Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T03:21:19.911Z Has data issue: false hasContentIssue false

Everyday memory: Self-perception and structural brain correlates in a healthy elderly population

Published online by Cambridge University Press:  15 October 2010

ASTRID BJØRNEBEKK*
Affiliation:
Department of Psychology, University of Oslo, Norway
LARS T. WESTLYE
Affiliation:
Department of Psychology, University of Oslo, Norway
KRISTINE B. WALHOVD
Affiliation:
Department of Psychology, University of Oslo, Norway Department of Neuropsychology, Ullevål University Hospital, Oslo, Norway
ANDERS M. FJELL
Affiliation:
Department of Psychology, University of Oslo, Norway Department of Neuropsychology, Ullevål University Hospital, Oslo, Norway
*
*Correspondence and reprint requests to: Astrid Bjørnebekk, Department of Psychology, University of Oslo, PoB 1094 Blindern, 0317 Oslo, Norway. E-mail: [email protected]

Abstract

Mapping the cerebral structural correlates of age-related cognitive decline is a growing area of research. The aim of the present study was to investigate the relationship between healthy elderly’s perceived memory functioning in daily life, neuropsychological test performance on a standardized test on verbal memory, and cortical thickness and subcortical volumes in brain regions implicated in memory networks, including the medial temporal lobe (MTL). Eighty-three healthy and cognitively well-functioning volunteers aged 60–85 years underwent MRI scans, Everyday Memory Questionnaire (EMQ), and neuropsychological assessment. Both self-perceived memory in daily life related to attention and executive functions and an objective measure of verbal recall (CVLT) were, independently, associated with thickness of the left MTL. The two cognitive variables were uncorrelated, and including both measures in the model nearly doubled the amount of explained variance on MTL thickness. This suggests that measures of perceived everyday memory might substantially inform and supplement studies investigating the relationships between neuropsychological test performance and brain morphology. The results are consistent with a bigger-is-better relationship in the MTL and suggest that EMQ and neuropsychological test performance have detectable and comparable structural correlates in a region critically involved in memory functions in the well-functioning elderly. (JINS, 2010, 16, 1115–1126.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, G.E., DeLong, M.R., & Strick, P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381.CrossRefGoogle ScholarPubMed
Allen, J.S., Bruss, J., Brown, C.K., & Damasio, H. (2005). Normal neuroanatomical variation due to age: The major lobes and a parcellation of the temporal region. Neurobiology of Aging, 26(9), 12451260; discussion 1279–1282.CrossRefGoogle Scholar
Beason-Held, L.L., Kraut, M.A., & Resnick, S.M. (2008a). I. Longitudinal changes in aging brain function. Neurobiology of Aging, 29(4), 483496.CrossRefGoogle ScholarPubMed
Beason-Held, L.L., Kraut, M.A., & Resnick, S.M. (2008b). II. Temporal patterns of longitudinal change in aging brain function. Neurobiology of Aging, 29(4), 497513.CrossRefGoogle ScholarPubMed
Beck, A.T., Steer, R.A., & Brown, G.K. (1987). Beck depression inventory scoring manual. New York: The Psychological Corporation.Google Scholar
Bischoff-Grethe, A., Ozyurt, I.B., Busa, E., Quinn, B.T., Fennema-Notestine, C., Clark, C.P., et al. . (2007). A technique for the deidentification of structural brain MR images. Human Brain Mapping, 28(9), 892903.CrossRefGoogle ScholarPubMed
Blatter, D.D., Bigler, E.D., Gale, S.D., Johnson, S.C., Anderson, C.V., Burnett, B.M., et al. . (1995). Quantitative volumetric analysis of brain MR: Normative database spanning 5 decades of life. AJNR American Journal of Neuroradiology, 16(2), 241251.Google ScholarPubMed
Boake, C., Freeland, J.C., Ringholz, G.M., Nance, M.L., & Edwards, K.E. (1995). Awareness of memory loss after severe closed-head injury. Brain Injury, 9(3), 273283.CrossRefGoogle ScholarPubMed
Buckner, R.L. (2004). Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron, 44(1), 195208.CrossRefGoogle Scholar
Buckner, R.L., & Carroll, D.C. (2007). Self-projection and the brain. Trends in Cognitive Sciences, 11(2), 4957.CrossRefGoogle ScholarPubMed
Buckner, R.L., Head, D., Parker, J., Fotenos, A.F., Marcus, D., Morris, J.C., et al. . (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. Neuroimage, 23(2), 724738.CrossRefGoogle ScholarPubMed
Buckner, R.L., & Wheeler, M.E. (2001). The cognitive neuroscience of remembering. Nature Reviews Neuroscience, 2(9), 624634.CrossRefGoogle ScholarPubMed
Cardenas, V.A., Chao, L.L., Studholme, C., Yaffe, K., Miller, B.L., Madison, C., et al. . (2009). Brain atrophy associated with baseline and longitudinal measures of cognition. Neurobiology of Aging; doi: 10.1016/j.neurobiolaging.2009.04.011.Google ScholarPubMed
Chaytor, N., & Schmitter-Edgecombe, M. (2003). The ecological validity of neuropsychological tests: A review of the literature on everyday cognitive skills. Neuropsychology Review, 13(4), 181197.CrossRefGoogle ScholarPubMed
Chee, M.W., Chen, K.H., Zheng, H., Chan, K.P., Isaac, V., Sim, S.K., et al. . (2009). Cognitive function and brain structure correlations in healthy elderly East Asians. Neuroimage, 46(1), 257269.CrossRefGoogle ScholarPubMed
Cornish, I.M. (2000). Factor structure of the everyday memory questionnaire. British Journal of Psychology, 91(Pt. 3), 427438.CrossRefGoogle ScholarPubMed
Craik, F.I.M. (1994). Memory changes in normal aging. Current Directions in Psychological Science, 3(5), 155158.CrossRefGoogle Scholar
Dale, A.M., Fischl, B., & Sereno, M.I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage, 9(2), 179194.CrossRefGoogle ScholarPubMed
Dale, A.M., & Sereno, M.I. (1993). Improved localization of cortical activity by combining EEG and MEG with MRI cortical surface reconstruction: A linear approach. Journal of Cognitive Neuroscience, 5, 162176.CrossRefGoogle ScholarPubMed
de Groot, J.C., de Leeuw, F.E., Oudkerk, M., Hofman, A., Jolles, J., & Breteler, M.M. (2001). Cerebral white matter lesions and subjective cognitive dysfunction: The Rotterdam Scan Study. Neurology, 56(11), 15391545.CrossRefGoogle ScholarPubMed
de Toledo-Morrell, L., Goncharova, I., Dickerson, B., Wilson, R.S., & Bennett, D.A. (2000). From healthy aging to early Alzheimer’s disease: In vivo detection of entorhinal cortex atrophy. Annals of the New York Academy of Sciences, 911, 240253.CrossRefGoogle ScholarPubMed
Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B. (Eds.). (1987). California verbal learning test: adult version manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Derouesne, C., Alperovitch, A., Arvay, N., Migeon, P., Moulin, F., Vollant, M., et al. . (1989). Memory complaints in the elderly: A study of 367 community-dwelling individuals from 50 to 80 years old. Archives of Gerontology and Geriatrics - Supplement, 1, 151163.Google Scholar
Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., et al. . (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980.CrossRefGoogle ScholarPubMed
Devanand, D.P., Pradhaban, G., Liu, X., Khandji, A., De Santi, S., Segal, S., et al. . (2007). Hippocampal and entorhinal atrophy in mild cognitive impairment: Prediction of Alzheimer disease. Neurology, 68(11), 828836.CrossRefGoogle ScholarPubMed
Dickerson, B.C., Feczko, E., Augustinack, J.C., Pacheco, J., Morris, J.C., Fischl, B., et al. . (2009). Differential effects of aging and Alzheimer’s disease on medial temporal lobe cortical thickness and surface area. Neurobiology of Aging, 30(3), 432440.CrossRefGoogle ScholarPubMed
Drysdale, K., Shores, A., & Levick, W. (2004). Use of the everyday memory questionnaire with children. Child Neuropsychology, 10(2), 6775.CrossRefGoogle ScholarPubMed
Ferreira, L.K., Diniz, B.S., Forlenza, O.V., Busatto, G.F., & Zanetti, M.V. (2009). Neurostructural predictors of Alzheimer’s disease: A meta-analysis of VBM studies. Neurobiology of Aging; doi: 10.1016/j.neurobiolaging.2009.11.008.Google ScholarPubMed
Fischl, B., & Dale, A.M. (2000). Measuring the thickness of the human cerebral cortex from magnetic resonance images. Proceedings of the National Academy of Sciences of the United States of America, 97(20), 1105011055.CrossRefGoogle ScholarPubMed
Fischl, B., Liu, A., & Dale, A.M. (2001). Automated manifold surgery: Constructing geometrically accurate and topologically correct models of the human cerebral cortex. IEEE Transactions on Medical Imaging, 20(1), 7080.CrossRefGoogle ScholarPubMed
Fischl, B., Salat, D.H., Busa, E., Albert, M., Dieterich, M., Haselgrove, C., et al. . (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron, 33(3), 341355.CrossRefGoogle ScholarPubMed
Fischl, B., Sereno, M.I., & Dale, A.M. (1999). Cortical surface-based analysis. II: Inflation, flattening, and a surface-based coordinate system. Neuroimage, 9(2), 195207.CrossRefGoogle Scholar
Fischl, B., Sereno, M.I., Tootell, R.B., & Dale, A.M. (1999). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8(4), 272284.3.0.CO;2-4>CrossRefGoogle Scholar
Fischl, B., van der Kouwe, A., Destrieux, C., Halgren, E., Segonne, F., Salat, D.H., et al. . (2004). Automatically parcellating the human cerebral cortex. Cerebral Cortex, 14(1), 1122.CrossRefGoogle ScholarPubMed
Fjell, A.M., Westlye, L.T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., et al. . (2009). High consistency of regional cortical thinning in aging across multiple samples. Cerebral Cortex, 19(9), 20012012.CrossRefGoogle ScholarPubMed
Fjell, A.M., Westlye, L.T., Greve, D.N., Fischl, B., Benner, T., van der Kouwe, A.J., et al. . (2008). The relationship between diffusion tensor imaging and volumetry as measures of white matter properties. Neuroimage, 42(4), 16541668.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”: A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.CrossRefGoogle ScholarPubMed
Fotenos, A.F., Snyder, A.Z., Girton, L.E., Morris, J.C., & Buckner, R.L. (2005). Normative estimates of cross-sectional and longitudinal brain volume decline in aging and AD. Neurology, 64(6), 10321039.CrossRefGoogle ScholarPubMed
Gabrieli, J.D.E., Singh, J., Stebbins, G.T., & Goetz, C.G. (1996). Reduced working memory span in Parkinson’s disease: Evidence for the role of frontostriatal system in working and strategic memory. Neuropsychology, 10(3), 322332.CrossRefGoogle Scholar
Gazzaniga, M.S. (1995). Principles of human brain organization derived from split-brain studies. Neuron, 14(2), 217228.CrossRefGoogle ScholarPubMed
Hanninen, T., Reinikainen, K.J., Helkala, E.L., Koivisto, K., Mykkanen, L., Laakso, M., et al. . (1994). Subjective memory complaints and personality traits in normal elderly subjects. Journal of the American Geriatrics Society, 42(1), 14.CrossRefGoogle ScholarPubMed
Hedden, T., & Gabrieli, J.D.E. (2004). Insights into the aging mind: A view from cognitive neuroscience. Nature Reviews Neuroscience, 5(2), 8796.CrossRefGoogle ScholarPubMed
Herrmann, D.J. (1982). Know thy memory: The use of questionnaires to assess and study memory. Psychological Bulletin, 92(2), 434452.CrossRefGoogle Scholar
Hickox, A., & Sunderland, A. (1992). Questionnaire and checklist approaches to assessment of everyday memory problems. In Crawford, J.R.P.D.M.M.W.W. (Ed.), A handbook of neuropsychological assessment, (pp. 103113). Hillsdale, NJ, England: Lawrence Erlbaum Associates, Inc.Google Scholar
Jernigan, T.L., Archibald, S.L., Berhow, M.T., Sowell, E.R., Foster, D.S., & Hesselink, J.R. (1991). Cerebral structure on MRI, Part I: Localization of age-related changes. Biological Psychiatry, 29(1), 5567.CrossRefGoogle ScholarPubMed
Jernigan, T.L., Archibald, S.L., Fennema-Notestine, C., Gamst, A.C., Stout, J.C., Bonner, J., et al. . (2001). Effects of age on tissues and regions of the cerebrum and cerebellum. Neurobiology of Aging, 22(4), 581594.CrossRefGoogle Scholar
Kaiser, H.F. (1970). A second generation little jiffy. Psychometrika, 35(4), 401415.CrossRefGoogle Scholar
Kaiser, H.F. (1974). An index of factorial simplicity. Psychometrika, 39(1), 3136.CrossRefGoogle Scholar
Kinsella, K., & He, W. (2008). An aging world, 2008 (Bureau, U.S.C., Trans.). Washington DC: National Institute of Aging.Google Scholar
Kruggel, F. (2006). MRI-based volumetry of head compartments: Normative values of healthy adults. Neuroimage, 30(1), 111.CrossRefGoogle ScholarPubMed
Lincoln, N.B., & Tinson, D.J. (1989). The relation between subjective and objective memory impairment after stroke. Feb 1989. British Journal of Clinical Psychology, 28(1), 6165.CrossRefGoogle Scholar
Lovelace, E.A., & Twohig, P.T. (1990). Healthy older adults’ perceptions of their memory functioning and use of mnemonics. Bulletin of the Psychonomic Society, 28(2), 115118.CrossRefGoogle Scholar
Lundervold, A.J., & Sundet, K. (2004). CVLT-norsk versjon. Sollentuna: Psykologforlaget AB.Google Scholar
McDonald, R.J., & White, N.M. (1993). A triple dissociation of memory systems: Hippocampus, amygdala, and dorsal striatum. Behavioral Neuroscience, 107(1), 322.CrossRefGoogle ScholarPubMed
McDougall, G.J. Jr., Becker, H., & Arheart, K.L. (2006). Older adults in the SeniorWISE study at risk for mild cognitive impairment. Archives of Psychiatric Nursing, 20(3), 126134.CrossRefGoogle ScholarPubMed
Minett, T.S., Dean, J.L., Firbank, M., English, P., & O’Brien, J.T. (2005). Subjective memory complaints, white-matter lesions, depressive symptoms, and cognition in elderly patients. American Journal of Geriatric Psychiatry, 13(8), 665671.CrossRefGoogle ScholarPubMed
Miranda, B., Madureira, S., Verdelho, A., Ferro, J., Pantoni, L., Salvadori, E., et al. . (2008). Self-perceived memory impairment and cognitive performance in an elderly independent population with age-related white matter changes. Journal of Neurology, Neurosurgery & Psychiatry, 79(8), 869873.CrossRefGoogle Scholar
Montgomery, C., & Fisk, J.E. (2007). Everyday memory deficits in ecstasy-polydrug users. Journal of Psychopharmacology, 21(7), 709717.CrossRefGoogle ScholarPubMed
Nyberg, L., Backman, L., Erngrund, K., Olofsson, U., & Nilsson, L.G. (1996). Age differences in episodic memory, semantic memory, and priming: Relationships to demographic, intellectual, and biological factors. The Journals of Gerontology: Series B-Psychological Sciences and Social Sciences, 51(4), P234240.CrossRefGoogle ScholarPubMed
O’Connor, D.W., Pollitt, P.A., Roth, M., Brook, P.B., & Reiss, B.B. (1990). Memory complaints and impairment in normal, depressed, and demented elderly persons identified in a community survey. Archives of General Psychiatry, 47(3), 224227.CrossRefGoogle Scholar
Packard, M.G., & White, N.M. (1991). Dissociation of hippocampus and caudate nucleus memory systems by posttraining intracerebral injection of dopamine agonists. Behavioral Neuroscience, 105(2), 295306.CrossRefGoogle ScholarPubMed
Panizzon, M.S., Fennema-Notestine, C., Eyler, L.T., Jernigan, T.L., Prom-Wormley, E., Neale, M., et al. . (2009). Distinct genetic influences on cortical surface area and cortical thickness. Cerebral Cortex, 19(11), 27282735.CrossRefGoogle ScholarPubMed
Pfefferbaum, A., Mathalon, D.H., Sullivan, E.V., Rawles, J.M., Zipursky, R.B., & Lim, K.O. (1994). A quantitative magnetic resonance imaging study of changes in brain morphology from infancy to late adulthood. Archives of Neurology, 51(9), 874887.CrossRefGoogle ScholarPubMed
Raz, N., Gunning-Dixon, F., Head, D., Rodrigue, K.M., Williamson, A., & Acker, J.D. (2004). Aging, sexual dimorphism, and hemispheric asymmetry of the cerebral cortex: Replicability of regional differences in volume. Neurobiology of Aging, 25(3), 377396.CrossRefGoogle ScholarPubMed
Raz, N., Gunning, F.M., Head, D., Dupuis, J.H., McQuain, J., Briggs, S.D., et al. . (1997). Selective aging of the human cerebral cortex observed in vivo: Differential vulnerability of the prefrontal gray matter. Cerebral Cortex, 7(3), 268282.CrossRefGoogle ScholarPubMed
Resnick, S.M., Pham, D.L., Kraut, M.A., Zonderman, A.B., & Davatzikos, C. (2003). Longitudinal magnetic resonance imaging studies of older adults: A shrinking brain. Journal of Neuroscience, 23(8), 32953301.CrossRefGoogle ScholarPubMed
Richardson, J.T., & Chan, R.C. (1995). The constituent structure of subjective memory questionnaires: Evidence from multiple sclerosis. Memory, 3(2), 187200.CrossRefGoogle ScholarPubMed
Rossi, R., Geroldi, C., Bresciani, L., Testa, C., Binetti, G., Zanetti, O., et al. . (2007). Clinical and neuropsychological features associated with structural imaging patterns in patients with mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 23(3), 175183.CrossRefGoogle ScholarPubMed
Royle, J., & Lincoln, N.B. (2008). The Everyday Memory Questionnaire-revised: Development of a 13-item scale. Disability & Rehabilitation, 30(2), 114121.CrossRefGoogle ScholarPubMed
Salat, D.H., Buckner, R.L., Snyder, A.Z., Greve, D.N., Desikan, R.S., Busa, E., et al. . (2004). Thinning of the cerebral cortex in aging. Cerebral Cortex, 14(7), 721730.CrossRefGoogle ScholarPubMed
Salthouse, T.A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging, 30(4), 507514.CrossRefGoogle ScholarPubMed
Saykin, A.J., Wishart, H.A., Rabin, L.A., Santulli, R.B., Flashman, L.A., West, J.D., et al. . (2006). Older adults with cognitive complaints show brain atrophy similar to that of amnestic MCI. Neurology, 67(5), 834842.CrossRefGoogle ScholarPubMed
Schwartz, A.F., & McMillan, T.M. (1989). Assessment of everyday memory after severe head injury. Cortex, 25(4), 665671.CrossRefGoogle ScholarPubMed
Scoville, W.B., & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery & Psychiatry, 20(1), 1121.CrossRefGoogle ScholarPubMed
Segonne, F., Dale, A.M., Busa, E., Glessner, M., Salat, D., Hahn, H.K., et al. . (2004). A hybrid approach to the skull stripping problem in MRI. Neuroimage, 22(3), 10601075.CrossRefGoogle Scholar
Segonne, F., Grimson, E., & Fischl, B. (2005). A genetic algorithm for the topology correction of cortical surfaces. Information Processing in Medical Imaging, 19, 393405.CrossRefGoogle ScholarPubMed
Squire, L.R., & Zola-Morgan, S. (1991). The medial temporal lobe memory system. Science, 253(5026), 13801386.CrossRefGoogle ScholarPubMed
Sunderland, A., Harris, J.E., & Baddeley, A.D. (1983). Do laboratory tests predict everyday memory? A neuropsychological study. Journal of Verbal Learning & Verbal Behavior, 22(3), 341357.CrossRefGoogle Scholar
Sunderland, A., Harris, J.E., & Gleave, J. (1984). Memory failures in everyday life following severe head injury. Journal of Clinical and Experimental Neuropsychology, 6(2), 127142.CrossRefGoogle ScholarPubMed
Sunderland, A., Stewart, F.M., & Sluman, S.M. (1996). Adaptation to cognitive deficit? An exploration of apparent dissociations between everyday memory and test performance late after stroke Sep 1996. British Journal of Clinical Psychology, 35(3), 463476.CrossRefGoogle Scholar
Taki, Y., Goto, R., Evans, A., Zijdenbos, A., Neelin, P., Lerch, J., et al. . (2004). Voxel-based morphometry of human brain with age and cerebrovascular risk factors. Neurobiology of Aging, 25(4), 455463.CrossRefGoogle ScholarPubMed
Thurstone, L.L. (1951). Factorial analysis as a scientific method. L’Annee Psychologique. 50 1951, 6175.CrossRefGoogle Scholar
van der Flier, W.M., van Buchem, M.A., Weverling-Rijnsburger, A.W., Mutsaers, E.R., Bollen, E.L., Admiraal-Behloul, F., et al. . (2004). Memory complaints in patients with normal cognition are associated with smaller hippocampal volumes. Journal of Neurology, 251(6), 671675.Google ScholarPubMed
Walhovd, K.B., Fjell, A.M., Amlien, I., Grambaite, R., Stenset, V., Bjørnerud, A., et al. . (2009). Multimodal imaging in mild cognitive impairment: Metabolism, morphometry and diffusion of the temporal-parietal memory network. Neuroimage, 45(1), 215223.CrossRefGoogle ScholarPubMed
Walhovd, K.B., Fjell, A.M., Dale, A.M., Fischl, B., Quinn, B.T., Makris, N., et al. . (2006). Regional cortical thickness matters in recall after months more than minutes. Neuroimage, 31(3), 13431351.CrossRefGoogle ScholarPubMed
Walhovd, K.B., Fjell, A.M., Reinvang, I., Lundervold, A., Dale, A.M., Eilertsen, D.E., et al. . (2005). Effects of age on volumes of cortex, white matter and subcortical structures. Neurobiology of Aging, 26(9), 12611270; discussion 1275–1268.CrossRefGoogle ScholarPubMed
Wechsler, D. (1999). Wechsler abbreviated scale of intelligens. San Antonio, TX: The Psychological Corporation.Google Scholar
Westlye, L.T., Grydeland, H., Walhovd, K.B., & Fjell, A.M. (2010). Associations between regional cortical thickness and attentional networks as measured by the Attention Network Test. Cerebral Cortex; doi: 10.1093/cercor/bhq101.Google ScholarPubMed
Westlye, L.T., Walhovd, K.B., Bjørnerud, A., Due-Tønnessen, P., & Fjell, A.M. (2009). Error-related negativity is mediated by fractional anisotropy in the posterior cingulate gyrus—A study combining diffusion tensor imaging and electrophysiology in healthy adults. Cerebral Cortex, 19(2), 293304.CrossRefGoogle ScholarPubMed
Westlye, L.T., Walhovd, K.B., Dale, A.M., Bjornerud, A., Due-Tonnessen, P., Engvig, A., et al. . (2010). Differentiating maturational and aging-related changes of the cerebral cortex by use of thickness and signal intensity. Neuroimage, 52(1), 172185.CrossRefGoogle ScholarPubMed
Yonelinas, A.P., Widaman, K., Mungas, D., Reed, B., Weiner, M.W., & Chui, H.C. (2007). Memory in the aging brain: Doubly dissociating the contribution of the hippocampus and entorhinal cortex. Hippocampus, 17(11), 11341140.CrossRefGoogle ScholarPubMed
Supplementary material: File

Bjornebekk supplementary material

Bjornebekk supplementary material

Download Bjornebekk supplementary material(File)
File 38.4 KB