Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T04:19:39.377Z Has data issue: false hasContentIssue false

Effects of Sleep Health on Cognitive Function in HIV+ and HIV– Adults

Published online by Cambridge University Press:  31 August 2018

Zanjbeel Mahmood
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, California
Andrea Hammond
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, California
Rodolfo A. Nunez
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, California Department of Psychology, University of California Los Angeles, California
Michael R. Irwin
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, California
April D. Thames*
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, California
*
Correspondence and reprint requests to: April D. Thames, Department of Psychology, University of Southern California, 3620 S. McClintock Avenue SGM 520, Los Angeles, CA 90087. E-mail: [email protected]

Abstract

Objectives: People living with HIV (PLWH) are more likely to report sleep difficulties and cognitive deficits. While cognitive impairment associated with sleep problems have been found in healthy and medical populations, less is known about the effects of poor sleep health (SH) on cognition among PLWH. This study examined differences in cognitive performance among participants classified based upon their HIV status and reported SH. Methods: One hundred sixteen (N=116) adults recruited from the Greater Los Angeles community were administered a comprehensive cognitive test battery and completed a questionnaire about SH. Participants were classified into the following HIV/SH groups: [HIV+/good sleep health (SH+; n=34); HIV−/SH+ (n=32); HIV−/poor sleep health (SH−; n=18) and HIV+/SH− (n=32)]. Results: For both HIV+ and HIV− individuals, poor SH was associated with lower cognitive performance, with the domains of learning and memory driving the overall relationship. The HIV+/SH− group had poorer scores in domains of learning and memory compared to the SH+ groups. Additionally, the HIV−/SH− group demonstrated poorer learning compared to the HIV−/SH+ group. Conclusions: Our findings suggest that sleep problems within medical populations are relevant to cognitive functioning, highlighting the clinical and scientific importance of monitoring sleep health and cognition to help identify individuals at greatest risk of poor health outcomes. Longitudinal investigations using both objective and subjective measures of sleep are needed to determine the robustness of the current findings and the enduring effects of poor SH in the context of chronic disease. (JINS, 2018, 24, 1038–1046)

Type
Regular Research
Copyright
Copyright © The International Neuropsychological Society 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altena, E., Vrenken, H., Van Der Werf, Y.D., van den Heuvel, O.A., & Van Someren, E.J. (2010). Reduced orbitofrontal and parietal gray matter in chronic insomnia: A voxel-based morphometric study. Biological Psychiatry, 67(2), 182185.Google Scholar
Backhaus, J., Junghanns, K., Born, J., Hohaus, K., Faasch, F., & Hohagen, F. (2006). Impaired declarative memory consolidation during sleep in patients with primary insomnia: Influence of sleep architecture and nocturnal cortisol release. Biological Psychiatry, 60(12), 13241330. doi: 10.1016/j.biopsych.2006.03.051 Google Scholar
Bäckman, L., Karlsson, S., Fischer, H., Karlsson, P., Brehmer, Y., Rieckmann, A., & Nyberg, L. (2011). Dopamine D 1 receptors and age differences in brain activation during working memory. Neurobiology of Aging, 32(10), 18491856.Google Scholar
Beck, A.T., Steer, R.A., & Brown, G.K. (1996). Manual for the Beck Depression Inventory-II. San Antonio: Psychological Corporation.Google Scholar
Becker, B.W., Thames, A.D., Woo, E., Castellon, S.A., & Hinkin, C.H. (2011). Longitudinal change in cognitive function and medication adherence in HIV−infected adults. AIDS and Behavior, 15(8), 1888.Google Scholar
Benedict, R. (1997). Brief Visuospatial Memory Test — Revised professional manual. Odessa, FL: Psychological Assessment Resources, Inc.Google Scholar
Brandt, J., & Benedict, R.H. (2001). Hopkins Verbal Learning Test — Revised. Lutz, FL: Psychological Assessment Resources, Inc. Google Scholar
Breen, E.C., Rezai, A.R., Nakajima, K., Hirano, T., Beall, G.N., Mitsuyasu, R.T., & Martı́nez-Maza, O. (1990). Elevated levels of interleukin 6 (IL-6) are associated with human immunodeficiency virus (HIV) infection. Journal of Immunology, 144, 480484.Google Scholar
Buysse, D.J. (2014). Sleep health: Can we define it? Does it matter. Sleep, 37(1), 917.Google Scholar
Buysse, D.J., Reynolds, C.F., Monk, T.H., Berman, S.R., & Kupfer, D.J. (1989). The Pittsburgh Sleep Quality Index: A new instrument for psychiatric practice and research. Psychiatry Research, 28(2), 193213.Google Scholar
Byun, E., Gay, C.L., & Lee, K.A. (2016). Sleep, fatigue, and problems with cognitive function in adults living with HIV. The Journal of the Association of Nurses in AIDS Care, 27(1), 516. doi: 10.1016/j.jana.2015.10.002 Google Scholar
Carpenter, J.S., & Andrykowski, M.A. (1998). Psychometric evaluation of the Pittsburgh sleep quality index. Journal of Psychosomatic Research, 45, 513.Google Scholar
Chang, L., Wang, G.J., Volkow, N.D., Ernst, T., Telang, F., Logan, J., &Fowler, J.S. (2008). Decreased brain dopamine transporters are related to cognitive deficits in HIV patients with or without cocaine abuse. NeuroImage, 42(2), 869878.Google Scholar
Chee, M.W.L., Tan, J.C., Parimal, S., & Zagorodnov, V. (2010). Sleep deprivation and its effects on object-selective attention. NeuroImage, 49(2), 19031910. doi: 10.1016/j.neuroimage.2009.08.067 Google Scholar
Chen, P.L., Lee, W.J., Sun, W.Z., Oyang, Y.J., & Fuh, J.L. (2012). Risk of dementia in patients with insomnia and long-term use of hypnotics: A population-based retrospective cohort study. PLoS One, 7(11), e49113.Google Scholar
Chesney, M.A., Ickovics, J.R., Chambers, D.B., Gifford, A.L., Neidig, J., Zwickl, B., &Wu, A.W. (2000). Self-reported adherence to antiretroviral medications among participants in HIV clinical trials: The AACTG adherence instruments. Patient Care Committee & Adherence Working Group of The Outcomes Committee of The Adult Aids Clinical Trials Group (AACTG). AIDS Care, 12, 255266.Google Scholar
Chun, M., & Turk-Browne, N.B. (2007). Interactions between attention and memory. Current Opinion in Neurobiology, 17(2), 177184. doi: 10.1016/j.conb.2007.03.005 Google Scholar
Cipriani, G., Lucetti, C., Danti, S., & Nuti, A. (2015). Sleep disturbances and dementia. Psychogeriatrics, 15(1), 6574.Google Scholar
Cricco, M., Simonsick, E.M., & Foley, D.J. (2001). The impact of insomnia on cognitive functioning in older adults. Journal of the American Geriatrics Society, 49(9), 11851189.Google Scholar
Darko, D.F., McCutchan, J.A., Kripke, D.F., Gillin, J.C., & Golshan, S. (1992). Fatigue, sleep disturbance, disability, and indices of progression of HIV infection. American Journal of Psychiatry, 149, 514520.Google Scholar
Darko, D.F., Miller, J.C., Gallen, C., White, J., Koziol, J., Brown, S.J., & Munnell, D.T. (1995). Sleep electroencephalogram delta-frequency amplitude, night plasma levels of tumor necrosis factor alpha, and human immunodeficiency virus infection. Proceedings of the National Academy of Sciences of the United States of America, 92(26), 1208012084.Google Scholar
Durrence, H.H., & Lichstein, K.L. (2006). The sleep of African Americans: A comparative review. Behavioral Sleep Medicine, 4(1), 2944.Google Scholar
Felger, J.C., & Miller, A.H. (2012). Cytokine effects on the basal ganglia and dopamine function: The subcortical source of inflammatory malaise. Frontiers in Neuroendocrinology, 33(3), 315327. doi: 10.1016/j.yfrne.2012.09.003 Google Scholar
Fernandez-Mendoza, J., Calhoun, S., Bixler, E.O., Pejovic, S., Karataraki, M., Liao, D., & Vgontzas, A.N. (2010). Insomnia with objective short sleep duration is associated with deficits in neuropsychological performance: A general population study. Sleep, 33(4), 459465. doi: 10.1093/sleep/33.4.459 Google Scholar
Fichtenberg, N.L., Putnam, S.H., Mann, N.R., Zafonte, R.D., & Millard, A.E. (2001). Insomnia screening in postacute traumatic brain injury: Utility and validity of the Pittsburgh Sleep Quality Index. American Journal of Physical Medicine & Rehabilitation, 80(5), 339345.Google Scholar
First, M.B., Spitzer, R.L., Gibbon, M., & Williams, J.B. (1995). Structured clinical interview for Axis-I DSM-IV disorders — Patient edition (SCID-I/P). New York: Biometrics Research Department, New York State Psychiatric Institute.Google Scholar
Foley, D., Monjan, A., Masaki, K., Havlik, R., White, L., & Launer, L. (2001). Daytime sleepiness is associated with 3-year incident dementia and cognitive decline in older Japanese-American men. Journal of the American Geriatrics Society, 49(12), 16281632.Google Scholar
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state:” A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198. doi:10.1016/0022-3956(75)90026-6.Google Scholar
Fortier-Brochu, É., Beaulieu-Bonneau, S., Ivers, H., & Morin, C.M. (2012). Insomnia and daytime cognitive performance: A meta-analysis. Sleep Medicine Reviews, 16(1), 8394.Google Scholar
Gamaldo, C.E., Gamaldo, A., Creighton, J., Salas, R.E., Selnes, O.A., David, P.M., &Smith, M.T. (2013). Evaluating sleep and cognition in HIV. Journal of Acquired Immune Deficiency Syndromes, 63(5), 609616.Google Scholar
Golden, C.J., & Freshwater, S.M. (1978). Stroop Color and Word Test. Chicago, IL: Stoelting Company.Google Scholar
González, S., Moreno-Delgado, D., Moreno, E., Pérez-Capote, K., Franco, R., Mallol, J., & Ferré, S. (2012). Circadian-related heteromerization of adrenergic and dopamine D4 receptors modulates melatonin synthesis and release in the pineal gland. PLoS Biology, 10(6), e1001347.Google Scholar
Grandner, M.A., Kripke, D.F., Yoon, I.Y., & Youngstedt, S.D. (2006). Criterion validity of the Pittsburgh Sleep Quality Index: Investigation in a non-clinical sample. Sleep and Biological Rhythms, 4(2), 129136.Google Scholar
Griessenberger, H., Heib, D.P.J., Lechinger, J., Luketina, N., Petzka, M., Moeckel, T., & Schabus, M. (2013). Susceptibility to declarative memory interference is pronounced in primary insomnia. PLoS One, 8(2), e57394. doi: 10.1371/journal.pone.0057394 Google Scholar
Heaton, R.K., Franklin, D.R., Ellis, R.J., McCutchan, J.A., Letendre, S.L., LeBlanc, S., & Collier, A.C. (2011). HIV−associated neurocognitive disorders before and during the era of combination antiretroviral therapy: Differences in rates, nature, and predictors. Journal of Neurovirology, 17(1), 316.Google Scholar
Heaton, R.K., Grant, I., & Matthews, C.G. (1991). Comprehensive norms for an expanded Halstead-Reitan battery: Demographic corrections, research findings, and clinical applications; with a supplement for the Wechsler Adult Intelligence Scale-Revised (WAIS-R). Lutz, FL: Psychological Assessment Resources.Google Scholar
Heaton, R.K., Miller, S.W., Taylor, M.J., & Grant, I. (2004). Revised comprehensive norms for an expanded Halstead-Reitan Battery: Demographically adjusted neuropsychological norms for African American and Caucasian adults. Lutz, FL: Psychological Assessment Resources.Google Scholar
Heffner, K.L., Ng, H.M., Suhr, J.A., France, C.R., Marshall, G.D., Pigeon, W.R., &Moynihan, J.A. (2012). Sleep disturbance and older adults’ inflammatory responses to acute stress. The American Journal of Geriatric Psychiatry, 20(9), 744752. doi: org/10.1097/JGP.0b013e31824361de Google Scholar
Irwin, M.R. (2015). Why sleep is important for health: A psychoneuroimmunology perspective. Annual Review of Psychology, 66, 143172. doi: 10.1146/annurev-psych-010213-115205 Google Scholar
Jena, A., Sachdeva, R.K., Sharma, A., & Wanchu, A. (2009). Adverse drug reactions to nonnucleoside reverse transcriptase inhibitor-based antiretroviral regimen: A 24-week prospective study. Journal of the International Association of Physicians in AIDS Care, 8(5), 318322.Google Scholar
Joo, E.Y., Kim, H., Suh, S., & Hong, S.B. (2014). Hippocampal substructural vulnerability to sleep disturbance and cognitive impairment in patients with chronic primary insomnia: Magnetic resonance imaging morphometry. Sleep, 37(7), 11891198.Google Scholar
Joo, E.Y., Noh, H.J., Kim, J.S., Koo, D.L., Kim, D., Hwang, K.J., & Hong, S.B. (2013). Brain gray matter deficits in patients with chronic primary insomnia. Sleep, 36(7), 9991007.Google Scholar
Kenedi, C.A., & Goforth, H.W. (2011). A systematic review of the psychiatric side-effects of efavirenz. AIDS and Behavior, 15(8), 18031818.Google Scholar
Krueger, P.M., & Friedman, E.M. (2009). Sleep duration in the United States: A cross-sectional population-based study. American Journal of Epidemiology, 169(9), 10521063.Google Scholar
Kumar, A.M., Ownby, R.L., Waldrop-Valverde, D., Fernandez, B., & Kumar, M. (2011). Human immunodeficiency virus infection in the CNS and decreased dopamine availability: Relationship with neuropsychological performance. Journal of Neurovirology, 17(1), 2640.Google Scholar
Landry, G.J., Best, J.R., & Liu-Ambrose, T. (2015). Measuring sleep quality in older adults: A comparison using subjective and objective methods. Frontiers in Aging Neuroscience, 7, 166. doi: 10.3389/fnagi.2015.00166 Google Scholar
Lee, K.A., Gay, C., Portillo, C.J., Coggins, T., Davis, H., Pullinger, C.R., &Aouizerat, B.E. (2009). Symptom experience in HIV−infected adults: A function of demographic and clinical characteristics. Journal of Pain and Symptom Management, 38(6), 882893.Google Scholar
Low, Y., Preud'homme, X., Goforth, H.W., Omonuwa, T., & Krystal, A.D. (2011). The association of fatigue with depression and insomnia in HIV−seropositive patients: A pilot study. Sleep, 34(12), 17231726.Google Scholar
Miller, L.S., & Rohling, M.L. (2001). A statistical interpretive method for neuropsychological test data. Neuropsychology Review, 11, 143169. doi: 10.1023/A:1016602708066 Google Scholar
National Sleep Foundation. (2005). Adult sleep habits and lifestyle: Summary of findings. Retrieved from http://www.sleepfoundation.org/sites/default/files/2005_summary_of_findings.pdf.Google Scholar
Neylan, T.C., Mueller, S.G., Wang, Z., Metzler, T.J., Lenoci, M., Truran, D., & Schuff, N. (2010). Insomnia severity is associated with a decreased volume of the CA3/dentate gyrus hippocampal subfield. Biological Psychiatry, 68(5), 494496.Google Scholar
Norman, S.E., Chediak, A.D., Freeman, C., Kiel, M., Mendez, A., Duncan, R., & Nolan, B. (1992). Sleep disturbances in men with asymptomatic human immunodeficiency (HIV) infection. Sleep, 15(2), 150155.Google Scholar
Norman, S.E., Resnick, L., Cohn, M.A., Duara, R., Herbst, J., & Berger, J.R. (1988). Sleep disturbances in HIV−seropositive patients. JAMA, 260(7), 922922.Google Scholar
Reitan, R.M. (1958). Validity of the Trail Making test as an indicator of organic brain damage. Perceptual and Motor Skills, 8(3), 271276.Google Scholar
Riemann, D., Voderholzer, U., Spiegelhalder, K., Hornyak, M., Buysse, D.J., Nissen, C., & Feige, B. (2007). Chronic insomnia and MRI-measured hippocampal volumes: A pilot study. Sleep, 30(8), 955958.Google Scholar
Rubinstein, M.L., & Selwyn, P.A. (1998). High prevalence of insomnia in an outpatient population with HIV infection. Journal of Acquired Immune Deficiency Syndromes, 19(3), 260265.Google Scholar
Ruiter, M.E., DeCoster, J., Jacobs, L., & Lichstein, K.L. (2011). Normal sleep in African-Americans and Caucasian-Americans: A meta-analysis. Sleep Medicine, 12(3), 209214.Google Scholar
Sanmarti, M., Ibáñez, L., Huertas, S., Badenes, D., Dalmau, D., Slevin, M., & Jaen, A. (2014). HIV−associated neurocognitive disorders. Journal of Molecular Psychiatry, 2(1), 2.Google Scholar
Seay, J.S., McIntosh, R., Fekete, E.M., Fletcher, M.A., Kumar, M., Schneiderman, N., & Antoni, M.H. (2013). Self-reported sleep disturbance is associated with lower CD4 count and 24-hour urinary dopamine levels in ethnic minority women living with HIV. Psychoneuroendocrinology, 38(11), 26472653. doi: 10.1016/j.psyneuen.2013.06.022 Google Scholar
Shekleton, J.A., Flynn-Evans, E., Miller, B., Epstein, L.J., Kirsch, D., Brogna, L.A., & Rajaratnam, S.M.W. (2014). Neurobehavioral performance impairment in insomnia: Relationships with self-reported sleep and daytime functioning. Sleep, 37(1), 107116.Google Scholar
Simen, A.A., Ma, J., Svetnik, V., Mayleben, D., Maynard, J., Roth, A., & Fraser, I. (2015). Efavirenz modulation of sleep spindles and sleep spectral profile. Journal of Sleep Research, 24(1), 6673. doi: 10.1111/jsr.12196 Google Scholar
Stamatakis, K.A., Kaplan, G.A., & Roberts, R.E. (2007). Short sleep duration across income, education, and race/ethnic groups: Population prevalence and growing disparities during 34 years of follow-up. Annals of Epidemiology, 17(12), 948955.Google Scholar
Thames, A.D., Kuhn, T.P., Williamson, T.J., Jones, J.D., Mahmood, Z., & Hammond, A. (2017). Marijuana effects on changes in brain structure and cognitive function among HIV+ and HIV− adults. Drug and Alcohol Dependence, 170, 120127.Google Scholar
Thames, A.D., Mahmood, Z., Burggren, A.C., Karimian, A., & Kuhn, T.P. (2016). Combined effects of HIV and marijuana use on neurocognitive functioning and immune status. AIDS Care, 28(5), 628632.Google Scholar
Walker, M.P., & Stickgold, R. (2004). Sleep-dependent learning and memory consolidation. Neuron, 44(1), 121133. doi: 10.1016/j.neuron.2004.08.031 Google Scholar
Wechsler, D. (2008). Wechsler Adult Intelligence Scale (4th ed.). San Antonio, TX: Pearson.Google Scholar
White, J.L., Darko, D.F., Brown, S.J., Miller, J.C., Hayduk, R., Kelly, T., &Mitler, M.M. (1995). Early central nervous system response to HIV infection: Sleep distortion and cognitive-motor decrements. AIDS, 9(9), 10431050.Google Scholar
Wibbeler, T., Reichelt, D., Husstedt, I.W., & Evers, S. (2012). Sleepiness and sleep quality in patients with HIV infection. Journal of Psychosomatic Research, 72(6), 439442.Google Scholar
Wiegand, M., Möller, A.A., Schreiber, W., Krieg, J.C., Fuchs, D., Wachter, H., &Holsboer, F. (1991). Nocturnal sleep EEG in patients with HIV infection. European Archives of Psychiatry and Clinical Neuroscience, 240(3), 153158.Google Scholar
Wilkinson, G., & Robertson, G. (2004). Wide Range Achievement Test Fourth Edition (WRAT–4) professional manual. Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
Wirth, M.D., Jaggers, J.R., Dudgeon, W.D., Hébert, J.R., Youngstedt, S.D., Blair, S.N., &Hand, G.A. (2015). Association of markers of inflammation with sleep and physical activity among people living with HIV or AIDS. AIDS and Behavior, 19(6), 10981107. doi: 10.1007/s10461-014-0949-y Google Scholar