Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-17T20:17:21.409Z Has data issue: false hasContentIssue false

Evidence for deficits in facial affect recognition and theory of mind in multiple sclerosis

Published online by Cambridge University Press:  01 March 2009

JULIE D. HENRY*
Affiliation:
School of Psychology, University of New South Wales, Sydney, New South Wales
LOUISE H. PHILLIPS
Affiliation:
School of Psychology, University of Aberdeen, Aberdeen, Scotland
WILLIAM W. BEATTY
Affiliation:
Posthumous
SKYE MCDONALD
Affiliation:
School of Psychology, University of New South Wales, Sydney, New South Wales
WENDY A. LONGLEY
Affiliation:
Multiple Sclerosis New South Wales/Victoria, Sydney, New South Wales
AMY JOSCELYNE
Affiliation:
School of Psychology, University of New South Wales, Sydney, New South Wales
PETER G. RENDELL
Affiliation:
School of Psychology, Australian Catholic University, Melbourne, Victoria
*
*Correspondence and reprint requests to: Julie D. Henry, School of Psychology, University of New South Wales, Sydney, New South Wales 2052, Australia. E-mail: [email protected]

Abstract

Multiple sclerosis (MS) is a white matter disease associated with neurocognitive difficulties. More recently the potential for white matter pathology to also disrupt important aspects of emotion understanding has been recognized. However, no study to date has assessed whether capacity for facial affect recognition and theory of mind (ToM) is disrupted in MS, or whether any observed deficits are related to more general cognitive impairment. In the present study MS participants (n = 27) and nonclinical controls (n = 30) were administered measures of facial affect recognition, ToM, and cognitive functioning. MS participants were significantly impaired on the ToM task, and also presented with specific deficits decoding facial emotions of anger and fear. Performance on the measures of facial affect recognition and ToM were related to general cognitive functioning, and in particular, measures sensitive to executive dysfunction and information processing speed. These data highlight the need for future research to more fully delineate the extent and implications of emotion understanding difficulties in this population. (JINS, 2009, 15, 277–285.)

Type
Research Articles
Copyright
Copyright © INS 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adolphs, R., Baron-Cohen, S., & Tranel, D. (2002). Impaired recognition of social emotions following amygdala damage. Journal of Cognitive Neuroscience, 14, 12641274.CrossRefGoogle ScholarPubMed
Adolphs, R., Damasio, H., Tranel, D., Cooper, G., & Damasio, A.R. (2000). A role for somatosensory cortices in the visual recognition of emotion as revealed by three-dimensional lesion mapping. Journal of Neuroscience, 20, 26832690.CrossRefGoogle ScholarPubMed
Adolphs, R., Tranel, D., Damasio, H., & Damasio, A. (1994). Impaired recognition of emotion in facial expressions following bilateral damage to the human amygdala. Nature, 372, 669672.CrossRefGoogle Scholar
Apperly, I.A., Samson, D., Chiavarino, C., & Humphreys, G. (2004). Frontal and temporo-parietal lobe contributions to theory of mind: Neuropsychological evidence from a false-belief task with reduced language and executive demands. Journal of Cognitive Neuroscience, 16, 17731784.CrossRefGoogle ScholarPubMed
Arnett, P.A., Higginson, C.I., Voss, W.D., Bender, W.I., Wurst, J.M., & Tippin, J.M. (1999). Depression in multiple sclerosis: Relationship to working memory capacity. Neuropsychology, 13, 546556.CrossRefGoogle ScholarPubMed
Arnett, P.A., Rao, S.M., Grafman, J., Bernardin, L., Luchetta, T., Binder, J.R., & Lobeck, L. (1997). Executive functions in multiple sclerosis: An analysis of temporal ordering, semantic encoding, and planning abilities. Neuropsychology, 11, 535544.CrossRefGoogle ScholarPubMed
Bailey, P.E. & Henry, J.D. (2008). Growing less empathic with age: Disinhibition of the self-perspective. Journal of Gerontology: Psychological Sciences, 63, P219P226.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Jolliffe, T., Mortimore, C., & Robertson, M. (1997). A further advanced test of theory of mind: Evidence from very high functioning adults with autism or Asperger syndrome. Journal of Child Psychology and Psychiatry, 38, 813822.CrossRefGoogle ScholarPubMed
Baron-Cohen, S., Wheelwright, S., Hill, J., Raste, Y., & Plumb, I. (2001). The “Reading the Mind in the Eyes” test revised version: A study with normal adults, and adults with Asperger syndrome or high-functioning autism. Journal of Child Psychology and Psychiatry and Allied Disciplines, 42, 241251.CrossRefGoogle ScholarPubMed
Beatty, W.W., Goodkin, D.E., Beatty, P.A., & Monson, N. (1989). Frontal lobe dysfunction and memory impairment in patients with chronic progressive multiple sclerosis. Brain and Cognition, 11, 7386.CrossRefGoogle ScholarPubMed
Beatty, W.W., Orbelo, D.M., Sorocco, K.H., & Ross, E.D. (2003). Comprehension of affective prosody in multiple sclerosis. Multiple Sclerosis, 9, 148153.CrossRefGoogle ScholarPubMed
Beatty, W.W., Paul, R.H., Wilbanks, S.L., Hames, K.A., Blanco, C.R., & Goodkin, D.E. (1995). Identifying multiple sclerosis patients with mild or global cognitive impairment using the Screening Examination for Cognitive Impairment (SEFCI). Neurology, 45, 718723.CrossRefGoogle ScholarPubMed
Beeney, J. & Arnett, P.A. (2008). Stress and memory bias interact to predict depression in multiple sclerosis. Neuropsychology, 22, 118126.CrossRefGoogle ScholarPubMed
Beers, S.R., Goldstein, G., & Katz, L.J. (1994). Neuropsychological differences between college students with learning disabilities and those with mild head injury. Journal of Learning Disabilities, 27, 315324.CrossRefGoogle ScholarPubMed
Bobholz, J.A. & Rao, S.M. (2003). Cognitive dysfunction in multiple sclerosis: A review of recent developments. Current Opinion in Neurology, 16, 283288.CrossRefGoogle ScholarPubMed
Bobholz, J.A., Rao, S.M., Lobeck, L., Elsinger, L., Elsinger, C., Gleason, A., Kanz, J., Durgerian, S., & Maas, E. (2006). fMRI study of episodic memory in relapsing-remitting MS: Correlation with T2 lesion volume. Neurology, 67, 16401645.CrossRefGoogle ScholarPubMed
Buitelaar, J.K., van der Wees, M., Swaab-Barneveld, H., & van der Gaag, J. (1999). Verbal memory and performance IQ predict theory of mind and emotion recognition ability in children with autistic spectrum disorders and psychiatric control children. Journal of Child Psychology and Psychiatry, 40, 869881.CrossRefGoogle ScholarPubMed
Bull, R., Phillips, L.H., & Conway, C. (2008). The role of control functions in mentalizing: Dual task studies of Theory of Mind and executive function. Cognition, 107, 663672.CrossRefGoogle ScholarPubMed
Calder, A.J., Keane, J., Lawrence, A.D., & Manes, F. (2004). Impaired recognition of anger following damage to the ventral striatum. Brain, 127, 19581969.CrossRefGoogle Scholar
Carstensen, L.L., Gross, J.J., & Fung, H.H. (1998). The social context of emotional experience. Annual Review of Gerontology and Geriatrics, 17, 325352.Google Scholar
Carton, J.S., Kessler, E.A., & Pape, C.L. (1999). Nonverbal decoding skills and relationship well-being in adults. Journal of Nonverbal Behavior, 23, 91100.CrossRefGoogle Scholar
Chalfont, A.M., Bryant, R.A., & Fulcher, G. (2004). Post traumatic stress disorder following diagnosis of multiple sclerosis. Journal of Traumatic Stress, 17, 423428.CrossRefGoogle Scholar
Crawford, J.R. & Henry, J.D. (2005). Assessment of executive deficits. In Halligan, P.W. & Wade, N. (Eds.), The effectiveness of rehabilitation for cognitive deficits (pp. 233246). London: Oxford University Press.CrossRefGoogle Scholar
Decety, J. & Jackson, P.L. (2004). The functional architecture of human empathy. Behavioural and Cognitive Neuroscience Reviews, 3, 71100.CrossRefGoogle ScholarPubMed
Ekman, P. & Friesen, W.V. (1976). Pictures of facial affect. Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Feldman, R.S., Philippot, P., & Custrini, R.J. (1991). Social competence and nonverbal behavior. In Feldman, R.S. & Rime, B. (Eds.), Fundamentals of nonverbal behavior. New York: Cambridge University Press.Google Scholar
Filley, C.M. (2005). White matter and behavioral neurology. Annals of the New York Academy of Sciences, 1064, 162183.CrossRefGoogle ScholarPubMed
Green, R.E.A., Turner, G.R., & Thompson, W.F. (2004). Deficits in facial emotion perception in adults with recent traumatic brain injury. Neuropsychologia, 42, 133141.CrossRefGoogle ScholarPubMed
Henry, J.D. & Beatty, W.W. (2006). Verbal fluency deficits in multiple sclerosis. Neuropsychologia, 44, 11661174.CrossRefGoogle ScholarPubMed
Henry, J.D. & Crawford, JR. (2004). A meta-analytic review of verbal fluency performance following focal cortical lesions. Neuropsychology, 18, 284295.CrossRefGoogle ScholarPubMed
Henry, J.D., Phillips, L.H., Crawford, J.R., Iatswaart, M., & Summers, F. (2006). Theory of mind following traumatic brain injury: The role of emotion recognition and executive dysfunction. Neuropsychologia, 44, 16231628.CrossRefGoogle ScholarPubMed
Henry, J.D., Ruffman, T., McDonald, S., Peek-O’Leary, M., Phillips, L.H., Brodaty, H., & Rendell, P.G. (2008). Recognition of disgust is selectively preserved in Alzheimer’s disease. Neuropsychologia, 46, 13631370.CrossRefGoogle ScholarPubMed
Hohol, M.J., Orav, E.J., & Weiner, H.L. (1995). Disease steps in multiple sclerosis: A simple approach to evaluate disease progression. Neurology, 45, 251255.CrossRefGoogle ScholarPubMed
Just, M.A., Cherkassky, V.L., Keller, T.A., Kana, R.K., & Minshew, N.J. (2007). Functional and anatomical cortical underconnectivity in autism: Evidence from an fMRI study of an executive function task and corpus callosum morphometry. Cerebral Cortex, 17, 951961.CrossRefGoogle ScholarPubMed
Kaland, N., Callesen, K., Moller-Nielsen, A., Mortensen, E.L., & Smith, L. (2008). Performance of children and adolescents with Asperger syndrome or high functioning autism on advanced theory of mind tasks. Journal of Autism and Developmental Disorders, 38, 11121123.CrossRefGoogle ScholarPubMed
Mohr, D.C., Goodkin, D.E., Likosky, W., Beutler, L., Gatto, N., & Langan, M.K. (1997). Identification of Beck Depression Inventory items related to multiple sclerosis. Journal of Behavioral Medicine, 20, 407414.CrossRefGoogle ScholarPubMed
Nordahl, C.W., Ranganath, C., Yonelinas, A.P., DeCarli, C., Fletcher, E., & Jagust, W.J. (2006). White matter changes compromise prefrontal cortex function in healthy elderly individuals. Journal of Cognitive Neuroscience, 18, 418429.CrossRefGoogle ScholarPubMed
Phillips, L.H., Channon, S., Tunstall, M., Hedenstrom, A., & Lyons, K. (2008). The role of working memory in decoding emotions. Emotion, 8, 184191.CrossRefGoogle ScholarPubMed
Phillips, L.H., MacLean, R.D.J., & Allen, R. (2002). Age and the understanding of emotions: Neuropsychological and sociocognitive perspectives. Journal of Gerontology: Psychological Sciences, 57, 526530.CrossRefGoogle ScholarPubMed
Ruffman, T., Henry, J.D., Livingstone, V., & Phillips, L.H. (2008). A meta-analytic review of emotion recognition and aging: Implications for neuropsychological models of aging. Neuroscience and Biobehavioral Reviews, 32, 863–881.CrossRefGoogle ScholarPubMed
Samson, D., Apperly, I.A., Kathirgamanathan, U., & Humphreys, G.W. (2005). Seeing it my way: A case of a selective deficit in inhibiting self-perspective. Brain, 128, 11021111.CrossRefGoogle Scholar
Smith, A. (1982). Symbol Digit Modalities Test (SDMT) Manual (Revised). Los Angeles: Western Psychological Services.Google Scholar
Spell, L.A. & Frank, E. (2000). Recognition of nonverbal communication of affect following traumatic brain injury. Journal of Nonverbal Behavior, 24, 285300.CrossRefGoogle Scholar
Sprengelmeyer, R., Rausch, M., Eysel, U.T., & Przuntek, H. (1998). Neural structures associated with recognition of facial expressions of basic emotions. Proceedings of the Royal Society of London B: Biological Sciences, 265, 19271931.CrossRefGoogle ScholarPubMed
Stuss, D.T. & Gow, C.A. (1992). “Frontal dysfunction” after traumatic brain injury. Neuropsychiatry, Neuropsychology, and Behavioral Neurology, 5, 272282.Google Scholar
Suzuki, A., Hoshino, T., Shigemasu, K., & Kawamura, M. (2006). Disgust-specific impairment of facial expression recognition in Parkinson’s disease. Brain, 129, 707717.CrossRefGoogle ScholarPubMed
Tager-Flusberg, H. (2001). The theory of mind hypothesis in autism. In Burack, J., Charman, T., Yirmiya, N. & Zelano, P.R. (Eds.), Development in autism: Perspectives from theory and research (pp. 173193). Hillsdale, NJ: Erlbaum.Google Scholar
Tedeschi, G., Lavorgna, L., Russo, P., Prinster, A., Dinacci, D., Savettieri, G., Quattrone, A., Livrea, P., Messina, C., Reggio, A., Bresciamorra, V., Orefice, G., Paciello, M., Brunetti, A., Coniglio, G., Bonavita, S., Di Costanzo, A., Bellacosa, A., Valentino, P., Quarantelli, M., Patti, F., Salemi, G., Cammarata, E., Simone, I.L., Salvatore, M., Bonavita, V., & Alfano, B. (2005). Brain atrophy and lesion load in a large population of patients with multiple sclerosis. Neurology, 65, 280285.CrossRefGoogle Scholar
Thomas, C., Moya, L., Avidan, G., Humphreys, K., Jung, K.J., Peterson, M.A., & Behrmann, M. (2008). Reduction in white matter connectivity revealed by diffusion tensor imaging, may account for age-related changes in face perception. Journal of Cognitive Neuroscience, 20, 268284.CrossRefGoogle ScholarPubMed
Tribe, K.L., Longley, W.A., Fulcher, G., Faine, R.J., Blagus, L., Pearce, G., Hope, A.D., & Henderson, E.M. (2006). Living a life with multiple sclerosis in New South Wales, Australia, at the beginning of the 21st century: Impact of mobility disability. International Journal of MS Care, 8, 1930.CrossRefGoogle Scholar
Yesavage, J.A., Brink, T.L., Rose, T.L., Lum, O., Huang, V., Adey, M., & Leirer, V.O. (1983). Development and validation of a geriatric depression screening scale: A preliminary report. Journal of Psychiatric Research, 17, 3749.CrossRefGoogle Scholar
Zachary, R. (1986). Shipley Institute of Living Scale–Revised. Los Angeles: Western Psychological Services.Google Scholar