093.Google Scholar
Osterrieth, P.A. (1944). Le test de copie d’ude figure complex: Contribution a l’edtude de la perception et de la memoire. Archives de Psycholgie, 30, 286–340.Google Scholar
Pavic, L., Gregurek, R., Rados, M., Brkljacic, B., Brajkovic, L., Simetin-Pavic, I., et al. . (2007). Smaller right hippocampus in war veterans with posttraumatic stress disorder. Psychiatry Research, 154(2), 191–198.Google Scholar
Pederson, C.L., Maurer, S.H., Kaminski, P.L., Zander, K.A., Peters, C.M., Stokes-Crowe, L.A., & Osborn, R.E. (2004). Hippocampal volume and memory performance in a community-based sample of women with posttraumatic stress disorder secondary to child abuse. Journal of Traumatic Stress, 17(1), 37–40.CrossRefGoogle Scholar
Psychological Corporation (1997). Wechsler Adult Intelligence Scale, Third Revision. San Antonio, TX: Harcourt Brace.Google Scholar
Reiss, A.L., Hennessey, J.G., Rubin, M., Beach, L., Abrams, M.T., Warsofsky, I.S., et al. . (1998). Reliability and validity of an algorithm for fuzzy tissue segmentation of MRI. Journal of Computer Assisted Tomography, 22(3), 471–479.Google Scholar
Rey, A. (1941). L’examen psychologique dans les cas d’enchphalopathie traumatique. Archives de Psycholgie, 28, 286–340.Google Scholar
Samuelson, K.W., Neylan, T.C., Metzler, T.J., Lenoci, M., Rothlind, J., Henn-Haase, C., et al. . (2006). Neuropsychological functioning in posttraumatic stress disorder and alcohol abuse. Neuropsychology, 20(6), 716–726.Google Scholar
Sapolsky, R.M. (2000). Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Archives of General Psychiatry, 57(10), 925–935.Google Scholar
Selzer, M.L. (1971). The Michigan alcoholism screening test: The quest for a new diagnostic instrument. American Journal of Psychiatry, 127(12), 1653–1658.CrossRefGoogle ScholarPubMed
Shin, L.M., Shin, P.S., Heckers, S., Krangel, T.S., Macklin, M.L., Orr, S.P., et al. . (2004). Hippocampal function in posttraumatic stress disorder. Hippocampus, 14(3), 292–300.Google Scholar
Simic, G., Kostovic, I., Winblad, B., & Bogdanovic, N. (1997). Volume and number of neurons of the human hippocampal formation in normal aging and Alzheimer’s disease. Journal of Comparative Neurology, 379(4), 482–494.3.0.CO;2-Z>CrossRefGoogle ScholarPubMed
Soininen, H.S., Partanen, K., Pitkanen, A., Vainio, P., Hanninen, T., Hallikainen, M., et al. . (1994). Volumetric MRI analysis of the amygdala and the hippocampus in subjects with age-associated memory impairment: Correlation to visual and verbal memory. Neurology, 44(9), 1660–1668.Google Scholar
Spreen, O., & Strauss, E. (1991). A compendium of neuropsychological tests: Administration, norms and commentary. New York: Oxford University Press.Google Scholar
Stein, M.B., Koverola, C., Hanna, C., Torchia, M.G., & McClarty, B. (1997). Hippocampal volume in women victimized by childhood sexual abuse. Psychological Medicine, 27(4), 951–959.CrossRefGoogle ScholarPubMed
Talairach, J., & Tournoux, P. (1988). Co-planar stereotaxic atlas of the human brain. New York: Thieme Medical.Google Scholar
Tata, D.A., Marciano, V.A., & Anderson, B.J. (2006). Synapse loss from chronically elevated glucocorticoids: Relationship to neuropil volume and cell number in hippocampal area CA3. Journal of Comparative Neurology, 498(3), 363–374.Google Scholar
Tischler, L., Brand, S.R., Stavitsky, K., Labinsky, E., Newmark, R., Grossman, R., et al. . (2006). The relationship between hippocampal volume and declarative memory in a population of combat veterans with and without PTSD. Annals of the New York Academy of Science, 1071, 405–409.Google Scholar
Vasterling, J.J., Proctor, S.P., Amoroso, P., Kane, R., Heeren, T., & White, R.F. (2006). Neuropsychological outcomes of army personnel following deployment to the Iraq war. JAMA, 296(5), 519–529.Google Scholar
Vythilingam, M., Blair, K.S., McCaffrey, D., Scaramozza, M., Jones, M., Nakic, M., et al. . (2007). Biased emotional attention in post-traumatic stress disorder: A help as well as a hindrance? Psychological Medicine, 37(10), 1445–1455.Google Scholar
Vythilingam, M., Luckenbaugh, D.A., Lam, T., Morgan, C.A. 3rd, Lipschitz, D., Charney, D.S., et al. . (2005). Smaller head of the hippocampus in Gulf War-related posttraumatic stress disorder. Psychiatry Research, 139(2), 89–99.Google Scholar
Wais, P.E. (2008). fMRI signals associated with memory strength in the medial temporal lobes: A meta-analysis. Neuropsychologia.Google Scholar
Wechsler, D. (1997). Wechsler Memory Scale-Third Edition: Administration and scoring manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Woodward, S.H., Kaloupek, D.G., Streeter, C.C., Kimble, M.O., Reiss, A.L., Eliez, S., et al. . (2007). Brain, skull, and CSF volumes in adult posttraumatic stress disorder. Journal of Traumatic Stress, 20, 763–774.CrossRefGoogle ScholarPubMed
Woodward, S.H., Kaloupek, D.G., Streeter, C.C., Kimble, M.O., Reiss, A.L., Eliez, S., et al. . (2006a). Hippocampal volume, PTSD, and alcoholism in combat veterans. American Journal of Psychiatry, 163(4), 674–681.Google Scholar
Woodward, S.H., Kaloupek, D.G., Streeter, C.C., Martinez, C., Schaer, M., & Eliez, S. (2006b). Decreased anterior cingulate volume in combat-related PTSD. Biological Psychiatry, 59(7), 582–587.CrossRefGoogle ScholarPubMed
Woodward, S.H., Schaer, M., Kaloupek, D.G., Cediel, L., & Eliez, S. (in press). Cerebral cortical volume is globally and regionally smaller in combat-related posttraumatic stress disorder. Archives of General Psychiatry.Google Scholar
Yehuda, R., Golier, J.A., Tischler, L., Harvey, P.D., Newmark, R., Yang, R.K., & Buchsbaum, M.S. (2007). Hippocampal volume in aging combat veterans with and without post-traumatic stress disorder: Relation to risk and resilience factors. Journal of Psychiatric Research, 41(5), 435–445.CrossRefGoogle ScholarPubMed
Yehuda, R., Golier, J.A., Tischler, L., Stavitsky, K., & Harvey, P.D. (2005). Learning and memory in aging combat veterans with PTSD. Journal of Clinical Experimental Neuropsychology, 27(4), 504–515.Google Scholar
Zimmerman, M.E., Pan, J.W., Hetherington, H.P., Katz, M.J., Verghese, J., Buschke, H., Derby, C.A., & Lipton, R.B. (2008). Hippocampal neurochemistry, neuromorphometry, and verbal memory in nondemented older adults. Neurology, 70(18), 1594–1600.Google Scholar