Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-25T19:32:27.810Z Has data issue: false hasContentIssue false

Graph Metrics of Structural Brain Networks in Individuals with Schizophrenia and Healthy Controls: Group Differences, Relationships with Intelligence, and Genetics

Published online by Cambridge University Press:  18 February 2016

Ronald A. Yeo*
Affiliation:
Department of Psychology, University of New Mexico, Albuquerque, New Mexico
Sephira G. Ryman
Affiliation:
Department of Psychology, University of New Mexico, Albuquerque, New Mexico The Mind Research Network, Albuquerque, New Mexico
Martijn P. van den Heuvel
Affiliation:
Department of Psychiatry, Brain Center Rudolph Magnus, University Medical Center Utrecht, Netherlands
Marcel A. de Reus
Affiliation:
Department of Psychiatry, Brain Center Rudolph Magnus, University Medical Center Utrecht, Netherlands
Rex E. Jung
Affiliation:
Department of Psychology, University of New Mexico, Albuquerque, New Mexico Department of Neurosurgery, University of New Mexico, Albuquerque, New Mexico
Jessica Pommy
Affiliation:
Department of Psychology, University of New Mexico, Albuquerque, New Mexico
Andrew R. Mayer
Affiliation:
Department of Psychology, University of New Mexico, Albuquerque, New Mexico The Mind Research Network, Albuquerque, New Mexico
Stefan Ehrlich
Affiliation:
MGH/MIT/HMS Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, Massachusetts Department of Child and Adolescent Psychiatry, University Hospital Carl Gustav Carus, Dresden University of Technology, Dresden, Germany Department of Psychiatry, Massachusetts General Hospital, Boston, Massachusetts
S. Charles Schulz
Affiliation:
Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota
Eric M. Morrow
Affiliation:
Department of Molecular Biology, Cell Biology and Biochemistry, Laboratory for Molecular Medicine, Brown University, Providence, Rhode Island
Dara Manoach
Affiliation:
Psychiatric Neuroimaging and Athinoula A. Martinos Center for Biomedical Imaging Massachusetts General Hospital, Charlestown, Massachusetts
Beng-Choon Ho
Affiliation:
Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
Scott R. Sponheim
Affiliation:
Department of Psychiatry, University of Minnesota, Minneapolis, Minnesota Minneapolis Veterans Administration Health Care System, Minneapolis, New Mexico
Vince D. Calhoun
Affiliation:
The Mind Research Network, Albuquerque, New Mexico Department of Electrical and Computer Engineering, University of New Mexico, Albuquerque, New Mexico
*
Correspondence and reprint requests to: Ronald A. Yeo, Department of Psychology, University of New Mexico, Albuquerque, NM. E-mail: [email protected]

Abstract

Objectives: One of the most prominent features of schizophrenia is relatively lower general cognitive ability (GCA). An emerging approach to understanding the roots of variation in GCA relies on network properties of the brain. In this multi-center study, we determined global characteristics of brain networks using graph theory and related these to GCA in healthy controls and individuals with schizophrenia. Methods: Participants (N=116 controls, 80 patients with schizophrenia) were recruited from four sites. GCA was represented by the first principal component of a large battery of neurocognitive tests. Graph metrics were derived from diffusion-weighted imaging. Results: The global metrics of longer characteristic path length and reduced overall connectivity predicted lower GCA across groups, and group differences were noted for both variables. Measures of clustering, efficiency, and modularity did not differ across groups or predict GCA. Follow-up analyses investigated three topological types of connectivity—connections among high degree “rich club” nodes, “feeder” connections to these rich club nodes, and “local” connections not involving the rich club. Rich club and local connectivity predicted performance across groups. In a subsample (N=101 controls, 56 patients), a genetic measure reflecting mutation load, based on rare copy number deletions, was associated with longer characteristic path length. Conclusions: Results highlight the importance of characteristic path lengths and rich club connectivity for GCA and provide no evidence for group differences in the relationships between graph metrics and GCA. (JINS, 2016, 22, 240–249)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Andreasen, N.C. (1984a). Scale for the assessment of negative symptoms. Iowa City, IA: University of Iowa.Google Scholar
Andreasen, N.C. (1984b). The scale for the assessment of positive symptoms. Iowa City, IA: The University of Iowa.Google Scholar
Andreasen, N.C., Flaum, M., & Arndt, S. (1992). The Comprehensive Assessment of Symptoms and History (CASH) - An instrument for assessing diagnosis and psychopathology. Archives of General Psychiatry, 49(8), 615623.CrossRefGoogle ScholarPubMed
Bassett, D.S., Meyer-Lindenberg, A., Achard, S., Duke, T., & Bullmore, E. (2006). Adaptive reconfiguration of fractal small-world human functional networks. Proceedings of the National Academy of Sciences, 103(51), 1951819523.CrossRefGoogle ScholarPubMed
Bathelt, J., O’Reilly, H., Clayden, J.D., Cross, J.H., & de Haan, M. (2013). Functional brain network organisation of children between 2 and 5 years derived from reconstructed activity of cortical sources of high-density EEG recordings. Neuroimage, 82, 595604.CrossRefGoogle ScholarPubMed
Blair, C. (2006). How similar are fluid cognition and general intelligence? A developmental neuroscience perspective on fluid cognition as an aspect of human cognitive ability. The Behavioral and Brain Sciences, 29(2), 109125; discussion 125–160.CrossRefGoogle ScholarPubMed
Bohlken, M.M., Mandl, R.C.W., Brouwer, R.M., van den Heuvel, M.P., Hedman, A.M., Kahn, R.S., & Hulshoff Pol, H.E. (2014). Heritability of structural brain network topology: A DTI study of 156 twins. Human Brain Mapping, 35(10), 52955305.CrossRefGoogle ScholarPubMed
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10(3), 186198.CrossRefGoogle ScholarPubMed
Caspi, A., Houts, R.M., Belsky, D.W., Goldman-Mellor, S.J., Harrington, H., Israel, S., & Moffitt, T.E. (2013). The p Factor: One general psychopathology factor in the structure of psychiatric disorders? Clinical Psychological Science, 2(2), 119137.CrossRefGoogle Scholar
Chang, L.C., Jones, D.K., & Pierpaoli, C. (2005). RESTORE: Robust estimation of tensors by outlier rejection. Magnetic Resonance in Medicine, 53, 10881095.CrossRefGoogle ScholarPubMed
Chen, J., Liu, J., & Calhoun, V.D. (2010). Correction of copy number data using principal component analysis. 2010 IEEE International Conference on Bioinformatics and Biomedicine Workshops, 827–828.CrossRefGoogle Scholar
Chen, J., Liu, J., & Calhoun, V.D. (2011). A pipeline for copy number variation detection based on principal components analysis. Proceedings IEEE Bioinformatics and Biomedicine, 2011, 69756978.Google Scholar
Colizza, V., Flammini, A., Serrano, M.A., & Vespignani, A. (2006). Detecting rich-club ordering in complex networks. Nature Physics, 2(2), 110115.CrossRefGoogle Scholar
De Reus, M.A., Saenger, V.M., Kahn, R.S., & van den Heuvel, M.P. (2014). An edge-centric perspective on the human connectome: Link communities in the brain. Philosophical Transactions of the Royal Society B: Biological Sciences, 369(1653), 20130527.CrossRefGoogle ScholarPubMed
De Reus, M., & van den Heuvel, M.P. (2014). Simulated rich club lesioning in brain networks: A scaffold for communication and integration? Frontiers in Human Neuroscience, 8, 647.CrossRefGoogle ScholarPubMed
Deary, I.J. (2012). Intelligence. Annual Review of Psychology, 63, 453482.CrossRefGoogle ScholarPubMed
Dennis, E.L., Jahanshad, N., Toga, A.W., McMahon, K.L., de Zubicaray, G.I., Martin, N.G., & Thompson, P.M. (2013). Test-retest reliability of graph theory measures of structural brain connectivity. Medical Imaging and Computer Assisted Intervention, 15, 305312.Google Scholar
Dickinson, D., & Harvey, P.D. (2009). Systemic hypotheses for generalized cognitive deficits in schizophrenia: A new take on an old problem. Schizophrenia Bulletin, 35(2), 403414.CrossRefGoogle Scholar
Fair, D.A., Cohen, A.L., Power, J.D., Dosenbach, N.U.F., Church, J.A., Miezin, F.M., & Petersen, S.E. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational Biology, 5(5), e1000381.CrossRefGoogle Scholar
First, M., Spitzer, R.L., Gibbon, M., & Williams, J.B. (1997). Structured clinical interview for DSM-IV-TR axis I disorders. Washington, DC: American Psychiatric Press, Inc.Google Scholar
Fischer, F.U., Wolf, D., Scheurich, A., & Fellgiebel, A. (2014). Association of structural global brain network properties with intelligence in normal aging. PloS One, 9(1), e86258.CrossRefGoogle ScholarPubMed
Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segoone, F., Salat, D.H., & Dale, A.M. (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 1122.CrossRefGoogle ScholarPubMed
Gollub, R.L., Shoemaker, J.M., King, M.D., White, T., Ehrlich, S., Sponheim, S.R., & Andreasen, N.C. (2013). The MCIC collection: A shared repository of multi-modal, multi-site brain image data from a clinical investigation of schizophrenia. Neuroinformatics, 11(3), 367388.CrossRefGoogle ScholarPubMed
Hagmann, P., Cammoun, L., Gigandet, X., Meuli, R., Honey, C.J., Wedeen, V.J., & Sporns, O. (2008). Mapping the structural core of human cerebral cortex. PLoS Biol, 6(7), e159.CrossRefGoogle ScholarPubMed
Haier, R.J., Colom, R., Schroeder, D.H., Condon, C.A., Tang, C., Eaves, E., & Head, K. (2009). Gray matter and intelligence factors: Is there a neuro-g? Intelligence, 37(2), 136.CrossRefGoogle Scholar
Iturria-Medina, Y., Sotero, R.C., Canales-Rodriguez, E.J., Alemán-Gómez, Y., & Melie-Garcia, L. (2008). Studying the human brain anatomical network via diffusion-weighted MRI and graph theory. Neuroimage, 40(3), 10641076.CrossRefGoogle ScholarPubMed
Johnson, W., Bouchard, T.J., Krueger, R.F., McGue, M., & Gottesman, I.I. (2004). Just one g: Conistent results from three test batteries. Intelligence, 32(1), 85107.Google Scholar
Kahn, R.S., & Keefe, R.S.E. (2013). Schizophrenia is a cognitive illness: Time for a change. JAMA Psychiatry, 70(10), 11071112.CrossRefGoogle ScholarPubMed
Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks. Physical Review Letters, 87(19), 198701.CrossRefGoogle ScholarPubMed
Lencz, T., Knowles, E., Davies, G., Guha, S., Liewald, D.C., Starr, J.M., & Malhotra, A.K. (2014). Molecular genetic evidence for overlap between general cognitive ability and risk for schizophrenia: A report from the Cognitive Genomics consorTium (COGENT). Molecular Psychiatry, 19(2), 168174.CrossRefGoogle Scholar
Li, Y., Liu, Y., Li, J., Qin, W., Li, K., Yu, C., & Jiang, T. (2009). Brain anatomical network and intelligence. PLoS Computational Biology, 5(5), e1000395.CrossRefGoogle ScholarPubMed
Martin, A.K., Robinson, G., Reutens, D., & Mowry, B. (2014). Cognitive and structural neuroimaging characteristics of schizophrenia patients with large, rare copy number deletions. Psychiatry Research: Neuroimaging, 224, 311318.CrossRefGoogle Scholar
McAuley, J.J., da Fontoura Costa, L., & Caetano, T.S. (2007). Rich-club phenomenon across complex network hierarchies. Applied Physics Letters, 91(8), 084103.CrossRefGoogle Scholar
Messé, A., Marrelec, G., Bellec, P., Perlbarg, V., Doyon, J., Pélégrini-Issac, M., & Benali, H. (2012). Comparing structural and functional graph theory features in the human brain using multimodal MRI. Irbm, 33(4), 244253.CrossRefGoogle Scholar
Mori, S., & van Zijl, P.C. (2002). Fiber tracking: Principles and strategies - A technical review. NMR Biomedicine, 15, 468480.CrossRefGoogle ScholarPubMed
Nisbett, R.E., Aronson, J., Blair, C., Dickens, W., Flynn, J., Halpern, D.F., & Turkheimer, E. (2012). Intelligence: New findings and theoretical developments. American Psychologist, 67(2), 130159.CrossRefGoogle ScholarPubMed
Raznahan, A., Greenstein, D., Lee, N.R., Clasen, L.S., & Giedd, J.N. (2012). Prenatal growth in humans and postnatal brain maturation into late adolescence. Proceedings of the National Academy of Sciences, 109, 1136611371.CrossRefGoogle ScholarPubMed
Rubinov, M., & Sporns, O. (2010). Complex network measures of brain connectivity: Uses and interpretations. Neuroimage, 52(3), 10591069. doi:10.1016/j.neuroimage.2009.10.003 CrossRefGoogle ScholarPubMed
Ryman, S.G., Vakhtin, A.A., Yeo, R.A., van den Heuvel, M.P., de Reus, M., Flores, R.A., Caprihan, A., & Jung, R.E. (n.d.). The cost of intelligence: Graph analysis of white matter connectivity in a large normal cohort. Under review.Google Scholar
Ryman, S.G., van den Heuvel, M.P., Yeo, R.A., Caprihan, A., Carrasco, J., Vakhtin, A.A., Jung, R.E. (2014). Sex differences in the relationship between white matter connectivity and creativity. Neuroimage, 101, 380389.CrossRefGoogle ScholarPubMed
Schaefer, J., Giangrande, E., Weinberger, D.R., & Dickinson, D. (2013). The global cognitive impairment in schizophrenia: Consistent over decades and around the world. Schizophrenia Research, 150(1), 4250.CrossRefGoogle ScholarPubMed
Selig, J.P., & Preacher, K. (2008). Monte Carlo method for assessing mediation: An interactive tool for creating confidence intervals for indirect effects [Computer software]. Retrieved from http://quantpsy.org/.Google Scholar
Senden, M., Deco, G., de Reus, M.A., Goebel, R., & van den Heuvel, M.P. (2014). Rich club organization supports a diverse set of functional network configurations. Neuroimage, 96, 174182.CrossRefGoogle ScholarPubMed
Sponheim, S.R., Jung, R.E., Seidman, L.J., Mesholam-Gately, R.I., Manoach, D.S., O’Leary, D.S., & Schulz, S.C. (2010). Cognitive deficits in recent-onset and chronic schizophrenia. Journal of Psychiatric Research, 44(7), 421428.CrossRefGoogle ScholarPubMed
Van den Heuvel, M.P., & Fornito, A. (2014). Brain networks in schizophrenia. Neuropsychology Review, 24(1), 3248.CrossRefGoogle ScholarPubMed
Van den Heuvel, M.P., Kahn, R.S., Goñi, J., & Sporns, O. (2012). High-cost, high capacity backbone for global brain communication. Proceedings of the National Academy of Sciences of the United States of America, 109, 1137211377.CrossRefGoogle ScholarPubMed
Van den Heuvel, M.P., & Sporns, O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31(44), 1577515786. doi:10.1523/JNEUROSCI.3539-11.2011 CrossRefGoogle ScholarPubMed
Van den Heuvel, M.P., Sporns, O., Collin, G., Scheewe, T., Mandl, R.C.W., Cahn, W., & Kahn, R.S. (2013). Abnormal rich club organization and functional brain dynamics in schizophrenia. JAMA Psychiatry, 70(8), 783792. doi:10.1001/jamapsychiatry.2013.1328 CrossRefGoogle ScholarPubMed
Van den Heuvel, M.P., Stam, C.J., Kahn, R.S., & Hulshoff Pol, H.E. (2009). Efficiency of functional brain networks and intellectual performance. Journal of Neuroscience, 29(23), 76197624.CrossRefGoogle ScholarPubMed
Von Ehrenstein, O.S., Mikolajczyk, R.T., & Zhang, J. (2009). Timing and trajectories of fetal growth related to cognitive development in childhood. American Journal of Epidemiology, 170(11), 13881395.CrossRefGoogle ScholarPubMed
Watts, D.J., & Strogatz, S.H. (1998). Collective dynamics of “small-world” networks. Nature, 393, 440442.CrossRefGoogle ScholarPubMed
Yeo, R.A., Gangestad, S.W., Walton, E., Ehrlich, S., Pommy, J., Turner, J.A., & Calhoun, V.D. (2014). Genetic influences on cognitive endophenotypes in schizophrenia. Schizophrenia Research, 156(1), 7175.CrossRefGoogle ScholarPubMed
Yeo, R.A., & Gangestad, S.W. (2015). Developmental instability, mutation load, and neurodevelopmental disorders. In K.J. Mitchell (Ed.), Genetics of neurodevelopmental disorders (pp. 81110). Hoboken, NJ: Wiley-Blackwell.CrossRefGoogle Scholar
Yeo, R.A., Gangestad, S.W., Liu, J., Ehrlich, S., Thoma, R.J., Pommy, J.M., & Calhoun, V.D. (2013). The impact of copy number deletions on general cognitive ability and ventricle size in patients with schizophrenia and healthy control subjects. Biological Psychiatry, 73(6), 540545.CrossRefGoogle ScholarPubMed
Yeo, R.A., Martinez, D., Pommy, J., Ehrlich, S., Schulz, S.C., Ho, B.-C., & Calhoun, V.D. (2013). The impact of parent socio-economic status on executive functioning and cortical morphology in individuals with schizophrenia and healthy controls. Psychological Medicine, 44, 12571265.CrossRefGoogle ScholarPubMed
Yu, Q., Plis, S.M., Erhardt, E.B., Allen, E.A., Sui, J., Kiehl, K.A., & Calhoun, V.D. (2011). Modular organization of functional network connectivity in healthy controls and patients with schizophrenia during the resting state. Frontiers in Systems Neuroscience, 5, 103.Google ScholarPubMed
Yu, Q., Plis, S.M., Erhardt, E.B., Allen, E.A., Sui, J., Kiehl, K.A., & Calhoun, V.D. (2013). Disrupted correlation between low frequency power and connectivity strength of resting state brain networks in schizophrenia. Schizophrenia Research, 143(1), 165171.CrossRefGoogle ScholarPubMed
Zalesky, A., Fornito, A., Seal, M.L., Cocchi, L., Westin, C.-F., Bullmore, E.T., & Pantelis, C. (2011). Disrupted axonal fiber connectivity in schizophrenia. Biological Psychiatry, 69(1), 8089.CrossRefGoogle ScholarPubMed
Zhang, F., Gu, W., Hurles, M.E., & Lupski, J.R. (2009). Copy number variation in human health, disease, and evolution. Annual Review of Genomics and Human Genetics, 10, 451481.CrossRefGoogle ScholarPubMed