Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-11T09:03:23.839Z Has data issue: false hasContentIssue false

Frontal-striatal circuit functions: Context, sequence, and consequence

Published online by Cambridge University Press:  02 March 2020

Jean A. Saint-Cyr*
Affiliation:
Department of Surgery (Divisions of Neurosurgery and Anatomy) and Department of Psychology, University of Toronto; Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, and University Health Network, Toronto Western Research Institute

Abstract

The exact role of the basal ganglia in both the motor and non-motor domains has proven elusive since it is virtually impossible to refer to its function in isolation of cortical, and especially frontal cortical circuits. The result is that we often speak of frontal-striatal circuits and functions but this still leaves us in the dark when trying to specify basal ganglia information processing. A critical review of the data from both basic science and clinical studies suggests that we should break down processing along a temporal continuum, including the domains of context, sequential information processing, and feedback or reinforcement (i.e., the consequences of action). This analysis would cut across other theoretical constructs, such as attention, central executive, memory, and learning functions, traditionally employed in the neuropsychological literature. Under specified behavioral constraint, the basal ganglia can then be seen to be involved in fundamental aspects of attentional control (often covert), in the guidance of the early stages of learning (especially reinforcement-based, but also encoding strategies in explicit paradigms), and in the associative binding of reward to cue salience and response sequences via dopaminergic mechanisms. Parkinson’s disease is considered to offer only a limited view of basal ganglia function due to partial striatal depletion of dopamine and the potential involvement of other structures and transmitters in its pathology. It is hoped that the present formulation will suggest new heuristic research strategies for basal ganglia research, permitting a closer link to be established between neurophysiological, functional imaging and neuropsychological paradigms. (JINS, 2003, 9, 103–127.)

Type
Critical Review
Copyright
Copyright © The International Neuropsychological Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Reprint requests to: Dr. Jean A. Saint-Cyr, Morton and Gloria Shulman Movement Disorders Centre, Toronto Western Hospital, 399 Bathurst St., Main Pav. 11-306, Toronto, ON M5T 2S8, Canada. E-mail: [email protected]

References

Agid, Y. (1991). Parkinson's disease: Pathophysiology. Lancet, 337, 1321–1324.10.1016/0140-6736(91)92989-FCrossRefGoogle Scholar
Agostino, R., Berardelli, A., Formica, A., Accornero, N., & Manfredi, M. (1992). Sequential arm movements in patients with Parkinson's disease, Huntington's disease and dystonia. Brain, 115, 1481–1495.10.1093/brain/115.5.1481CrossRefGoogle Scholar
Albin, R.L., Young, A.B., & Penney, J.B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurological Sciences, 12, 366–375.10.1016/0166-2236(89)90074-XCrossRefGoogle Scholar
Alexander, G.E. & Crutcher, M.D. (1990a). Functional architecture of basal ganglia circuits: Neural substrates or parallel processing. Trends in Neurological Sciences, 13, 266–271.10.1016/0166-2236(90)90107-LCrossRefGoogle Scholar
Alexander, G.E. & Crutcher, M.D. (1990b). Neural representations of the target (goal) of visually guided arm movements in three motor areas of the monkey. Journal of Neurophysiology, 64, 164–178.10.1152/jn.1990.64.1.164CrossRefGoogle Scholar
Alexander, G.E. & Crutcher, M.D. (1990c). Preparation for movement: Neural representations of intended direction in three motor areas of the monkey. Journal of Neurophysiology, 64, 133–150.10.1152/jn.1990.64.1.133CrossRefGoogle Scholar
Alexander, G.E., Crutcher, M.D., & DeLong, M.R. (1990). Basal ganglia-thalamocortical circuits: Parallel substrates for motor, oculomotor, “prefrontal” and “limbic” functions. Progress in Brain Research, 85, 119–146.10.1016/S0079-6123(08)62678-3CrossRefGoogle Scholar
Alexander, G.E. & DeLong, M.R. (1985). Microstimulation of the primate neostriatum. II. Somatotopic organization of striatal microexcitable zones and their relation to neuronal response properties. Journal of Neurophysiology, 53, 1417–1430.10.1152/jn.1985.53.6.1417CrossRefGoogle Scholar
Alexander, G.E., DeLong, M.R., & Strick, P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–381.10.1146/annurev.ne.09.030186.002041CrossRefGoogle Scholar
Anderson, J.R. (1983). The architecture of cognition. Cambridge, MA: Harvard University Press.Google Scholar
Anderson, M.E. (1978). Discharge patterns of basal ganglia neurons during active maintenance of postural stability and adjustments to chair tilt. Brain Research, 143, 325–338.10.1016/0006-8993(78)90572-3CrossRefGoogle Scholar
Aosaki, T., Graybiel, A.M., & Kimura, M. (1994a). Effect of the nigrostriatal dopamine system on acquired neural responses in the striatum of behaving monkeys. Science, 265, 412–415.10.1126/science.8023166CrossRefGoogle Scholar
Aosaki, T., Kimura, M., & Graybiel, A.M. (1995). Temporal and spatial characteristics of tonically active neurons of the primate's striatum. Journal of Neurophysiology, 73, 1234–1252.CrossRefGoogle Scholar
Aosaki, T., Tsubokawa, H., Ishida, A., Watanabe, K., Graybiel, A.M., & Kimura, M. (1994b). Responses of tonically active neurons in the primate's striatum undergo systematic changes during behavioral sensorimotor conditioning. Journal of Neuroscience, 14, 3969–3984.10.1523/JNEUROSCI.14-06-03969.1994CrossRefGoogle Scholar
Apicella, P., Ravel, S., Pierangelo, S., & Legallet, E. (1998). Influence of predictive information on responses of tonically active neurons in the monkey striatum. Journal of Neurophysiology, 80, 3341–3344.10.1152/jn.1998.80.6.3341CrossRefGoogle Scholar
Ardouin, C., Pillon, B., Peiffer, E., Bejjani, P., Limousin, P., Damier, P., Arnulf, I., Benabid, A.L., Agid, Y., & Pollak, P. (1999). Bilateral subthalamic or pallidal stimulation for Parkinson's disease affects neither memory nor executive functions: A consecutive series of 62 patients. Annals of Neurology, 46, 217–223.3.0.CO;2-Z>CrossRefGoogle Scholar
Baddeley, A. (1986). Working memory. Oxford: Oxford Scientific Publications.Google Scholar
Bar-Gad, I. & Bergman, H. (2001). Stepping out of the box: information processing in the neural networks of the basal ganglia. Current Opinion in Neurobiology, 11, 689–695.10.1016/S0959-4388(01)00270-7CrossRefGoogle Scholar
Barone, P. & Joseph, J.-P. (1989). Prefrontal cortex and spatial sequencing in macaque monkey. Experimental Brain Research, 78, 447–464.10.1007/BF00230234CrossRefGoogle Scholar
Beatty, W.W. & Monson, N. (1990). Picture and motor sequencing in Parkinson's disease. Journal of Geriatric Psychiatry and Neurology, 3, 192–197.Google Scholar
Bédard, M.A., el Massioui, F., Malapani, C., Dubois, B., Pillon, B., Renault, B., & Agid, Y. (1998). Attentional deficits in Parkinson's disease: Partial reversibility with naphtoxazine (SDZ NVI-085), a selective noradrenergic alpha 1 agonist. Clinical Neuropharmacology, 21, 108–117.Google Scholar
Bédard, M.A., Pillon, B., Dubois, B., Duchesne, N., Masson, H., & Agid, Y. (1999). Acute and long-term administration of anticholinergics in Parkinson's disease: Specific effects on the subcortico-frontal syndrome. Brain and Cognition, 40, 289–313.10.1006/brcg.1999.1083CrossRefGoogle Scholar
Beiser, D.G. & Houk, J.C. (1998). Model of cortical-basal ganglionic processing: Encoding the serial order of sensory events. Journal of Neurophysiology, 79, 3168–3188.10.1152/jn.1998.79.6.3168CrossRefGoogle Scholar
Bejjani, B.P., Damier, P., Arnulf, I., Thivard, L., Bonnet, A.M., Dormont, D., Cornu, P., Pidoux, B., Samson, Y., & Agid, Y. (1999). Transient acute depression induced by high-frequency deep-brain stimulation. New England Journal of Medicine, 340, 1476–1480.10.1056/NEJM199905133401905CrossRefGoogle Scholar
Benabid, A.L., Krack, P.P., Benazzouz, A., Limousin, P., Koudsie, A., & Pollak, P. (2000). Deep brain stimulation of the subthalamic nucleus for Parkinson's disease: Methodologic aspects and clinical criteria. Neurology, 55(12 Suppl 6), S40–S44.Google Scholar
Bennett, K.M. & Castiello, U. (1996). Three-dimensional covert attentional functions in Parkinson's disease subjects. Experimental Brain Research, 112, 277–288.10.1007/BF00227646CrossRefGoogle Scholar
Berger, H.J., van Es, N.J., van Spaendonck, K.P., Teunisse, J.-P., Horstink, M.W., van 't Hof, M.A., & Cools, A.R. (1999). Relationship between memory strategies and motor symptoms in Parkinson's disease. Journal of Clinical and Experimental Neuropsychology, 21, 677–684.10.1076/jcen.21.5.677.869CrossRefGoogle Scholar
Bergman, H., Wichmann, T., Karmon, B., & DeLong, M.R. (1994). The primate subthalamic nucleus. II. Neuronal activity in the MPTP model of parkinsonism. Journal of Neurophysiology, 72, 507–520.10.1152/jn.1994.72.2.507CrossRefGoogle Scholar
Berns, G.S. & Sejnowski, T.J. (1996). How the basal ganglia make decisions. In A.R. Damasio (Ed.), Neurobiology of decision-making (pp. 101–113). Berlin, Heidelberg: Springer-Verlag.Google Scholar
Berridge, K.C. & Robinson, T.E. (1998). What is the role of dopamine in reward: Hedonic impact, reward learning, or incentive salience? Brain Research Reviews, 28, 309–369.CrossRefGoogle Scholar
Blackburn, J.R., Phillips, A.G., Jakubovic, & A., Fibiger H.C. (1989). Dopamine and preparatory behavior: II. A neurochemical analysis. Behavioral Neuroscience, 103, 15–23.CrossRefGoogle Scholar
Blackburn, J.R., Pfaus, J.G., & Phillips, A.G. (1992). Dopamine functions in appetitive and defensive behaviours. Progress in Neurobiology, 39, 247–279.CrossRefGoogle Scholar
Boecker, H., Dagher, A., Ceballos-Baumann, A.O., Passingham, R.E., Samuel, M., Friston, K.J., Poline, J.B., Dettmers, C., Conrad, B., & Brooks, D.J. (1998). Role of the human rostral supplementary motor area and the basal ganglia in motor sequence control: Investigations with H2O15 PET. Journal of Neurophysiology, 79, 1070–1080.10.1152/jn.1998.79.2.1070CrossRefGoogle Scholar
Bondi, M.W., Kasniak, A.W., Bayles, K.A., & Vance, K.T. (1993). Contributions of frontal system dysfunction to memory and perceptual abilities in Parkinson's disease. Neuropsychology, 7, 89–102.10.1037/0894-4105.7.1.89CrossRefGoogle Scholar
Boussaoud, D. & Kermadi, I. (1997). The primate striatum: Neuronal activity in relation to spatial attention versus motor preparation. European Journal of Neuroscience, 9, 2152–2168.10.1111/j.1460-9568.1997.tb01382.xCrossRefGoogle Scholar
Bowman, E.M., Aigner, T.G., & Richmond, B.J. (1996). Neural signals in the monkey ventral striatum related to motivation for juice and cocaine rewards. Journal of Neurophysiology, 75, 1061–1073.10.1152/jn.1996.75.3.1061CrossRefGoogle Scholar
Braak, H., Braak, E., Yilmazer, D., Schultz, C., De Vos, R.A.I., & Jansen, E.N.H. (1995). Nigral and extranigral pathology in Parkinson's disease. Journal of Neural Transmission: Parkinson's Disease and Dementia Section, 15–31.Google Scholar
Briand, K.A., Strallow, D., Hening, W., Poizner, H., & Sereno, A.B. (1999). Control of voluntary and reflexive saccades in Parkinson's disease. Experimental Brain Research, 129, 38–48.CrossRefGoogle Scholar
Brodal, A. (1963). Some data and perspectives on the anatomy of the so-called “extrapyramidal system.” Acta Neurological Scandinavica, 39(Suppl 4), 17–38.10.1111/j.1600-0404.1963.tb01815.xCrossRefGoogle Scholar
Brooks, D.J. (1997). PET and SPECT studies in Parkinson's disease. Bailliere's Clinical Neurology, 6, 69–87.Google Scholar
Brooks, D.J. (2000). Imaging basal ganglia function. Journal of Anatomy, 196, 543–554.10.1046/j.1469-7580.2000.19640543.xCrossRefGoogle Scholar
Brotchie, P., Iansek, R., & Horne, M.K. (1991a). Motor function of the monkey Globus Pallidus. 2. Cognitive aspects of movement and phasic neuronal activity. Brain, 114, 1685–1702.10.1093/brain/114.4.1685CrossRefGoogle Scholar
Brotchie, P., Iansek, R., & Horne, M.K. (1991b). Motor function of the monkey Globus Pallidus. I. Neuronal discharge and parameters of movement. Brain, 114, 1667–1683.CrossRefGoogle Scholar
Brown, R.G. (1999). The role of cortico-striatal circuits in learning sequential information. In G.M. Stern (Ed.), Parkinson's disease. Advances in neurology (Vol. 80, pp. 31–39). Philadelphia: Lippincott Williams and Wilkins.Google Scholar
Brown, R.G. & Marsden, G.D. (1988). Internal versus external cues and the control of attention in Parkinson's disease. Brain, 111, 323–345.CrossRefGoogle Scholar
Brown, R.G. & Marsden, C.D. (1990). Cognitive function in Parkinson's disease: From description to theory. Trends in Neurosciences, 13, 21–29.10.1016/0166-2236(90)90058-ICrossRefGoogle Scholar
Brown, R.G. & Marsden, C.D. (1991). Dual task performance and processing resources in normal subjects and patients with Parkinson's disease. Brain, 114, 215–231.Google Scholar
Brown, R.G., Soliveri, P., & Jahanshahi, M. (1998). Executive process in Parkinson's disease—random number generation and response suppression. Neuropsychologia, 36, 1355–1362.10.1016/S0028-3932(98)00015-3CrossRefGoogle Scholar
Bucher, S.F., Seelos, K.C., Stehling, M., Oertel, W.H., Paulus, W., & Reiser, M. (1995). High-resolution activation mapping of basal ganglia with functional magnetic resonance imaging. Neurology, 45, 180–182.CrossRefGoogle Scholar
Butters, N., Wolfe, J., Martone, M., Granholm, E., & Cermak, L.S. (1985). Memory disorders associated with Huntington's disease: Verbal recall, verbal recognition and procedural memory. Neuropsychologia, 23, 729–743.CrossRefGoogle Scholar
Canavan, A.G., Passingham, R.E., Marsden, C.D., Quinn, N., Wyke, M., & Polkey, C.E. (1989). The performances on learning tasks of patients in the early stages of Parkinson's disease. Neuropsychologia, 27, 141–156.CrossRefGoogle Scholar
Catalan, M.J., Ishii, K., Honda, M., Samii, A., & Hallett, M. (1999). A PET study of sequential finger movements of varying length in patients with Parkinson's disease. Brain, 122, 483–495.CrossRefGoogle Scholar
Ceballos-Baumann, A., Boecker, H., Bartenstein, P., von Falkenhayn, I., Riescher, H., Conrad, B., Moringlane, J., & Alesch, F. (1999). A positron emission tomography study of subthalamic nucleus stimulation in Parkinson's disease: Enhanced movement-related activity of motor-association cortex and decreased motor cortex resting activity. Archives of Neurology, 56, 997–1003.10.1001/archneur.56.8.997CrossRefGoogle Scholar
Ceballos-Baumann, A. & Brooks, D. (1997). Basal ganglia function and dysfunction revealed by positron emission tomography activation studies. Advances in Neurology, 74, 127–142.Google Scholar
Chesselet, M.F. & Delfs, J.M. (1996). Basal ganglia and movement disorders: An update. Trends in Neurosciences, 19, 417–422.CrossRefGoogle Scholar
Choudhry, R.K. & Saint-Cyr, J.A. (1999). Cognitive planning in Parkinson's disease: Evidence for frontal disorder. Paper presented at the American Psychological Association Annual Conference, Boston.Google Scholar
Choudhry, R.K. & Saint-Cyr, J.A. (2000). Self report memory abilities and prospective memory in Parkinson's disease. Paper presented at the 10th Annual Rotman Research Institute Conference. The Frontal Lobes 2000, Toronto.Google Scholar
Cohen, N.J. & Squire, L.R. (1980). Preserved learning and retention of pattern analyzing skill in amnesia: Dissociation of knowing how and knowing that. Science, 210, 15–23.10.1126/science.7414331CrossRefGoogle Scholar
Collins, P., Wilkinson, L.S., Everitt, B.J., Robbins, T.W., & Roberts, A.C. (2000). The effect of dopamine depletion from the caudate nucleus of the common marmoset (Callithrix jacchus) on tests of prefrontal cognitive function. Behavioral Neuroscience, 114, 3–17.10.1037/0735-7044.114.1.3CrossRefGoogle Scholar
Contreras-Vidal, J.L. & Schultz, W. (1999). A predictive reinforcement model of dopamine neurons for learning approach behavior. Journal of Computational Neuroscience, 6, 191–214.10.1023/A:1008862904946CrossRefGoogle Scholar
Cooper, J.A. & Sagar, H.J. (1993). Encoding deficits in untreated Parkinson's disease. Cortex, 29, 251–265.CrossRefGoogle Scholar
Corkin, S. (1965). Tactually-guided maze learning in man: Effects of unilateral cortical excisions and bilateral hippocampal lesions. Neuropsychologia, 3, 339–351.CrossRefGoogle Scholar
Coull, J.T., Frith, C.D., Buchel, C., & Nobre, A.C. (2000). Orienting attention in time: Behavioral and neuroanatomical distinction between exogenous and endogenous shifts. Neuropsychologia, 38, 808–819.CrossRefGoogle Scholar
Crutcher, M.D. & Alexander, G.E. (1990). Movement-related neuronal activity selectively coding either direction or muscle pattern in three motor areas of the monkey. Journal of Neurophysiology, 64, 151–163.10.1152/jn.1990.64.1.151CrossRefGoogle Scholar
Dagher, A., Owen, A.M., Boecker, H., & Brooks, D.J. (1999). Mapping the network for planning: A correlational PET activation study with the Tower of London task. Brain, 122, 1973–1987.CrossRefGoogle Scholar
Davis, K.D., Taub, E., Houser, D., Lang, A.E., Dostrovsky, J.O., Tasker, R., & Lozano, A. (1997). Globus pallidus stimulation activates the cortical motor system during alleviation of parkinsonian symptoms. Nature Medicine, 3, 671–674.10.1038/nm0697-671CrossRefGoogle Scholar
Denny-Brown, D. (1962). The basal ganglia and their relation to disorders of movement. London: Oxford University Press.Google Scholar
Diamond, A. (1990). The development and neural bases of memory functions as indexed by the AB and delayed response tasks in human infants and infant monkeys. In A. Diamond (Ed.), The development and neural bases of higher cognitive functions (Vol. 608, pp. 267–309). New York: New York Academy of Sciences.Google Scholar
Dominey, P.F., Decety, J., Broussolle, E., Chazot, G., & Jeannerod, M. (1995a). Motor imagery of a lateralized sequential task is asymmetrically slowed in hemi-Parkinson's patients. Neuropsychologia, 33, 727–741.10.1016/0028-3932(95)00008-QCrossRefGoogle Scholar
Dominey, P.F., Arbib, M., & Joseph, J.-P. (1995b). A model of corticostriatal plasticity for learning oculomotor associations and sequences. Journal of Cognitive Neuroscience, 7, 311–336.10.1162/jocn.1995.7.3.311CrossRefGoogle Scholar
Dominey, P.F., Ventre-Dominey, J., Broussolle, E., & Jeannerod, M. (1995c). Analogical transfer in sequence learning. Human and neural-network models of frontostriatal function. Annals of the New York Academy of Science, 769, 369–373.CrossRefGoogle Scholar
Dominey, P.F., Ventre-Dominey, J., Broussolle, E., & Jeannerod, M. (1996). Analogical transfer is effective in a serial reaction time task in Parkinson's disease: Evidence for a dissociable form of sequence learning. Neuropsychologia, 35, 1–9.10.1016/S0028-3932(96)00050-4CrossRefGoogle Scholar
Dominey, P.F. & Jeannerod, M. (1997). Contribution of frontostriatal function to sequence learning in Parkinson's Disease: Evidence for dissociable systems. Neuroreport, 8, III–IX.Google Scholar
Dormont, J.F., Conde, H., & Farin, D. (1998). The role of the pedunculopontine tegmental nucleus in relation to conditioned motor performance in the cat. I. Context-dependent and reinforcement-related single unit activity. Experimental Brain Research, 121, 401–410.CrossRefGoogle Scholar
Downes, J.J., Roberts, A.C., Sahakian, B.J., Evenden, J.L., Morris, R.G., & Robbins, T.W. (1989). Impaired extra-dimensional shift performance in medicated and unmedicated Parkinson's disease: Evidence for a specific attentional dysfunction. Neuropsychologia, 27, 1329–1343.CrossRefGoogle Scholar
Downes, J.J., Sharp, H.M., Costall, B.M., Sagar, H.J., & Howe, J. (1993). Alternating fluency in Parkinson's disease. An evaluation of the attentional control theory of cognitive impairment. Brain, 116, 887–902.10.1093/brain/116.4.887CrossRefGoogle Scholar
Doyon, J., Gaudreau, D., Laforce, R., Jr., Castonguay, M., Bedard, P.J., Bedard, F., & Bouchard, J.P. (1997). Role of the striatum, cerebellum, and frontal lobes in the learning of a visuomotor sequence. Brain and Cognition, 34, 218–245.10.1006/brcg.1997.0899CrossRefGoogle Scholar
Doyon, J., Laforce Jr., R., Bouchard, G., Gaudreau, D., Roy, J., Poirier, M., Bédard, P.J., Bédard, F., & Bouchard, J.-P. (1998). Role of the striatum, cerebellum and frontal lobes in the automatization of a repeated visuomotor sequence of movements. Neuropsychologia, 36, 625–641.CrossRefGoogle Scholar
Doyon, J., Owen, A.M., Petrides, M., Sziklas, V., & Evans, A.C. (1996). Functional anatomy of visuomotor skill learning in human subjects examined with positron emission tomography. European Journal of Neuroscience, 8, 637–648.CrossRefGoogle Scholar
Dubois, B., Boller, F., Pillon, B., & Agid, Y. (1991). Cognitive deficits in Parkinson's disease. In S. Corkin, F. Boller, & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 5, pp. 195–240). Amsterdam: Elsevier Science Publishers B.V.Google Scholar
Dubois, B., Defontaines, B., Deweer, B., Malapani, C., & Pillon, B. (1995). Cognitive and behavioral changes in patients with focal lesions of the basal ganglia. Advances in Neurology, 65, 29–42.Google Scholar
Dubois, B., Pillon, B., Legault, F., Agid, Y., & Lhermitte, F. (1988). Slowing of cognitive processing in progressive supranuclear palsy: A comparison with Parkinson's Disease. Archives of Neurology, 45, 1194–1199.CrossRefGoogle Scholar
Dubois, B., Pillon, B., Lhermitte, F., & Agid, Y. (1990). Cholinergic deficiency and frontal dysfunction in Parkinson's disease. Annals of Neurology, 28, 117–121.CrossRefGoogle Scholar
Eblen, F. & Graybiel, A.M. (1995). Highly restricted origin of prefrontal cortical inputs to striosomes in the macaque monkey. Journal of Neuroscience, 15, 5999–6013.CrossRefGoogle Scholar
Eidelberg, D. (1998). Functional brain networks in movement disorders [editorial]. Current Opinions in Neurology, 11, 319–326.CrossRefGoogle Scholar
Eidelberg, D., Moeller, J.R., Dhawan, V., Spetsieris, P., Takikawa, S., Ishikawa, T., Chaly, T., Robeson, W., Margouleff, D., Przedborski, S., & Fahn, S. (1994). The metabolic topography of Parkinsonism. Journal of Cerebral Blood Flow and Metabolism, 14, 783–801.10.1038/jcbfm.1994.99CrossRefGoogle Scholar
Everitt, B.J., Parkinson, J.A., Olmstead, M.C., Arroyo, M., Robledo, P., & Robbins, T.W. (1999). Associative processes in addiction and reward. The role of amygdala-ventralstriatal subsystems. Annals of the New York Academy of Science, 877, 412–438.CrossRefGoogle Scholar
Faglioni, P., Botti, C., Scarpa, M., Ferrari, V., & Saetti, M.C. (1997). Learning and forgetting processes in Parkinson's disease: A model-based approach to disentangling storage, retention and retrieval contributions. Neuropsychologia, 35, 767–779.10.1016/S0028-3932(96)00125-XCrossRefGoogle Scholar
Fernandez-Ruiz, J., Wang, J., Aigner, T.G., & Mishkin, M. (2001). Visual habit formation in monkeys with neurotoxic lesions of the ventrocaudal neostriatum. Proceedings of the National Academy of Science (USA), 98, 4196–4201.CrossRefGoogle Scholar
Filion, M., Tremblay, L., & Bédard, P.J. (1988). Abnormal influences of passive limb movement on the activity of globus pallidus neurons in parkinsonian monkeys. Brain Research, 444, 165–176.CrossRefGoogle Scholar
Filion, M., Tremblay, L., Matsumura, M., & Richard, H. (1994). Focalisation dynamique de la convergence informationnelle dans les noyaux gris centraux. Revue Neurologique (Paris), 150, 627–633.Google Scholar
Filoteo, J.V., Rilling, L.M., Cole, B., Williams, B.J., Davis, J.D., & Roberts, J.W. (1997). Variable memory profiles in Parkinson's disease. Journal of Clinical and Experimental Neuropsychology, 19, 878–888.CrossRefGoogle Scholar
Flaherty, A.W. & Graybiel, A.M. (1995). Motor and somatosensory corticostriatal projection magnifications in the squirrel monkey. Journal of Neurophysiology, 74, 2638–2648.CrossRefGoogle Scholar
Forno, L.S. (1996). Neuropathology of Parkinson's disease. Journal of Neuropathology and Experimental Neurology, 55, 259–272.10.1097/00005072-199603000-00001CrossRefGoogle Scholar
Frith, C.D., Bloxham, C.A., & Carpenter, K.N. (1986). Impairments in the learning and performance of a new manual skill in patients with Parkinson's disease. Journal of Neurology, Neurosurgery and Psychiatry, 49, 661–668.CrossRefGoogle Scholar
Funahashi, S., Chafee, M.V., & Goldman-Rakic, P.S. (1993). Prefrontal neuronal activity in rhesus monkeys performing a delayed anti-saccade task. Nature, 365, 753–756.CrossRefGoogle Scholar
Fuster, J. (1997). The prefrontal cortex: Anatomy, physiology and neuropsychology of the frontal lobe ( 3rd ed.). Philadelphia: Lippencott-Raven.Google Scholar
Gabrieli, J., Singh, J., Stebbins, G., & Goetz, C. (1996). Reduced working memory span in Parkinson's disease: Evidence for the role of a fronto-striatal system in working and strategic memory. Neuropsychologia, 10, 322–332.CrossRefGoogle Scholar
Gabrieli, J.D.E. (1998). Cognitive neuroscience of human memory. Annual Review of Psychology, 49, 87–115.CrossRefGoogle Scholar
Garcia-Rill, E., Houser, C.R., Skinner, R.D., Smith, W., & Woodward, D.J. (1987). Locomotion-inducing sites in the vicinity of the pedunculopontine nucleus. Brain Research Bulletin, 18, 731–738.CrossRefGoogle Scholar
Georgiou, N., Bradshaw, J.L., Iansek, R., Phillips, J.G., Mattingley, J.B., & Bradshaw, J.A. (1994). Reduction in external cues and movement sequencing in Parkinson's disease. Journal of Neurology Neurosurgery and Psychiatry, 57, 368–370.CrossRefGoogle Scholar
Gerfen, C.R. (1992). The neostriatal mosaic: Multiple levels of compartmental organization in the basal ganglia. Annual Review of Neuroscience, 15, 285–320.CrossRefGoogle Scholar
Gerloff, C., Corwell, B., Chen, R., Hallett, M., & Cohen, L.G. (1997). Stimulation over the human supplementary motor area interferes with the organization of future elements in complex motor sequences. Brain, 120, 1587–1602.CrossRefGoogle Scholar
Ghika, J., Ghika-Schmid, F., Fankhauser, H., Assal, G., Vingerhoets, F., Albanese, A., Bogousslavsky, J., & Favre, J. (1999). Bilateral contemporaneous posteroventral pallidotomy for the treatment of Parkinson's disease: Neuropsychological and neurological side effects. Report of four cases and review of the literature. Journal of Neurosurgery, 91, 313–321.10.3171/jns.1999.91.2.0313CrossRefGoogle Scholar
Goldman-Rakic, P.S. (1987). Circuitry of primate prefrontal cortex and regulation of behavior by representational memory. In V.B. Mountcastle & F. Plum (Eds.), Handbook of physiology: Higher functions of the brain (Vol. 5, pp. 373–417). Bethesda: American Physiological Society.Google Scholar
Goldman-Rakic, P.S. (1996). The prefrontal landscape: Implications of functional architecture for understanding human mentation and the central executive. Philosophical Transactions of the Royal Society, London, Series B, 351, 1445–1453.Google Scholar
Goldman-Rakic, P.S. & Selemon, L.D. (1990). New frontiers in basal ganglia research. Trends in Neurosciences, 130, 241–244.CrossRefGoogle Scholar
Gotham, A.M., Brown, R.G., & Marsden, C.D. (1988). ‘Frontal’ cognitive function in patients with Parkinson's disease ‘on’ and ‘off’ levodopa. Brain, 111, 299–321.CrossRefGoogle Scholar
Grafman, J. (1994). Alternative frameworks for the conceptualization of prefrontal lobe functions. In F. Boller & J. Grafman (Eds.), Handbook of Neuropsychology ( Vol. 9, pp. 187–201). New York: Elsevier Science.Google Scholar
Grafton, S.T., Fagg, A.H., & Arbib, M.A. (1998). Dorsal premotor cortex and conditional movement selection: A PET functional mapping study. Journal of Neurophysiology, 79, 1092–1097.CrossRefGoogle Scholar
Grafton, S.T., Waters, C., Sulton, J., Lew, M.F., & Couldwell, W. (1995). Pallidotomy increases activity of motor association cortex in Parkinson's Disease: A positron emission tomographic study. Annals of Neurology, 37, 776–783.CrossRefGoogle Scholar
Graham, J. & Sagar, H. (1999). A data-driven approach to the study of heterogeneity in idiopathic Parkinson's disease: Identification of three distinct subtypes. Movement Disorders, 14, 10–20.3.0.CO;2-4>CrossRefGoogle Scholar
Graybiel, A.M. (1990). Neurotransmitters and neuromodulators in the basal ganglia. Trends in Neurosciences, 13, 244–254.CrossRefGoogle Scholar
Graybiel, A.M. (1995). Building action repertoires: Memory and learning functions of the basal ganglia. Current Opinion in Neurobiology, 5, 733–741.CrossRefGoogle Scholar
Graybiel, A.M. (1998). The basal ganglia and chunking of action repertoires. Neurobiology of Learning and Memory, 70, 119–136.CrossRefGoogle Scholar
Graybiel, A.M., Aosaki, T., Flaherty, A.W., & Kimura, M. (1994). The basal ganglia and adaptive motor control. Science, 265, 1826–1831.10.1126/science.8091209CrossRefGoogle Scholar
Green, J. & Barnhart, H. (2000). The impact of lesion laterality on neuropsychological change following posterior pallidotomy: A review of current findings. Brain and Cognition, 42, 379–398.CrossRefGoogle Scholar
Green, J., McDonald, W., Vitek, J.L., Haber, M., Barnhart, H., Bakay, R.A., Evatt, M., Freeman, A., Wahlay, N., Triche, S., Sirochman, B., & DeLong, M.R. (2002). Neuropsychological and psychiatric sequelae of pallidotomy for PD: Clinical trial findings. Neurology, 58, 858–865.CrossRefGoogle Scholar
Gross, R.E., Lombardi, W.J., Lang, A.E., Duff, J., Hutchison, W.D., Saint-Cyr, J.A., Tasker, R.R., & Lozano, A.M. (1999). Relationship of lesion location to clinical outcome following microelectrode-guided pallidotomy for Parkinson's disease. Brain, 122, 405–416.10.1093/brain/122.3.405CrossRefGoogle Scholar
Grossman, M., Carvell, S., Gollomp, S., Stern, M.B., Reivich, M., Morrison, D., Alavi, A., & Hurtig, H. (1993). Cognitive and physiological substrates of impaired sentence processing in Parkinson's disease. Journal of Cognitive Neuroscience, 5, 480–498.CrossRefGoogle Scholar
Guitton, D., Buchtel, H.A., & Douglas, R.M. (1985). Frontal lobe lesions in man cause difficulties in suppressing reflexive glances and in generating goal-directed saccades. Experimental Brain Research, 58, 455–472.CrossRefGoogle Scholar
Haaland, K.Y., Harrington, D.L., O'Brien, S., & Hermanowicz, N. (1997). Cognitive-motor learning in Parkinson's disease. Neuropsychology, 11, 180–186.10.1037/0894-4105.11.2.180CrossRefGoogle Scholar
Haber, S.N., Kunishio, K., Mizobuchi, M., & Lynd-Balta, E.J. (1995). The orbital and medial prefrontal circuit through the primate basal ganglia. Neuroscience, 15, 4851–4867.10.1523/JNEUROSCI.15-07-04851.1995CrossRefGoogle Scholar
Handel, A. & Glimcher, P.W. (2000). Contextual modulation of substantia nigra pars reticulata neurons. Journal of Neurophysiology, 83, 3042–3048.CrossRefGoogle Scholar
Harrington, D.L. & Haaland, K.Y. (1999). Neural underpinnings of temporal processing: A review of focal lesion, pharmacological, and functional imaging research. Review of Neuroscience, 10, 91–116.CrossRefGoogle Scholar
Harrington, D.L., Haaland, K.Y., & Hermanowicz, N. (1998). Temporal processing in the basal ganglia. Neuropsychology, 12, 3–12.CrossRefGoogle Scholar
Heilman, K.M., Valenstein, E., & Watson, R.T. (1993). Neglect and related disorders. In K.M. Heilman & E. Valenstein (Eds.), Clinical neuropsychology (pp. 279–336). New York: Oxford University Press.Google Scholar
Heindel, W.C., Salmon, D.P., Shults, C.W., Walicke, P.A., & Butters, N. (1989). Neuropsychological evidence for multiple memory systems: A comparison of Alzheimer's, Huntington's, and Parkinson's disease patients. Journal of Neuroscience, 9, 582–587.CrossRefGoogle Scholar
Hikosaka, O. (1993). Role of the basal ganglia in motor learning: A hypothesis. In T. Ono, L.R. Squire, M.E. Raichle, D.I. Terrett, & M. Fukuda (Eds.), Brain mechanisms of perception and memory. From neuron to behavior (pp. 497–513). New York, Oxford: Oxford University Press.Google Scholar
Hikosaka, O., Nakahara, H., Rand, M.K., Sakai, K., Lu, X., Nakamura, K., Miyachi, S., & Doya, K. (1999). Parallel neural networks for learning sequential procedures. Trends in Neurosciences, 22, 464–471.CrossRefGoogle Scholar
Hikosaka, O. & Wurtz, R.H. (1989). The basal ganglia. Reviews of Oculomotor Research, 3, 257–281.Google Scholar
Hollerman, J.R., Tremblay, L., & Schultz, W. (1998). Influence of reward expectation on behavior-related neuronal activity in primate striatum. Journal of Neurophysiology, 80, 947–963.CrossRefGoogle Scholar
Holt, D.J., Graybiel, A.M., & Saper, C.B. (1997). Neurochemical architecture of the human striatum. Journal of Comparative Neurology, 384, 1–25.3.0.CO;2-5>CrossRefGoogle Scholar
Hornykiewicz, O. (1998). Biochemical aspects of Parkinson's disease. Neurology, 51, S2–S9.10.1212/WNL.51.2_Suppl_2.S2CrossRefGoogle Scholar
Hsieh, S., Hwang, W.J., Tsai, J.J., & Tsai, C.Y. (1996). Precued shifting of attention between cognitive sets in Parkinson patients. Psychological Reports, 78, 815–823.CrossRefGoogle Scholar
Huber, S., Christy, J., & Paulson, G. (1991). Cognitive heterogeneity associated with clinical subtypes of Parkinson's disease. Neuropsychiatry, Neuropsychology and Behavioral Neurology, 4, 147–157.Google Scholar
Huber, S.J., Freidenberg, D.L., Shuttleworth, E.C., Paulson, G.W., & Christy, J.A. (1989). Neuropsychological impairments associated with severity of Parkinson's disease. Journal of Neuropsychiatry and Clinical Neuroscience, 1, 154–158.Google Scholar
Hutchison, W.D., Lozano, A.M., Davis, K.D., Saint-Cyr, J.A., Lang, A.E., & Dostrovsky, J.O. (1994). Differential neuronal activity in segments of globus pallidus in Parkinson's disease patients. Neuroreport, 5, 1533–1537.CrossRefGoogle Scholar
Ilinsky, I.A., Yi, H., & Kultas-Ilinsky, K. (1997). Mode of termination of pallidal afferents to the thalamus: A light and electron microscopic study with anterograde tracers and immunocytochemistry in Macaca mulatta. Journal of Comparative Neurology, 386, 601–612.10.1002/(SICI)1096-9861(19971006)386:4<601::AID-CNE6>3.0.CO;2-63.0.CO;2-6>CrossRefGoogle Scholar
Inase, M., Tokuno, H., Nambu, A., Akazawa, T., & Takada, M. (1999). Corticostriatal and corticosubthalamic input zones from the presupplementary motor area in the macaque monkey: Comparison with input zones from the supplementary motor area. Brain Research, 833, 191–201.CrossRefGoogle Scholar
Jackson, G.M., Jackson, S.R., Harrison, J., Henderson, L., & Kennard, C. (1995). Serial reaction time learning and Parkinson's disease: Evidence for a procedural learning deficit. Neuropsychologia, 33, 577–593.CrossRefGoogle Scholar
Jahanshahi, M., Ardouin, C.M.A., Brown, R.G., Rothwell, J.C., Obeso, J., Albanese, A., Rodriguez-Oroz, M.C., Moro, E., Benabid, A.L., Pollak, P., & Limousin-Dowsey, P. (2000). The impact of deep brain stimulation on executive function in Parkinson's disease. Brain, 123, 1142–1154.CrossRefGoogle Scholar
Jog, M.S., Kubota, Y., Connolly, C.I., Hillegaart, V., & Graybiel, A.M. (1999). Building neural representations of habits. Science, 286, 1745–1749.10.1126/science.286.5445.1745CrossRefGoogle Scholar
Johnson, T.N., Rosvold, H.E., & Mishkin, M. (1968). Projections from behaviorally-defined sectors of the prefrontal cortex to the basal ganglia, septum, and diencephalon of the monkey. Experimental Neurology, 21, 20–34.CrossRefGoogle Scholar
Jueptner, M. & Weiller, C. (1998). A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain, 121, 1437–1449.CrossRefGoogle Scholar
Kayahara, T. & Nakano, K. (1998). The globus pallidus sends axons to the thalamic reticular nucleus neurons projecting to the centromedian nucleus of the thalamus: A light and electron microscope study in the cat. Brain Research Bulletin, 45, 623–630.CrossRefGoogle Scholar
Kemp, J.M. & Powell, T.P.S. (1970). The cortico-striate projection in the monkey. Brain, 93, 525–546.10.1093/brain/93.3.525CrossRefGoogle Scholar
Kermadi, I. & Boussaoud, D. (1995). Role of the primate striatum in attention and sensorimotor processes: Comparison with premotor cortex. NeuroReport, 6, 1177–1181.CrossRefGoogle Scholar
Kermadi, I. & Joseph, J.P. (1995). Activity in the caudate nucleus of monkey during spatial sequencing. Journal of Neurophysiology, 74, 911–933.CrossRefGoogle Scholar
Kimura, M. & Matsumoto, N. (1997). Neuronal activity in the basal ganglia: Functional implications. Advances in Neurology, 74, 111–118.Google Scholar
Kinomura, S., Larsson, J., Gulyas, B., & Roland, P. (1996). Activation by attention of the human reticular formation and thalamic intralaminar nuclei. Science, 271, 512–515.CrossRefGoogle Scholar
Kish, S.J., Shannak, K., & Hornykiewicz, O. (1988). Uneven pattern of dopamine loss in the striatum of patients with idiopathic Parkinson's disease. New England Journal of Medicine, 318, 876–880.CrossRefGoogle Scholar
Kitano, H., Tanibuchi, I., & Jinnai, K. (1998). The distribution of neurons in the substantia nigra pars reticulata with input from the motor, premotor and prefrontal areas of the cerebral cortex in monkeys. Brain Research, 784, 228–238.CrossRefGoogle Scholar
Klein, D., Zatorre, R.J., Milner, B., Meyer, E., & Evans, A.C. (1994). Left putaminal activation when speaking a second language: Evidence from PET. NeuroReport, 5, 2295–2297.10.1097/00001756-199411000-00022CrossRefGoogle Scholar
Knoke, D., Taylor, A., & Saint-Cyr, J. (1998). The differential effects of cueing on recall in Parkinson's disease and normal subjects. Brain and Cognition, 38, 261–274.10.1006/brcg.1998.1042CrossRefGoogle Scholar
Knowlton, B.J., Mangels, J.A., & Squire, L.R. (1996). A neostriatal habit learning system in humans. Science, 273, 1399–1402.CrossRefGoogle Scholar
Koepp, M.J., Gunn, R.N., Lawrence, A.D., Cunningham, V.J., Dagher, A., Jones, T., Brooks, D.J., Bench, C.J., & Grasby, P.M. (1998). Evidence for striatal dopamine release during a video game. Nature, 393, 266–268.CrossRefGoogle Scholar
Koos, T. & Tepper, J.M. (1999). Inhibitory control of neostriatal projection neurons by GABAergic interneurons. Nature Neuroscience, 2, 467–472.10.1038/8138CrossRefGoogle Scholar
Koski, L., Paus, T., Hofle, N., & Petrides, M. (1999). Increased blood flow in the basal ganglia when using cues to direct attention. Experimental Brain Research, 129, 241–246.CrossRefGoogle Scholar
Krack, P., Pollak, P., Limousin, P., Hoffmann, D., Xie, J., Benazzouz, A., & Benabid, A.L. (1998). Subthalamic nucleus or internal pallidal stimulation in young onset Parkinson's disease. Brain, 121, 451–457.CrossRefGoogle Scholar
Kulisevsky, J., Avila, A., Barbanoj, M., Antonijoan, R., Berthier, M.L., & Gironell, A. (1996). Acute effects of levodopa on neuropsychological performance in stable and fluctuating Parkinson's disease patients at different levodopa plasma levels. Brain, 119, 2121–2132.CrossRefGoogle Scholar
Künzle, H. (1978). An autoradiographic analysis of the efferent connections from premotor and adjacent prefrontal regions (areas 6 and 9) in macaca fasicularis. Brain, Behavior, and Evolution, 15, 185–234.CrossRefGoogle Scholar
Lang, A.E. & Lozano, A.M. (1998a). Parkinson's disease—First of two parts. New England Journal of Medicine, 339, 1044–1053.10.1056/NEJM199810083391506CrossRefGoogle Scholar
Lang, A.E. & Lozano, A.M. (1998b). Parkinson's disease—Second of two parts. New England Journal of Medicine, 339, 1130–1143.CrossRefGoogle Scholar
Lang, A.E., Lozano, A.M., Montgomery, E., Duff, J., Tasker, R., & Hutchinson, W. (1997). Posteroventral medial pallidotomy in advanced Parkinson's disease. New England Journal of Medicine, 337, 1036–1042.CrossRefGoogle Scholar
Lange, K.W., Robbins, T.W., Marsden, C.D., James, M., Owen, A.M., & Paul, G.M. (1992). L-dopa withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology, 107, 394–404.CrossRefGoogle Scholar
Lawrence, A.D., Sahakian, B.J., & Robbins, T.W. (1998). Cognitive functions and corticostriatal circuits: Insight from Huntington's disease. Trends in Cognitive Science, 2, 379–388.CrossRefGoogle Scholar
Le Bras, C., Pillon, B., Damier, P., & Dubois, B. (1999). At which steps of spatial working memory processing do striatofrontal circuits intervene in humans? Neuropsychologia, 37, 83–90.CrossRefGoogle Scholar
Lee, K.-M., Chang, K.-H., & Roh, J.-K. (1999). Subregions within the supplementary motor area activated at different stages of movement preparation and execution. Neuroimage, 9, 117–123.CrossRefGoogle Scholar
Lhermitte, F., Pillon, B., & Serdaru, M. (1986). Human autonomy and the frontal lobes. I: Imitation and utilization behavior, a neuropsychological study of 75 patients. Annals of Neurology, 19, 326–334.CrossRefGoogle Scholar
Levy, R., Friedman, H.R., Davachi, L., & Goldman-Rakic, P.S. (1997). Differential activation of the caudate nucleus in primates performing spatial and non-spatial working memory tasks. Journal of Neuroscience, 17, 3870–3882.CrossRefGoogle Scholar
Limousin, P., Greene, J., Pollak, P., Rothwell, J., Benabid, A.L., & Frackowiak, R. (1997). Changes in cerebral activity pattern due to subthalamic nucleus or internal pallidum stimulation in Parkinson's disease. Annals of Neurology, 42, 283–291.CrossRefGoogle Scholar
Lombardi, W.J., Gross, R.E., Trépanier, L.L., Lang, A.E., Lozano, A.M., & Saint-Cyr, J.A. (2000). Relationship of lesion location to cognitive outcome following microelectrode-guided pallidotomy for Parkinson's disease: Support for the existence of cognitive circuits in the human pallidum. Brain, 123, 746–758.CrossRefGoogle Scholar
Lozano, A.M., Lang, A.E., Galvez-Jimenez, N., Miyasaki, J., Duff, J., Hutchison, W.D., & Dostrovsky, J.O. (1995). Effect of GPi pallidotomy on motor function in Parkinson's disease. Lancet, 346, 1383–1387.CrossRefGoogle Scholar
Maguire, E.A., Burgess, N., Donnett, J.G., Frakowiac, R.S., Frith, C.D., & O'Keefe, J. (1998). Knowing where and getting there: A human navigation network. Science, 280, 921–924.CrossRefGoogle Scholar
Malapani, C., Pillon, B., Dubois, B., & Agid, Y. (1994). Impaired simultaneous cognitive task performance in Parkinson's disease: A dopamine-related dysfunction. Neurology, 44, 319–326.CrossRefGoogle Scholar
Malapani, C., Rakitin, B., Levy, R., Meck, W., Deweer, B., Dubois, B., & Gibbon, J. (1998). Coupled temporal memories in Parkinson's disease: A dopamine-related dysfunction. Journal of Cognitive Neuroscience, 10, 316–331.10.1162/089892998562762CrossRefGoogle Scholar
Marsden, C.D. & Obeso, J.A. (1994). The functions of the basal ganglia and the paradox of stereotaxic surgery in Parkinson's disease. Brain, 117, 877–897.10.1093/brain/117.4.877CrossRefGoogle Scholar
Martin, K.E., Phillips, J.G., Iansek, R., & Bradshaw, J.L (1994). Inaccuracy and instability of sequential movements in Parkinson's disease. Experimental Brain Research, 102, 131–140.Google Scholar
Matsumoto, N., Hanakawa, T., Maki, S., & Graybiel, A.M. (1999). Nigrostriatal dopamine system in learning to perform sequential motor tasks in a predictive manner. Journal of Neurophysiology, 82, 978–998.CrossRefGoogle Scholar
Matsumura, M., Watanabe, K., & Ohye, C. (1997). Single-unit activity in the primate nucleus tegmenti pedunculopontinus related to voluntary arm movement. Neuroscience Research, 28, 155–165.CrossRefGoogle Scholar
Middleton, F.A. & Strick, P.L. (1997). New concepts about the organization of basal ganglia output. Advances in Neurology, 74, 57–68.Google Scholar
Middleton, F.A. & Strick, P.L. (2000). Basal ganglia output and cognition: Evidence from anatomical, behavioural and clinical studies. Brain and Cognition, 42, 183–200.CrossRefGoogle Scholar
Mink, J.W. (1996). The basal ganglia: Focused selection and inhibition of competing motor programs. Progress in Neurobiology, 50, 381–425.CrossRefGoogle Scholar
Mink, J.W. & Thach, W.T. (1991). Basal ganglia motor control II. Late pallidal timing relative to movement onset and inconsistent pallidal coding of movement parameters. Journal of Neurophysiology, 65, 301–329.10.1152/jn.1991.65.2.301CrossRefGoogle Scholar
Mishkin, M. (1964). Perseveration of central sets after frontal lesions in monkeys. In J.M. Warren & K. Akert (Eds.), The frontal granular cortex and behavior (pp. 219–241). New York: McGraw Hill.Google Scholar
Mishkin, M., Malamut, B., & Bachevalier, J. (1984). Memories and habits: Two neural systems. In G. Lynch, J.L. McGaugh, & N.M. Weinberger (Eds.), Neurobiology of learning and memory (pp. 65–77). New York: Guilford Press.Google Scholar
Mishkin, M. & Petri, H. (1984). Memories and habits: Some implications for the analysis of learning and retention. In L.R. Squire & N. Butters (Eds.), Neuropsychology of memory (pp. 287–296). New York: Guilford Press.Google Scholar
Miyachi, S., Hikosaka, O., Miyashita, K., Karadi, Z., & Rand, M.K. (1997). Differential roles of monkey striatum in learning of sequential hand movements. Experimental Brain Research, 115, 1–5.10.1007/PL00005669CrossRefGoogle Scholar
Moll, L. & Kuypers, H.G.J.M. (1977). Premotor cortical ablations in monkeys: Contralateral changes in visually guided reaching behavior. Science, 198, 317–319.CrossRefGoogle Scholar
Moscovitch, M. & Winocur, G. (1995). Frontal lobes, memory, and aging. In J. Grafman, K. Holyoak, & F. Boller (Eds.), Structure and functions of the human prefrontal cortex (Vol. 769, pp. 119–150). New York: The New York Academy of Sciences.Google Scholar
Munro-Davies, L.E., Winter, J., Aziz, T.Z., & Stein, J.F. (1999). The role of the pedunculopontine region in basal-ganglia mechanisms of akinesia. Experimental Brain Research, 129, 511–517.CrossRefGoogle Scholar
Mushiake, H. & Strick, P.L. (1995). Pallidal neuron activity during sequential arm movements. Journal of Neurophysiology, 74, 2754–2758.CrossRefGoogle Scholar
Nakamura, T., Ghilardi, M.F., Mentis, M., Dhawan, V., Fukuda, M., Hacking, A., Moeller, J.R., Ghez, C., & Eidelberg, D. (2001). Functional networks in motor sequence learning: Abnormal topographies in Parkinson's disease. Human Brain Mapping, 12, 42–60.3.0.CO;2-D>CrossRefGoogle Scholar
Nakano, K., Kayahara, T., Tsutsumi, T., & Ushiro, H. (2000). Neural circuits and functional organization of the striatum. Journal of Neurology, 247 Suppl 5, V1–15.CrossRefGoogle Scholar
Nambu, A., Tokuno, H., Inase, M., & Takada, M. (1997). Corticosubthalamic input zones from forelimb representations of the dorsal and ventral divisions of the premotor cortex in the macaque monkey: Comparison with the input zones from the primary motor cortex and the supplementary motor area. Neuroscience Letters, 239, 13–16.CrossRefGoogle Scholar
Nissen, M.J. & Bullemer, P. (1987). Attentional requirements of learning: Evidence from performance measures. Cognitive Psychology, 19, 1–32.CrossRefGoogle Scholar
Norman, D.A. & Shallice, T. (1980). Attention to action. Willed and automatic control of behavior (CHIP 99). San Diego: University of California San Diego.Google Scholar
O'Driscoll, G.A., Alpert, N.M., Matthysse, S.W., Levy, D.L., Rauch, S.L., & Holzman, P.S. (1995). Functional neuroanatomy of antisaccade eye movements investigated with positron emission tomography. Proceedings of the National Academy of Science (USA), 92, 925–929.Google Scholar
Owen, A., Sahakian, B., Hodges, J., Summers, B., Polkey, C., & Robbins, T. (1995). Dopamine-dependent frontostriatal planning deficits in early Parkinson's disease. Neuropsychology, 9, 126–140.CrossRefGoogle Scholar
Owen, A.M. (1997). Cognitive planning in humans: Neuropsychological, neuroanatomical and neuropharmacological perspectives. Progress in Neurobiology, 53, 431–450.CrossRefGoogle Scholar
Owen, A.M. & Doyon, J. (1999). The cognitive neuropsychology of Parkinson's disease: A functional neuroimaging perspective. In G.M. Stern (Ed.), Parkinson's disease: Advances in neurology (Vol. 80, pp. 49–56). Philadelphia: Lippincott, Williams & Wilkins.Google Scholar
Owen, A.M., Doyon, J., Petrides, M., & Evans, A.C. (1996). Planning and spatial working memory: A positron emission tomography study in humans. European Journal of Neuroscience, 8, 353–364.CrossRefGoogle Scholar
Owen, A.M., Iddon, J.L., Hodges, J.R., & Robbins, T.W. (1997). Spatial and non-spatial working memory at different stages of Parkinson's disease. Neuropsychologia, 35, 519–532.10.1016/S0028-3932(96)00101-7CrossRefGoogle Scholar
Owen, A.M., James, M., Leigh, P.N., Summers, B.A., Marsden, C.D., Quinn, N.P., Lange, K.W., & Robbins, T.W. (1992). Fronto-striatal cognitive deficits at different stages of Parkinson's disease. Brain, 115, 1727–1751.10.1093/brain/115.6.1727CrossRefGoogle Scholar
Owen, A.M., Roberts, A.C., Hodges, J.R., Summers, B.A., Polkey, C.E., & Robbins, T.W. (1993). Contrasting mechanisms of impaired attentional set-shifting in patients with frontal lobe damage or Parkinson's disease. Brain, 116, 1159–1175.CrossRefGoogle Scholar
Paré, D., Hazrati, L.N., Parent, A., & Syteriade, M. (1990). Substantia nigra pars reticulata projects to the reticular thalamic nucleus of the cat: A morphological and electrophysiological study. Brain Research, 535, 139–146.CrossRefGoogle Scholar
Parent, A. & Cicchetti, F. (1998). The current model of basal ganglia organization under scrutiny. Movement Disorders, 13, 199–202.CrossRefGoogle Scholar
Parent, A., Côté, P.-Y., & Lavoie, B. (1995). Chemical anatomy of primate basal ganglia. Progress in Neurobiology, 46, 131–197.CrossRefGoogle Scholar
Parent, A. & Hazrati, L.-N. (1995a). Functional anatomy of the basal ganglia. I. The cortico-basal ganglia-thalamo-cortical loop. Brain Research Reviews, 20, 91–127.CrossRefGoogle Scholar
Parent, A. & Hazrati, L.-N. (1995b). Functional anatomy of the basal ganglia. II. The place of subthalamic nucleus and external pallidum in basal ganglia circuitry. Brain Research Reviews, 20, 128–154.CrossRefGoogle Scholar
Parthasarathy, H.B., Schall, J.D., & Graybiel, A.M. (1992). Distributed but convergent ordering of corticostriatal projections: Analysis of the frontal eye field and the supplementary eye field in the macaque monkey. Journal of Neuroscience, 12, 4468–4488.CrossRefGoogle Scholar
Partiot, A., Vérin, M., Pillon, B., Teixeira-Ferreira, C., Agid, Y., & Dubois, B. (1996). Delayed response tasks in basal ganglia lesions in man: Further evidence for a striato-frontal cooperation in behavioural adaptation. Neuropsychologia, 34, 709–721.CrossRefGoogle Scholar
Pascual-Leone, A., Grafman, J., & Hallett, M. (1994). Modulation of cortical motor output maps during development of implicit and explicit knowledge. Science, 263, 1287–1289.10.1126/science.8122113CrossRefGoogle Scholar
Peigneux, P., Maquet, P., Meulemans, T., Destrebecqz, A., Laureys, S., Degueldre, C., Delfiore, G., Aerts, J., Luxen, A., Franck, G., Van der Linden, M., & Cleeremans, A. (2000). Striatum forever, despite sequence learning variability: A random effect analysis of PET data. Human Brain Mapping, 10, 179–194.3.0.CO;2-H>CrossRefGoogle Scholar
Percheron, G. & Filion, M. (1991). Parallel processing in the basal ganglia: up to a point (Letter). Trends in Neuroscience, 14, 55–56.CrossRefGoogle Scholar
Percheron, G., Yelnik, J., & François, C. (1984). A Golgi analysis of the primate globus pallidus. III. Spatial organization of striato-pallidal complex. Journal of Comparative Neurology, 227, 214–227.CrossRefGoogle Scholar
Petrides, M. (1985). Deficits on conditional-associative learning tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia, 23, 601–614.CrossRefGoogle Scholar
Petrides, M. (1994). Frontal lobes and working memory: Evidence from investigations of the effects of cortical excisions in nonhuman primates. In F. Boller & J. Grafman (Eds.), Handbook of Neuropsychology (Vol. 9, pp. 59–82). New York: Elsevier Science.Google Scholar
Petrides, M. & Milner, B. (1982). Deficits on subject-ordered tasks after frontal and temporal lobe lesions in man. Neuropsychologia, 20, 601–604.10.1016/0028-3932(82)90100-2CrossRefGoogle Scholar
Pillon, B., Ardouin, C., Damier, P., Krack, P., Houeto, J., Klinger, H., Bonnet, A., Pollak, P., Benebid, A., & Agid, Y. (2000). Neuropsychological changes between “off” and “on” STN and GPi stimulation in Parkinson's disease. Neurology, 55, 411–418.CrossRefGoogle Scholar
Pillon, B., Deweer, B., Agid, Y., & Dubois, B. (1993). Explicit memory in Alzheimer's, Huntington's, and Parkinson's diseases. Archives of Neurology, 50, 374–379.CrossRefGoogle Scholar
Pillon, B., Deweer, B., Vidailhet, M., Bonnet, A.M., Hahn-Barma, V., & Dubois, B. (1998). Is impaired memory for spatial location in Parkinson's disease domain specific or dependent on ‘strategic’ processes? Neuropsychologia, 36, 1–9.10.1016/S0028-3932(97)00102-4CrossRefGoogle Scholar
Poldrack, R.A., Prabhakaran, V., Seger, C.A., & Gabrieli, J.D. (1999). Striatal activation during acquisition of a cognitive skill. Neuropsychology, 13, 564–574.CrossRefGoogle Scholar
Pullman, S.L., Watts, R.L., Juncos, J.L., Chase, T.N., & Sanes, J.N. (1988). Dopaminergic effects on simple and choice reaction time performance in Parkinson's disease. Neurology, 38, 249–254.CrossRefGoogle Scholar
Quinn, N.P. (1998). Classification of fluctuations in patients with Parkinson's disease. Neurology, 51, S25–S29.CrossRefGoogle Scholar
Rammsayer, T. & Classen, W. (1997). Impaired temporal discrimination in Parkinson's disease: Temporal processing of brief durations as an indicator of degeneration of dopaminergic neurons in the basal ganglia. International Journal of Neuroscience, 91, 45–55.CrossRefGoogle Scholar
Rao, S.M., Bobholz, J.A., Hammeke, T.A., Rosen, A.C., Woodley, S.J., Cunningham, J.M., Cox, R.W., Stein, E.A., & Binder, J.R. (1997). Functional MRI evidence for subcortical participation in conceptual reasoning skills. Neuroreport, 8, 1987–1993.CrossRefGoogle Scholar
Rauch, S.L. & Savage, C.R. (1997). Neuroimaging and neuropsychology of the striatum. Bridging basic science and clinical practice. Psychiatric Clinics of North America, 20, 741–768.10.1016/S0193-953X(05)70343-9CrossRefGoogle Scholar
Reber, P.J. & Squire, L.R. (1999). Intact learning of artificial grammars and intact category learning by patients with Parkinson's disease. Behavioral Neuroscience, 113, 235–242.CrossRefGoogle Scholar
Reese, N.B., Garcia-Rill, E., & Skinner, R.D. (1995). The pedunculopontine nucleus–auditory input, arousal and pathophysiology. Progress in Neurobiology, 47, 105–133.CrossRefGoogle Scholar
Roberts, A.C., De Salvia, M.A., Wilkinson, L.S., Collins, P., Muir, J.L., Everitt, B.J., & Robbins, T.W. (1994). 6-Hydroxydopamine lesions of the prefrontal cortex in monkeys enhance performance on an analogue of the Wisconsin Card Sorting test: Possible interactions with subcortical dopamine. Journal of Neuroscience, 14, 2531–2544.CrossRefGoogle Scholar
Rogers, R.D., Andrews, T.C., Grasby, P.M., Brooks, D.J., & Robbins, T.W. (2000). Contrasting cortical and subcortical activations produced by attention-set shifting and reversal learning in humans. Journal of Cognitive Neuroscience, 12, 142–162.CrossRefGoogle Scholar
Rolls, E.T. (2000). The orbitofrontal cortex and reward. Cerebral Cortex, 10, 284–294.CrossRefGoogle Scholar
Rolls, E.T., Thorpe, S.J., & Maddison, S.P. (1983). Responses of striatal neurons in the behaving monkey. 1 Head of the Caudate Nucleus. Behavioral Brain Research, 7, 179–210.CrossRefGoogle Scholar
Rolls, E.T. & Treves, A. (1998). Neural networks and brain function. Oxford, New York, Tokyo: Oxford University Press.Google Scholar
Rosvold, H.E. (1972). The frontal lobe system: Cortical-subcortical interrelationships. Acta Neurobiologica Experimentalis (Warsaw), 32, 439–460.Google Scholar
Roy, E.A., Saint-Cyr, J., Taylor, A., & Lang, A. (1993). Movement sequencing disorders in Parkinson's disease. International Journal of Neuroscience, 73, 183–194.CrossRefGoogle Scholar
Sadikot, A.F., Parent, A., & Francois, C. (1992). Efferent connections of the centromedian and parafascicular thalamic nuclei in the squirrel monkey: A PHA-L study of subcortical projections. Journal of Comparative Neurology, 315, 137–159.CrossRefGoogle Scholar
Sagar, H.J., Sullivan, E.V., Cooper, J.A., & Jordan, N. (1991). Normal release from proactive interference in untreated patients with Parkinson's disease. Neuropsychologia, 29, 1033–1044.CrossRefGoogle Scholar
Sagar, H.J., Sullivan, E.V., Gabrieli, J.D.E., Corkin, S., & Growden, J.H. (1988). Temporal ordering and short-term memory deficits in Parkinson's disease. Brain, 111, 525–539.CrossRefGoogle Scholar
Sahakian, B.J., Morris, R.G., Evenden, J.L., Heald, A., Levy, R., Philpot, M., & Robbins, T.W. (1988). A comparative study of visuospatial memory and learning in Alzheimer-type dementia and Parkinson's disease. Brain, 111, 695–718.CrossRefGoogle Scholar
Saint-Cyr, J.A., Bronstein, Y.L., & Cummings, J.L. (2002). Neurobehavioral consequences of neurosurgical treatments and focal lesions of frontal-subcortical circuits. In Principles of frontal lobe function. D. Stuss & R. Knight (Eds.) (pp. 407–427). Oxford, Toronto: Oxford University Press.Google Scholar
Saint-Cyr, J.J. & Taylor, A.E. (1992). The mobilization of procedural learning. The “key signature” of the basal ganglia. In N. Butters & L.R. Squire (Eds.), Neuropsychology of memory. (Second ed., pp. 188–202). New York: The Guilford Press.Google Scholar
Saint-Cyr, J.A., Taylor, A.E., & Lang, A.E. (1988). Procedural learning and neostriatal dysfunction in man. Brain, 111, 941–959.CrossRefGoogle Scholar
Saint-Cyr, J.A., Taylor, A.E., & Nicholson, K. (1995). Behavior and the basal ganglia. Advances in Neurology, 65, 1–28.Google Scholar
Saint-Cyr, J.A., Taylor, A.E., Trépanier, L.L., & Lang, A.E. (1992). The caudate nucleus: Head ganglion of the habit system. In G. Valler, S.-F. Cappa, & C.-W. Wallesch (Eds.), Neuropsychological disorders associated with subcortical lesions (pp. 204–226). Oxford: Oxford Science Publications.Google Scholar
Saint-Cyr, J.A. & Trépanier, L.L. (2000). Neuropsychologic assessment of patients for movement disorder surgery. Movement Disorders, 15, 771–783.3.0.CO;2-Y>CrossRefGoogle Scholar
Saint-Cyr, J.A., Trépanier, L.L., Kumar, R., Lozano, A.M., & Lang, A.E. (2000). Neuropsychological consequences of chronic bilateral stimulation of the subthalamic nucleus in Parkinson's disease. Brain, 123, 101–118.CrossRefGoogle Scholar
Saint-Cyr, J., Ungerleider, L., & Desimone, R. (1990). Organization of visual cortical inputs to the striatum and subsequent outputs to the pallido-nigral complex in the monkey. Journal of Comparative Neurology, 298, 128–156.Google Scholar
Samuel, M., Ceballos-Baumann, A.O., Blin, J., Uema, T., Boecker, H., Passingham, R.E., & Brooks, D.J. (1997). Evidence for lateral premotor and parietal overactivity in Parkinson's disease during sequential and bimanual movements: A PET study. Brain, 120, 963–976.CrossRefGoogle Scholar
Schneider, J.S., McLaughlin, W.W., & Roeltgen, D.P. (1992). Motor and nonmotor behavioral deficits in monkeys made hemiparkinsonian by intracarotid MPTP infusion. Neurology, 42, 1565–1572.CrossRefGoogle Scholar
Schneider, J.S. & Pope-Coleman, A. (1995). Cognitive deficits precede motor deficits in a slowly progressing model of parkinsonism in the monkey. Neurodegeneration, 4, 245–255.CrossRefGoogle Scholar
Schneider, J.S. & Rothblat, D.S. (1996). Alterations in intralaminar and motor thalamic physiology following nigrostriatal dopamine depletion. Brain Research, 742, 25–33.CrossRefGoogle Scholar
Schultz, W. & Dickinson, A. (2000). Neuronal coding of prediction errors. Annual Review of Neuroscience, 23, 473–500.CrossRefGoogle Scholar
Schultz, W., Tremblay, L., & Hollerman, J.R. (1998). Reward prediction in primate basal ganglia and frontal cortex. Neuropharmacology, 37, 421–429.CrossRefGoogle Scholar
Scott, R., Gregory, R., Hines, N., Carroll, C., Hyman, N., Papanasstasiou, V., Leather, C., Rowe, J., Silburn, P., & Aziz, T. (1998). Neuropsychological, neurological and functional outcome following pallidotomy for Parkinson's disease. A consecutive series of eight simultaneous bilateral and twelve unilateral procedures. Brain, 121, 659–675.CrossRefGoogle Scholar
Selemon, L.D. & Goldman-Rakic, P.S. (1985). Longitudinal topography and interdigitation of cortico-striatal projections in the rhesus monkey. Journal of Neuroscience, 5, 776–794.CrossRefGoogle Scholar
Shallice, T. (1988). From neuropsychology to mental structure. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Shidara, M., Aigner, T.G., & Richmond, B.J. (1998). Neuronal signals in the monkey ventral striatum related to progress through a predictable series of trials. Journal of Neuroscience, 18, 2613–2625.CrossRefGoogle Scholar
Slovin, H., Abeles, M., Vaadia, E., Haalman, I., & Prut, Y. (1999). Frontal cognitive impairments and saccadic deficits in low-dose MPTP-treated monkeys. Journal of Neurophysiology, 81, 858–874.CrossRefGoogle Scholar
Soukup, V.M., Ingram, F., Schiess, M.C., Bonnen, J.G., Nauta, H.J., & Calverley, J.R. (1997). Cognitive sequelae of unilateral posteroventral pallidotomy. Archives of Neurology, 54, 947–950.CrossRefGoogle Scholar
Squire, L. & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253, 1380–1386.CrossRefGoogle Scholar
Squire, L.R., Knowlton, B., & Musen, G. (1993). The structure and organization of memory. Annual Review of Psychology, 44, 453–495.CrossRefGoogle Scholar
Starr, P.A., Vitek, J.L., & Bakay, R.A. (1998). Ablative surgery and deep brain stimulation for Parkinson's disease. Neurosurgery, 43, 989–1013; discussion 1013–1015.Google Scholar
Stebbins, G.T., Gabrieli, J.D.E., Shannon, K.M., Penn, R.D., & Goetz, C.G. (2000). Impaired fronto-striatal cognitive functioning following posteroventral pallidotomy in advanced Parkinson's disease. Brain and Cognition, 42, 348–363.CrossRefGoogle Scholar
Steriade, M., Domich, L., & Oakson, G. (1986). Reticularis thalami neurons revisited: Activity changes during shifts in states of vigilance. Journal of Neuroscience, 6, 68–81.CrossRefGoogle Scholar
Steriade, M. & Llinás, R.R. (1988). The functional states of the thalamus and the associated neuronal interplay. Physiological Reviews, 68, 649–742.10.1152/physrev.1988.68.3.649CrossRefGoogle Scholar
Strick, P., Dunn, R., & Picard, N. (1995). Macro-organization of the circuits connecting the basal ganglia with the cortical motor areas. In C. Houk, J. Davis, & D. Beiser (Eds.), Models of information processing in the basal ganglia (pp. 117–130). Boston: MIT Press.Google Scholar
Stuss, D., Eskes, G., & Foster, J. (1994). Experimental neuropsychological studies of frontal lobe functions. In F. Boller & J. Grafman (Eds.), Handbook of neuropsychology (Vol. 9, pp. 149–185). New York: Elsevier Science.Google Scholar
Suri, R.E. & Schultz, W. (1998). Learning of sequential movements by neural network model with dopamine-like reinforcement signal. Experimental Brain Research, 121, 350–354.CrossRefGoogle Scholar
Tanji, J. (1994). The supplementary motor area in the cerebral cortex. Neuroscience Research, 19, 251–268.CrossRefGoogle Scholar
Tanji, J. (2001). Sequential organization of multiple movements: Involvement of cortical motor areas. Annual Review of Neuroscience, 24, 631–651.CrossRefGoogle Scholar
Taylor, A., Saint-Cyr, J., & Lang, A. (1990a). Memory and learning in early Parkinson's disease: Evidence for a “frontal lobe syndrome.” Brain and Cognition, 13, 211–232.CrossRefGoogle Scholar
Taylor, A.E., Saint-Cyr, J.A., & Lang, A.E. (1986). Frontal lobe dysfunction in Parkinson's disease: The cortical focus of neostriatal outflow. Brain, 109, 845–883.CrossRefGoogle Scholar
Taylor, A.E., Saint-Cyr, J.A., & Lang, A.E. (1987). Parkinson's disease. Cognitive changes in relation to treatment response. Brain, 110, 35–51.CrossRefGoogle Scholar
Taylor, A.E., Saint-Cyr, J.A., & Lang, A.E. (1990b). Subcognitive processing in the fronto-caudate ‘complex loop.’ Journal of Alzheimer's Disease and Related Disorders, 4, 150–160.CrossRefGoogle Scholar
Taylor, A.E. & Saint-Cyr, J.A. (1995). The neuropsychology of Parkinson's disease. Brain and Cognition, 28, 281–296.CrossRefGoogle Scholar
Taylor, J.R., Elsworth, J.D., Roth, R.H., Collier, T.J., Sladek, J.R., Jr., & Redmond, D.E., Jr. (1990c). Improvements in MPTP-induced object retrieval deficits and behavioral deficits after fetal nigral grafting in monkeys. Progress in Brain Research, 82, 543–559.CrossRefGoogle Scholar
Tremblay, L., Hollerman, J.R., & Schultz, W. (1998). Modifications of reward expectation-related neuronal activity during learning in primate striatum. Journal of Neurophysiology, 80, 964–977.10.1152/jn.1998.80.2.964CrossRefGoogle Scholar
Trépanier, L., Kumar, R., Lozano, A., Lang, A., & Saint-Cyr, J. (2000). Neuropsychological outcome of neurosurgical therapies in Parkinson's disease: A comparison of GPi pallidotomy and deep brain stimulation of GPi or STN. Brain and Cognition, 42, 324–347.CrossRefGoogle Scholar
Trépanier, L.L., Saint-Cyr, J.A., Lozano, A.M., & Lang, A.E. (1998). Neuropsychological consequences of posteroventral pallidotomy for the treatment of Parkinson's disease. Neurology, 51, 207–215.CrossRefGoogle Scholar
Tröster, A.I. & Fields, J.A. (1995). Frontal cognitive function and memory in Parkinson's disease: Toward a distinction between prospective and declarative memory impairments? Behavioural Neurology, 8, 59–74.CrossRefGoogle Scholar
van Hoesen, G.W., Yeterian, E.H., & Lavizzo-Mourey, R. (1981). Widespread corticostriate projections from temporal cortex of the rhesus monkey. Journal of Comparative Neurology, 199, 205–219.CrossRefGoogle Scholar
Vriezen, E.R. & Moscovitch, M. (1990). Memory for temporal order and conditional associative-learning in patients with Parkinson's disease. Neuropsychologia, 28, 1283–1293.CrossRefGoogle Scholar
Watanabe, K. & Kimura, M. (1998). Dopamine receptor-mediated mechanisms involved in the expression of learned activity of primate striatal neurons. Journal of Neurophysiology, 79, 2568–2580.CrossRefGoogle Scholar
Weiner, W.J. & Lang, A.E. (1989). Movement disorders. A comprehensive survey. Mt. Kisko, N.Y.: Futura.Google Scholar
West, R., Ergis, A.M., Winocur, G., & Saint-Cyr, J. (1998). The contribution of impaired working memory monitoring to performance of the self-ordered pointing task in normal aging and Parkinson's disease. Neuropsychology, 12, 546–554.CrossRefGoogle Scholar
Westwater, H., McDowall, J., Siegert, R., Mossman, S., & Abernethy, D. (1998). Implicit learning in Parkinson's disease: Evidence from a verbal version of the serial reaction time task. Journal of Clinical and Experimental Neuropsychology, 20, 413–418.CrossRefGoogle Scholar
Wichmann, T., Bergman, H., & DeLong, M.R. (1994). The primate subthalamic nucleus. I. Functional properties in intact animals. Journal of Neurophysiology, 72, 494–506.CrossRefGoogle Scholar
Wichmann, T. & DeLong, M.R. (1996). Functional and pathophysiological models of the basal ganglia. Current Opinion in Neurobiology, 6, 751–758.CrossRefGoogle Scholar
Wichmann, T., Bergman, H., Starr, P.A., Subramanian, T., Watts, R.L., & DeLong, M.R. (1999). Comparison of MPTP-induced changes in spontaneous neuronal discharge in the internal pallidal segment and in the substantia nigra pars reticulata in primates. Experimental Brain Research, 125, 397–409.CrossRefGoogle Scholar
Williams, G.V. & Goldman-Rakic, P.S. (1995). Modulation of memory fields by dopamine D1 receptors in prefrontal cortex. Nature, 376, 572–575.CrossRefGoogle Scholar
Williams, S.M. & Goldman-Rakic, P.S. (1998). Widespread origin of the primate mesofrontal dopamine system. Cerebral Cortex, 8, 321–345.CrossRefGoogle Scholar
Wise, S.P. (1996). The role of the basal ganglia in procedural memory. Seminars in the Neurosciences, 8, 39–46.CrossRefGoogle Scholar
Wise, S.P., Murray, E.A., & Gerfen, C.R. (1996). The frontal cortex-basal ganglia system in primates. Critical Reviews in Neurobiology, 10, 317–356.CrossRefGoogle Scholar
Yelnik, J., François, C., & Percheron, G. (1997). Spatial relationships between striatal axonal endings and pallidal neurons in macaque monkeys. Advances in Neurology, 74, 45–56.Google Scholar
Yeterian, E.H. & Pandya, D.N. (1991). Prefrontostriatal connections in relation to cortical architectonic organization in rhesus monkeys. Journal of Comparative Neurology, 312, 43–67.CrossRefGoogle Scholar
Yeterian, E.H. & Pandya, D.N. (1998). Corticostriatal connections of the superior temporal region in rhesus monkeys. Journal of Comparative Neurology, 399, 384–402.3.0.CO;2-X>CrossRefGoogle Scholar
Yeterian, E.H. & van Hoesen, G.W. (1978). Cortico-striate projections in the rhesus monkey: The organization of certain cortico-caudate connections. Brain Research, 139, 43–63.CrossRefGoogle Scholar
Zalla, T., Sirigu, A., Pillon, B., Dubois, B., Grafman, J., & Agid, J. (1998). Deficit in evaluating pre-determined sequences of script events in patients with Parkinson's disease. Cortex, 34, 621–627.CrossRefGoogle Scholar