Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-03T19:50:03.849Z Has data issue: false hasContentIssue false

Egocentric and Allocentric Spatial Representations in Williams Syndrome

Published online by Cambridge University Press:  25 October 2012

Inês Bernardino*
Affiliation:
Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Portugal
Susana Mouga
Affiliation:
Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Portugal Child Center, Neurodevelopment and Autism Department, Pediatric Hospital of Coimbra, CHUC, Coimbra, Portugal
Miguel Castelo-Branco
Affiliation:
Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Portugal
Marieke van Asselen
Affiliation:
Visual Neuroscience Laboratory, IBILI, Faculty of Medicine, University of Coimbra, Portugal
*
Correspondence and reprint requests to: Inês Bernardino, IBILI - Visual Neuroscience Laboratory, Faculty of Medicine, University of Coimbra, Azinhaga de Santa Comba, 3000-354 Coimbra, Portugal. E-mail: [email protected]

Abstract

Williams syndrome (WS) is a neurodevelopmental disorder characterized by severe visuospatial deficits, particularly affecting spatial navigation and wayfinding. Creating egocentric (viewer-dependent) and allocentric (viewer-independent) representations of space is essential for the development of these abilities. However, it remains unclear whether egocentric and allocentric representations are impaired in WS. In this study, we investigate egocentric and allocentric frames of reference in this disorder. A WS group (n = 18), as well as a chronological age-matched control group (n = 20), a non-verbal mental age-matched control group (n = 20) and a control group with intellectual disability (n = 17), was tested with a computerized and a 3D spatial judgment task. The results showed that WS participants are impaired when performing both egocentric and allocentric spatial judgments even when compared with mental age-matched control participants. This indicates that a substantial deficit affecting both spatial representations is present in WS. The egocentric impairment is in line with the dorsal visual pathway deficit previously reported in WS. Interestingly, the difficulties found in performing allocentric spatial judgments give important cues to better understand the ventral visual functioning in WS. (JINS, 2013, 19, 1–9)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Atkinson, J., Braddick, O., Anker, S., Curran, W., Andrew, R., Wattam-Bell, J. (2003). Neurobiological models of visuospatial cognition in children with Williams syndrome: Measures of dorsal-stream and frontal function. Developmental Neuropsychology, 23(1–2), 139172.CrossRefGoogle ScholarPubMed
Atkinson, J., Shirley, A., Braddick, O., Nokes, L., Mason, A., Braddick, F. (2001). Visual and visuospatial development in young children with Williams syndrome. Developmental Medicine & Child Neurology, 43(5), 330337.CrossRefGoogle ScholarPubMed
Bayes, M., Magano, L.F., Rivera, N., Flores, R., Perez-Jurado, L.A. (2003). Mutational mechanisms of Williams-Beuren syndrome deletions. The American Journal of Human Genetics, 73(1), 131151.CrossRefGoogle ScholarPubMed
Bellugi, U., Lichtenberger, L., Jones, W., Lai, Z., St George, M. (2000). I. The neurocognitive profile of Williams Syndrome: A complex pattern of strengths and weaknesses. Journal of Cognitive Neuroscience, 12(Suppl 1), 729.CrossRefGoogle ScholarPubMed
Bowers, D., Heilman, K.M. (1980). Pseudoneglect: Effects of hemispace on a tactile line bisection task. Neuropsycologia, 18(4–5), 491498.CrossRefGoogle ScholarPubMed
Bullens, J., Igóli, K., Berthoz, A., Postma, A., Rondi-Reig, L. (2010). Developmental time course of the acquisition of sequential egocentric and allocentric navigation strategies. Journal of Experimental Child Psychology, 107, 337350.CrossRefGoogle ScholarPubMed
Burgess, N. (2006). Saptial memory: How egocentric and allocentric combine. Trends in Cognitive Sciences, 10, 551557.CrossRefGoogle Scholar
Castelo-Branco, M., Mendes, M., Sebastião, A.R., Reis, A., Soares, M., Saraiva, J., Silva, E. (2007). Visual phenotype in Williams-Beuren syndrome challenges magnocellular theories explaining human neurodevelopmental visual cortical disorders. The Journal of Clinical Investigation, 117(12), 37203729.Google ScholarPubMed
Chang, D.H., Harris, L.R., Troje, N.F. (2010). Frames of reference for biological motion and face perception. Journal of Vision, 10(6), 111.CrossRefGoogle ScholarPubMed
Cohen, Y.E., Andersen, R.A. (2002). A common reference frame for movement plans in the posterior parietal cortex. Nature Review Neuroscience, 3(7), 553562.CrossRefGoogle ScholarPubMed
Deruelle, C., Mancini, J., Livet, M.O., Casse-Perrot, C., de Schonen, S. (1999). Configural and local processing of faces in children with Williams syndrome. Brain Cognition, 41(3), 276298.CrossRefGoogle ScholarPubMed
Farran, E., Courbois, Y., Cruickshank, A. (2009). Learning a route in a virtual environment: The effects of differing cues on the performance of typical children and individuals with Williams syndrome. Cognitive Processing, 10, S152S153.Google Scholar
Farran, E.K., Blades, M., Boucher, J., Tranter, L.J. (2010). How do individuals with Williams syndrome learn a route in a real world environment? Developmental Science, 13, 454468.CrossRefGoogle Scholar
Feigenbaum, J.D., Morris, R.G. (2004). Allocentric versus egocentric spatial memory after unilateral temporal lobectomy in humans. Neuropsychology, 18(3), 462472.CrossRefGoogle ScholarPubMed
Galati, G., Lobel, E., Vallar, G., Berthoz, A., Pizzamiglio, L., Le Bihan, D. (2000). The neural basis of egocentric and allocentric coding of space in humans: A functional magnetic resonance study. Experimental Brain Research, 133(2), 156164.CrossRefGoogle ScholarPubMed
Goodale, M.A., Haffenden, A. (1998). Frames of reference for perception and action in the human visual system. Neuroscience & Biobehavioral Review, 22(2), 161172.CrossRefGoogle ScholarPubMed
Grimsen, C., Hildebrandt, H., Fahle, M. (2008). Dissociation of egocentric and allocentric coding of space in visual search after right middle cerebral artery stroke. Neuropsychologia, 46(3), 902914.CrossRefGoogle ScholarPubMed
Holdstock, J.S., Mayes, A.R., Cezayirli, E., Aggleton, J.P., Roberts, N. (1999). A comparison of egocentric and allocentric spatial memory in medial temporal lobe and Korsakoff amnesics. Cortex, 35(4), 479501.CrossRefGoogle ScholarPubMed
Holdstock, J.S., Mayes, A.R., Cezayirli, E., Isaac, C.L., Aggleton, J.P., Roberts, N. (2000). A comparison of egocentric and allocentric spatial memory in a patient with selective hippocampal damage. Neuropsychologia, 38, 410425.CrossRefGoogle Scholar
Iglói, K., Zaoui, M., Berthoz, A., Rondi-Reig, L. (2009). Sequential egocentric strategy is acquired as early as allocentric strategy: Parallel acquisition of these two navigation strategies. Hippocampus, 19, 11991211.CrossRefGoogle Scholar
Jackowski, A.P., Rando, K., Maria de Araujo, C., Del Cole, C.G., Silva, I., Tavares de Lacerda, A.L. (2009). Brain abnormalities in Williams syndrome: A review of structural and functional magnetic resonance imaging findings. European Journal of Paediatric Neurology, 13(4), 305316.CrossRefGoogle ScholarPubMed
Karmiloff-Smith, A., Thomas, M., Annaz, D., Humphreys, K., Ewing, S., Brace, N., Campbell, R. (2004). Exploring the Williams syndrome face-processing debate: The importance of building developmental trajectories. Journal of Child Psychology and Psychiatry, 45(7), 12581274.CrossRefGoogle ScholarPubMed
Korenberg, J.R., Chen, X.N., Hirota, H., Lai, Z., Bellugi, U., Burian, D., Matsuoka, R. (2000). VI. Genome structure and cognitive map of Williams syndrome. Journal of Cognitive Neuroscience, 12(Suppl 1), 89107.CrossRefGoogle ScholarPubMed
McCourt, M.E., Garlinghouse, M. (2000). Asymmetries of visuospatial attention are modulated by viewing distance and visual field elevation: Pseudoneglect in peripersonal and extrapersonal space. Cortex, 36, 715731.CrossRefGoogle ScholarPubMed
Mendes, M., Silva, F., Simoes, L., Jorge, M., Saraiva, J., Castelo-Branco, M. (2005). Visual magnocellular and structure from motion perceptual deficits in a neurodevelopmental model of dorsal stream function. Cognitive Brain Research, 25(3), 788798.CrossRefGoogle Scholar
Meyer-Lindenberg, A., Kohn, P., Mervis, C.B., Kippenhan, J.S., Olsen, R.K., Morris, C.A., Berman, F. (2004). Neural basis of genetically determined visuospatial construction deficit in Williams syndrome. Neuron, 43(5), 623631.CrossRefGoogle ScholarPubMed
Meyer-Lindenberg, A., Mervis, C., Berman, F. (2005). Neural mechanisms in Williams syndrome: A unique window to genetic influences on cognition and behaviour. Nature Reviews, 7, 380393.CrossRefGoogle Scholar
Milner, A.D., Goodale, M.A. (2008). Two visual systems re-viewed. Neuropsychologia, 46(3), 774785.CrossRefGoogle ScholarPubMed
Montfoort, I., Frens, M.A., Hooge, I.T., Haselen, G.C., van der Geest, J.N. (2007). Visual search in Williams-Beuren syndrome. Neuropsychologia, 45, 931938.CrossRefGoogle ScholarPubMed
Nardini, M., Atkinson, J., Braddick, O., Burgess, N. (2008). Developmental trajectories for spatial frames of reference in Williams syndrome. Developmental Science, 11(4), 583595.CrossRefGoogle ScholarPubMed
Nardini, M., Burgess, N., Breckenridge, K., Atkinson, J. (2006). Differential developmental trajectories for egocentric, environmental and intrinsic frames of reference in spatial memory. Cognition, 101, 153172.CrossRefGoogle ScholarPubMed
O'Keefe, J., Nadel, L. (1978). The hippocampus as a cognitive map. Oxford: Clarendon.Google Scholar
Paul, B.M., Stiles, J., Passarotti, A., Bavar, N., Bellugi, U. (2002). Face and place processing in Williams syndrome: Evidence for a dorsal-ventral dissociation. Neuroreport, 13(9), 11151119.CrossRefGoogle ScholarPubMed
Piaget, J., Inhelder, B. (1948). The child's conception of space. New York: Norton.Google Scholar
Raven, J.C. (1947). Coloured progressive matrices sets A, Ab, B. Oxford: Oxford Psychologists Press Ltd.Google Scholar
Reiss, J.E., Hoffman, J.E., Landau, B. (2005). Motion processing specialization in Williams syndrome. Vision Research, 45(27), 33793390.CrossRefGoogle ScholarPubMed
Semel, E., Rosner, S.R. (2003). Understanding Williams syndrome. Behavioural patterns and interventions. New Jersey. Lawrence Erlbaum Associates.CrossRefGoogle Scholar
Seubert, J., Humphreys, G.W., Muller, H.J., Gramann, K. (2008). Straight after the turn: The role of the parietal lobes in egocentric space processing. Neurocase, 14(2), 204219.CrossRefGoogle ScholarPubMed
Vallar, G., Lobel, E., Galati, G., Berthoz, A., Pizzamiglio, L., Le Bihan, D. (1999). A fronto-parietal system for computing the egocentric spatial frame of reference in humans. Experimental Brain Research, 124(3), 281286.CrossRefGoogle ScholarPubMed
van Asselen, M., Kessels, R.P., Kappelle, L.J., Neggers, S.F., Frijns, C.J., Postma, A. (2006). Neural correlates of human wayfinding in stroke participants. Brain Research, 1067(1), 229238.CrossRefGoogle Scholar
van Herwegen, J., Farran, E.K., Annaz, D. (2011). Item and error analysis on Raven's coloured progressive matrices in Williams syndrome. Research in Developmental Disabilities, 32, 9399.CrossRefGoogle ScholarPubMed
Vicari, S., Bellucci, S., Carlesimo, G. (2005). Visual and spatial long-term memory: Differential pattern of impairments in Williams and Down syndromes. Developmental Medicine & Child Neurology, 47, 305311.CrossRefGoogle ScholarPubMed
Wechsler, D. (2003). Manual for intelligence scale for children (3rd ed.). Lisbon: Cegoc-Tea.Google Scholar
Wechsler, D. (2008). Manual for intelligence scale for adults (3rd ed.). Lisbon: Cegoc-Tea.Google Scholar
Zaehle, T., Jordan, K., Wüstenberg, T., Baudewig, J., Dechent, P., Mast, F.W. (2007). The neural basis of the egocentric and allocentric spatial frame of reference. Brain Research, 1137, 92103.CrossRefGoogle ScholarPubMed