Hostname: page-component-848d4c4894-2xdlg Total loading time: 0 Render date: 2024-07-07T15:14:37.411Z Has data issue: false hasContentIssue false

Facets of Pantomime

Published online by Cambridge University Press:  16 February 2017

Georg Goldenberg*
Affiliation:
Technical Universtiy Munich, Department of Neurology, Vienna, Austria
*
Correspondence and reprint requests to: Georg Goldenberg, Dollinergasse 10, A 1190, Vienna, Austria. E-mail: [email protected]

Abstract

Objectives: Exploring the nature of defective pantomime in apraxia. Methods: Critical review of behavioral associations and dissociations between defective pantomime, imitation of gestures, and real tool use. Analysis of congruencies between crucial lesions for pantomime, imitation, and tool use. Results: There are behavioral double dissociations between pantomime and imitation, and their cerebral substrates show very little overlap. Whereas defective pantomime is bound to temporal and inferior frontal lesions, imitation is mainly affected by parietal lesions. Pantomime usually replicates the motor actions of real use but on scrutiny there are important differences between the movements of real use and of pantomime that cast doubt on the assumption that pantomime is produced by the same motor programs as actual use. A more plausible proposal posits that pantomime is a communicative gesture that uses manual actions for conveying information about objects and their use. The manual actions are constructed by selection and combination of distinctive features of tools and actions. They frequently include replications of characteristic motor actions of real use, but the main criterion for selection and modification of features is the comprehensibility of the gestures rather than the accurate replication of the motor actions of real use. Conclusions: Pantomime of tool use is a communicative gesture rather than a replication of the motor actions of real use. (JINS, 2017, 23, 121–127)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, M.P., & Annett, M. (1996). Crossed aphasia and related anomalies of cerebral organization: Case reports and a genetic hypothesis. Brain and Language, 55, 213239.CrossRefGoogle Scholar
Barbieri, C., & De Renzi, E. (1988). The executive and ideational components of apraxia. Cortex, 24, 535544.CrossRefGoogle ScholarPubMed
Barde, L.H.F., Buxbaum, L.J., & Moll, A.D. (2007). Abnormal reliance on object structure in apraxic’s learning of novel object-related actions. Journal of the International Neuropsychological Society, 13, 9971008.CrossRefGoogle ScholarPubMed
Binder, J.R., & Desai, R.H. (2011). The neurobiology of semantic memory. Trends in Cognitive Sciences, 15, 527536.CrossRefGoogle ScholarPubMed
Bozeat, S., Patterson, K., & Hodges, J.R. (2002). When objects lose their meaning: What happens to their use? Cognitive, Affective & Behavioral Neuroscience, 2, 236251.CrossRefGoogle ScholarPubMed
Brandi, M.L., Wohlschläger, A., Sorg, C., & Hermsdörfer, J. (2014). The neural correlates of planning and executing actual tool use. Journal of Neuroscience, 34, 1318313194.CrossRefGoogle ScholarPubMed
Buxbaum, L.J., Shapiro, A., & Coslett, H.B. (2014). Critical brain regions for tool related and imitative actions: A componential analysis. Brain, 137, 19711985.CrossRefGoogle ScholarPubMed
Corbett, F., Jefferies, E., & Lambon Ralph, M.A. (2013). Exploring multmodal semantic control impairments in semantic aphasia: Evidence from naturalistic object use. Neuropsychologia, 47, 27212731.CrossRefGoogle Scholar
De Renzi, E., Motti, F., & Nichelli, P. (1980). Imitating gestures – A quantitative approach to ideomotor apraxia. Archives of Neurology, 37, 610.CrossRefGoogle ScholarPubMed
Dovern, A., Fink, G., Saliger, J., Karbe, H., Koch, I., & Weiss, P. (2011). Apraxia impairs intentional retrieval of incidentally acquired motor knowledge. Journal of Neuroscience, 31, 81028108.CrossRefGoogle ScholarPubMed
Frey, S.H. (2007). What puts the how in where? Tool use and the divided visual streams hypothesis. Cortex, 43, 368375.CrossRefGoogle ScholarPubMed
Frey, S.H. (2008). Tool use, communicative gesture and cerebral asymmetries in the modern human brain. Philosophical Transactions of the Royal Society of London, B, 363, 19511957.CrossRefGoogle ScholarPubMed
Goldenberg, G. (1996). Defective imitation of gestures in patients with damage in the left or right hemisphere. Journal of Neurology, Neurosurgery, and Psychiatry, 61, 176180.CrossRefGoogle ScholarPubMed
Goldenberg, G. (2013). Apraxia in left-handers. Brain, 136, 25922601.CrossRefGoogle ScholarPubMed
Goldenberg, G., & Hagmann, S. (1997). The meaning of meaningless gestures: A study of visuo-imitative apraxia. Neuropsychologia, 35, 333341.CrossRefGoogle ScholarPubMed
Goldenberg, G., Hentze, S., & Hermsdörfer, J. (2004). The effect of tactile feedback on pantomime of object use in apraxia. Neurology, 63, 18631867.CrossRefGoogle ScholarPubMed
Goldenberg, G., Hermsdörfer, J., Glindemann, R., Rorden, C., & Karnath, H.O. (2007). Pantomime of tool use depends on integrity of left inferior frontal cortex. Cerebral Cortex, 17, 27692776.CrossRefGoogle ScholarPubMed
Goldenberg, G., & Karnath, H.O. (2006). The neural basis of imitation is body-part specific. Journal of Neuroscience, 26, 62826287.CrossRefGoogle ScholarPubMed
Goldenberg, G., & Randerath, J. (2015). Shared neural substrates of aphasia and apraxia. Neuropsychologia, 75, 4049.CrossRefGoogle ScholarPubMed
Goldenberg, G., & Spatt, J. (2009). The neural basis of tool use. Brain, 132, 16451655.CrossRefGoogle ScholarPubMed
Goldstein, K. (1928). Beobachtungen über die Veränderungen des Gesamtverhaltens bei Gehirnschädigung. Monatschrift für Psychiatrie und Neurologie, 68, 217242.CrossRefGoogle Scholar
Goodale, M.A., Jakobson, L.S., & Keillor, J.M. (1994). Differences in the visual control of pantomimed and natural grasping movements. Neuropsychologia, 32, 11591178.CrossRefGoogle ScholarPubMed
Goodglass, H., & Kaplan, E. (1963). Disturbance of gesture and pantomime in aphasia. Brain, 86, 703720.CrossRefGoogle ScholarPubMed
Haaland, K.Y., Harrington, D.L., & Knight, R.T. (2000). Neural representations of skilled movement. Brain, 123, 23062313.CrossRefGoogle ScholarPubMed
Heilman, K.M., Rothie, L.J., & Valenstein, E. (1982). Two forms of ideomotor apraxia. Neurology, 32, 342346.CrossRefGoogle ScholarPubMed
Hermsdörfer, J., Li, Y., Randerath, J., Goldenberg, G., & Johannsen, L. (2012). Tool use without a tool: Kinematic characteristics of pantomiming as compared to actual use and the effect of brain damage. Experimental Brain Research, 218, 201214.CrossRefGoogle ScholarPubMed
Hermsdörfer, J., Terlinden, G., Mühlau, M., Goldenberg, G., & Wohlschläger, A.M. (2007). Neural representation of pantomime and actual tool use: Evidence from an event-related fMRI study. Neuroimage, 36, T109T118.CrossRefGoogle ScholarPubMed
Hoeren, M., Kümmerer, D., Bormann, T., Beume, L., Ludwig, V.M., Vry, M.S., & Weiller, C. (2014). Neural bases of imitation and pantomime in acute stroke patients: Distinct streams for praxis. Brain, 137, 27962810.CrossRefGoogle ScholarPubMed
Hogrefe, K., Ziegler, W., Weidinger, N., & Goldenberg, G. (2012). Non-verbal communication in severe aphasia: Influence of aphasia, apraxia, or semantic processing? Cortex, 48, 952962.CrossRefGoogle ScholarPubMed
Huber, W., Poeck, K., & Willmes, K. (1984). The Aachen Aphasia Test. In F. C. Rose (Ed.), Advances in neurology Vol 42: Progress in aphasiology (pp. 291303). New York: Raven Press.Google Scholar
Jefferies, E. (2013). The neural basis of semantic cognition: Converging evidence from neuropsychology, neuroimaging and TMS. Cortex, 49, 611625.CrossRefGoogle ScholarPubMed
Kertesz, A., Ferro, J.M., & Shewan, C.M. (1984). Apraxia and aphasia: The functional-anatomical basis for their dissociation. Neurology, 34, 4047.CrossRefGoogle ScholarPubMed
Kimura, D., & Archibald, Y. (1974). Motor functions of the left hemisphere. Brain, 97, 337350.CrossRefGoogle ScholarPubMed
Króliczak, G., & Frey, S.H. (2009). A common network in the left cerebral hemisphere represents planning of tool use pantomimes and familiar intransitive gestures at the hand-independent level. Cerebral Cortex, 19, 23962410.CrossRefGoogle ScholarPubMed
Kubiak, A., & Króliczak, G. (2016). Left extrastriate body area is sensitive to the meaning of symbolic gesture: Evidence from fMRI repetition suppression. Scientific Reports, 6, 31064.CrossRefGoogle Scholar
Laimgruber, K., Goldenberg, G., & Hermsdörfer, J. (2005). Manual and hemispheric asymmetries in the execution of actual and pantomimed prehension. Neuropsychologia, 43, 682692.CrossRefGoogle ScholarPubMed
Lambon Ralph, M.A. (2014). Neurocognitive insights on conceptual knowledge and its breakdown. Philosophical Transactions of the Royal Society of London, B, 369, 20120392.CrossRefGoogle ScholarPubMed
Lewis, J.W. (2006). Cortical networks related to human use of tools. The Neuroscientist, 12, 211231.CrossRefGoogle ScholarPubMed
Liepmann, H. (1908). Drei Aufsätze aus dem Apraxiegebiet. Berlin: Karger.Google Scholar
Manuel, A., Radman, N., Mesot, D., Chouiter, L., Clarke, S., Annoni, J.M., & Spierer, L. (2013). Inter- and intrahemispheric dissociations in ideomotor apraxia: A large-scale lesion-symptom mapping study in subacute brain-damaged patients. Cerebral Cortex, 23, 27812789.CrossRefGoogle ScholarPubMed
Martin, M., Beume, L., Kümmerer, D., Schmidt, C.S.M., Bormann, T., Dressing, A., & Weiller, C. (2016). Differential roles of ventral and dorsal streams for conceptual and production-related components of tool use in acute stroke patients. Cerebral Cortex, 26, 37543771.CrossRefGoogle ScholarPubMed
Mengotti, P., Corradi-Dell’Aqua, C., Negri, G.A.L., Ukmar, M., Pesavento, V., & Rumiati, R.I. (2013). Selective imitation impairments differentially interact with language processing. Brain, 136, 26022618.CrossRefGoogle ScholarPubMed
Meteyard, L., Cuadrado, S.R., Bahrami, B., & Vigliocco, G. (2012). Coming of age: A review of embodiment and the neuroscience of semantics. Cortex, 48, 788804.CrossRefGoogle ScholarPubMed
Novack, M.A., & Goldin-Meadow, S. (2016). Gesture as representational action: A paper about function. Psychonomic Bulletin & Review, [Epub ahead of print].Google Scholar
Osiurak, F. (2014). What neuropsychology tells us about human tool use. The Four Constraints Theory (4CT): Mechanics, space, time, and effort. Neuropsychology Reviews, 24, 88115.CrossRefGoogle ScholarPubMed
Price, C.J., Crinion, J.T., Leff, A.P., Richardson, F.M., Schofield, T.M., Prejawa, S., & Seghier, M.L. (2010). Lesion sites that predict the ability to gesture how an object is used. Archives Italiennes de Biologie, 148, 243258.Google ScholarPubMed
Randerath, J., Goldenberg, G., Spijkers, W., Li, Y., & Hermsdörfer, J. (2010). Different left brain regions are essential for grasping a tool compared with its subsequent use. Neuroimage, 53, 171180.CrossRefGoogle ScholarPubMed
Randerath, J., Goldenberg, G., Spijkers, W., Li, Y., & Hermsdörfer, J. (2011). From pantomime to actual use: How affordances can facilitate actual tool-use. Neuropsychologia, 49, 24102416.CrossRefGoogle ScholarPubMed
Rothi, L.J. G., Raymer, A.M., & Heilman, K.M. (1997). Limb praxis assessment. In L.J. G. Rothi & K.M. Heilman (Eds.), Apraxia - The neuropsychology of action (pp. 6174). Hove: Psychology Press.Google Scholar
Roy, E.A., & Hall, C. (1992). Limb apraxia: A process approach. In L. Proteau & D. Elliott (Eds.), Vision and motor control (pp. 261282). Amsterdam: Elsevier.CrossRefGoogle Scholar
Roy, E.A., Square-Storer, P., Hogg, S., & Adams, S. (1991). Analysis of task demands in apraxia. International Journal of Neuroscience, 56, 177186.CrossRefGoogle ScholarPubMed
Salazar-Lopez, E., Schwaiger, M., & Hermsdörfer, J. (2016). Lesion correlates of impairments in actual tool use following unilateral brain damage. Neuropsychologia, 84, 167180.CrossRefGoogle ScholarPubMed
Seghier, M.L. (2013). The angular gyrus - multiple functions and multiple subdivisions. The Neuroscientist, 19, 4361.CrossRefGoogle ScholarPubMed
Silveri, M.C., & Ciccarelli, N. (2009). Semantic memory in object use. Neuropsychologia, 47, 26342641.CrossRefGoogle ScholarPubMed
Spatt, J., Bak, T., Bozeat, S., Patterson, K., & Hodges, J.R. (2002). Apraxia, mechanical problem solving and semantic knowledge - Contributions to object usage in corticobasal degeneration. Journal of Neurology, 249, 601608.CrossRefGoogle ScholarPubMed
Tessari, A., Canessa, N., Ukmar, M., & Rumiati, R.I. (2007). Neuropsychological evidence for a strategic control of multiple routes in imitation. Brain, 130, 11111126.CrossRefGoogle ScholarPubMed
Vanbellingen, T., Kersten, B., Van de Winckel, A., Bellion, M., Baronti, F., Müri, R., & Bohlhalter, S. (2011). A new bedside test of gestures in stroke: The apraxia screen of TULIA. Journal of Neurology, Neurosurgery, and Psychiatry, 82, 389392.CrossRefGoogle ScholarPubMed
Vannuscorps, G., Andres, M., & Pillon, A. (2014). Is motor knowledge part and parcel of the concepts of manipulable artifacts? clues from a case of upper limb aplasia. Brain and Cognition, 84, 132140.CrossRefGoogle ScholarPubMed
Vingerhoets, G., Alderweireldt, A., Vandemaele, P., Cai, Q., Van der Haegen, L., Brysbaert, M., & Achten, E. (2013). Praxis and language are linked: Evidence from co-lateralization in individuals with atypical language dominance. Cortex, 49, 172183.CrossRefGoogle ScholarPubMed
Weiss, P.H., Kalbe, E., Kessler, J., & Fink, G.R. (2013). Kölner apraxie screening. Göttingen: Hogrefe.Google Scholar
Weiss, P.H., Ubben, S.D., Kaesberg, S., Kalbe, E., Kessler, J., Liebig, T., & Fink, G.R. (2016). Where language meets meaningful action: A combined behavior and lesion analysis of aphasia and apraxia. Brain Structure and Function, 221, 563576.CrossRefGoogle Scholar