Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-22T05:47:20.047Z Has data issue: false hasContentIssue false

Dissociation of Proactive and Reactive Cognitive Control in Individuals with Schizotypy: An Event-Related Potential Study

Published online by Cambridge University Press:  29 January 2021

Lu-xia Jia
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
Xiao-jing Qin
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
Ji-fang Cui
Affiliation:
Research Center for Information and Statistics, National Institute of Education Sciences, Beijing, China
Hai-song Shi
Affiliation:
North China Electric Power University, Beijing, China
Jun-yan Ye
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
Tian-xiao Yang
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
Ya Wang*
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
Raymond C. K. Chan
Affiliation:
Neuropsychology and Applied Cognitive Neuroscience Laboratory, Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, China Department of Psychology, University of Chinese Academy of Sciences, Beijing, China
*
*Correspondence and reprint requests to: Ya Wang, Institute of Psychology, Chinese Academy of Science, 16 Lincui Road, Chaoyang District, Beijing 100101, China. Emails: [email protected], [email protected]

Abstract

Objective:

Patients with schizophrenia and individuals with schizotypy, a subclinical group at risk for schizophrenia, have been found to have impairments in cognitive control. The Dual Mechanisms of Cognitive Control (DMC) framework hypothesises that cognitive control can be divided into proactive and reactive control. However, it is unclear whether individuals with schizotypy have differential behavioural impairments and neural correlates underlying these two types of cognitive control.

Method:

Twenty-five individuals with schizotypy and 26 matched healthy controls (HCs) completed both reactive and proactive control tasks with electroencephalographic data recorded. The proportion of congruent and incongruent trials was manipulated in a classic colour-word Stroop task to induce proactive or reactive control. Proactive control was induced in a context with mostly incongruent (MI) trials and reactive control in a context with mostly congruent (MC) trials. Two event-related potential (ERP) components, medial frontal negativity (MFN, associated with conflict detection) and conflict sustained potential (conflict SP, associated with conflict resolution) were examined.

Results:

There was no significant difference between the two groups in terms of behavioural results. In terms of ERP results, in the MC context, HC exhibited significantly larger MFN (360–530 ms) and conflict SP (600–1000 ms) amplitudes than individuals with schizotypy. The two groups did not show any significant difference in MFN or conflict SP in the MI context.

Conclusions:

The present findings provide initial evidence for dissociation of neural activation between proactive and reactive cognitive control in individuals with schizotypy. These findings help us understand cognitive control deficits in the schizophrenia spectrum.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aben, B., Calderon, C.B., Van der Cruyssen, L., Picksak, D., Van den Bussche, E., & Verguts, T. (2019). Context-Dependent modulation of cognitive control involves different temporal profiles of fronto-parietal activity. Neuroimage, 189, 755762. doi: 10.1016/j.neuroimage.2019.02.004 CrossRefGoogle ScholarPubMed
Addington, J., & Addington, D. (2006). Neurocognitive and social functioning in schizophrenia:a 2.5 year follow-up study. Schizophrenia Research, 44(1), 4756. doi: 10.1016/s0920-9964(99)00160-7 CrossRefGoogle Scholar
Amer, T., Campbell, K.L., & Hasher, L. (2016). Cognitive control as a double-edged sword. Trends in Cognitive Sciences, 20(12), 905915. doi: 10.1016/j.tics.2016.10.002 CrossRefGoogle ScholarPubMed
Barch, D.M., Mitropoulou, V., Harvey, P.D., New, A.S., Silverman, J.M., & Siever, L.J. (2004). Context-Processing deficits in schizotypal personality disorder. Journal of Abnormal Psychology, 113(4), 556568. doi: 10.1037/0021-843X.113.4.556 CrossRefGoogle ScholarPubMed
Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S., & Cohen, J.D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624652. doi: 10.1037/0033-295x.108.3.624 CrossRefGoogle ScholarPubMed
Bozikas, V.P., Kosmidis, M.H., Kafantari, A., Gamvrula, K., Vasiliadou, E., Petrikis, P., … Karavatos, A. (2006). Community dysfunction in schizophrenia: Rate-Limiting factors. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 30(3), 463470. doi: 10.1016/j.pnpbp.2005.11.017 CrossRefGoogle ScholarPubMed
Braem, S., Bugg, J.M., Schmidt, J.R., Crump, M.J.C., Weissman, D.H., Notebaert, W., & Egner, T. (2019). Measuring adaptive control in conflict tasks. Trends in Cognitive Sciences, 23(9), 769783. doi: 10.1016/j.tics.2019.07.002 CrossRefGoogle ScholarPubMed
Braver, T.S. (2012). The variable nature of cognitive control: a dual mechanisms framework. Trends in cognitive sciences, 16(2), 106113. doi: 10.1016/j.tics.2011.12.010 CrossRefGoogle ScholarPubMed
Braver, T.S., Gray, J.R., & Burgess, G.C. (2007). Explaining the many varieties of working memory variation: dual mechanisms of cognitive control. In Conway, A.R.A., Jarrold, C., Kane, M.J., Towse, J., & Miyake, A. (Eds.), Variation in working memory (pp. 76106). Oxford: Oxford University Press. doi: 10.1093/acprof:oso/9780195168648.003.0004 Google Scholar
Braver, T.S., Paxton, J.L., Locke, H.S., & Barch, D.M. (2009). Flexible neural mechanisms of cognitive control within human prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 106(18), 73517356. doi: 10.1073/pnas.0808187106 CrossRefGoogle ScholarPubMed
Bugg, J.M. (2014). Evidence for the sparing of reactive cognitive control with age. Psychology and Aging, 29(1), 115127. doi: 10.1037/a0035270 CrossRefGoogle ScholarPubMed
Bugg, J.M., & Crump, M.J. (2012). In support of a distinction between voluntary and stimulus-driven control: a review of the literature on proportion congruent effects. Frontiers in Psychology, 3, 367. doi: 10.3389/fpsyg.2012.00367 CrossRefGoogle ScholarPubMed
Burgess, G.C., & Braver, T.S. (2010). Neural mechanisms of interference control in working memory: effects of interference expectancy and fluid intelligence. PLoS One, 5(9), e12861. doi: 10.1371/journal.pone.0012861 CrossRefGoogle ScholarPubMed
Carter, C.S., & Veen, V. (2007). Anterior cingulate cortex and conflict detection: an update of theory and data. Cognitive, Affective, & Behavioral Neuroscience, 7(4), 367379. doi: 10.3758/cabn.7.4.367 CrossRefGoogle ScholarPubMed
Carter, J.D., Bizzell, J., Kim, C., Bellion, C., Carpenter, K., Dichter, G., & Belger, A. (2010). Attention deficits in schizophrenia--preliminary evidence of dissociable transient and sustained deficits. Schizophrenia Research, 122(1–3), 104112. doi: 10.1016/j.schres.2010.03.019 CrossRefGoogle ScholarPubMed
Chaillou, A.C., Giersch, A., Hoonakker, M., Capa, R.L., & Bonnefond, A. (2017). Differentiating motivational from affective influence of performance-contingent reward on cognitive control: the wanting component enhances both proactive and reactive control. Biological Psychology, 125, 146153. doi: 10.1016/j.biopsycho.2017.03.009 CrossRefGoogle ScholarPubMed
Chen, W.J., Hsiao, C.K., & Lin, C.C.H. (1997). Schizotypy in community samples: the three-factor structure and correlation with sustained attention. Journal of Abnormal Psychology, 106(4), 649654. doi: 10.1037/0021-843X.106.4.649 CrossRefGoogle ScholarPubMed
Chun, C.A., & Ciceron, L. (2018). A meta-analysis of context integration deficits across the schizotypy spectrum using AX-CPT and DPX tasks. Journal of Abnormal Psychology, 127(8), 789806. doi: 10.1037/abn0000383.supp CrossRefGoogle ScholarPubMed
Cohen, A.S., Mohr, C., Ettinger, U., Chan, R.C., & Park, S. (2015). Schizotypy as an organizing framework for social and affective sciences. Schizophrenia Bulletin, 41(Suppl 2), S427S435. doi: 10.1093/schbul/sbu195 CrossRefGoogle ScholarPubMed
DePisapia, N., & Braver, T.S. (2006). A model of dual control mechanisms through anterior cingulate and prefrontal cortex interactions. Neurocomputing, 69(10–12), 13221326. doi: 10.1016/j.neucom.2005.12.100 CrossRefGoogle Scholar
Dickey, C.C., McCarley, R.W., & Shenton, M.E. (2002). The brain in schizotypal personality disorder: a review of structural MRI and CT findings. Harvard Review of Psychiatry, 10(1), 115. doi: 10.1080/10673220216201 CrossRefGoogle ScholarPubMed
Egner, T., & Hirsch, J. (2005). Cognitive control mechanisms resolve conflict through cortical amplification of task-relevant information. Nature Neuroscience, 8(12), 17841790. doi: 10.1038/nn1594 CrossRefGoogle ScholarPubMed
Ettinger, U., Mohr, C., Gooding, D.C., Cohen, A.S., Rapp, A., Haenschel, C., & Park, S. (2015). Cognition and brain function in schizotypy: a selective review. Schizophrenia Bulletin, 41(Suppl 2), S417S426. doi: 10.1093/schbul/sbu190 CrossRefGoogle ScholarPubMed
Grandjean, J., D’Ostilio, K., Phillips, C., Balteau, E., Degueldre, C., Luxen, A., … Collette, F. (2012). Modulation of brain activity during a stroop inhibitory task by the kind of cognitive control required. PLoS One, 7(7), e41513. doi: 10.1371/journal.pone.0041513 CrossRefGoogle ScholarPubMed
Harwell, M.R., Rubinstein, E.N., Hayes, W.S., & Olds, C.C. (1992). Summarizing Monte Carlo Results in Methodological Research: The One- and Two-Factor Fixed Effects ANOVA Cases. Journal of Educational Statistics, 17(4), 315339. doi: 10.3102/10769986017004315 CrossRefGoogle Scholar
Kane, M.J., & Engle, R.W. (2003). Working-Memory capacity and the control of attention: The contributions of goal neglect, reponse competition, and task set to stroop interference. Journal of Experimental Psychology-General, 132, 4770. doi: 10.1037/0096-3445.132.1.47 CrossRefGoogle Scholar
Kerns, J.G. (2006). Schizotypy facets, cognitive control, and emotion. Journal of Abnormal Psychology, 115(3), 418427. doi: 10.1037/0021-843X.115.3.418 CrossRefGoogle Scholar
Kerns, J.G., Cohen, J.D., Macdonald, A.W., Johnson, M.K., Stenger, V.A., Aizenstein, H.J., & Carter, C.S. (2005). Decreased conflict- and error-related activity in the anterior cingulate cortex in subjects with schizophrenia. American Journal of Psychiatry, 162(10), 18331839. doi: 10.1176/appi.ajp.162.10.1833 CrossRefGoogle ScholarPubMed
Kim, M.-S., Oh, S.H., Jang, K.M., Che, H., & Im, C.-H. (2012). Electrophysiological correlates of cognitive inhibition in college students with schizotypal traits. Open Journal of Psychiatry, 02(01), 6876. doi: 10.4236/ojpsych.2012.21010 CrossRefGoogle Scholar
Lesh, T.A., Niendam, T.A., Minzenberg, M.J., & Carter, C.S. (2011). Cognitive control deficits in schizophrenia: mechanisms and meaning. Neuropsychopharmacology Reviews, 36(1), 316338. doi: 10.1038/npp.2010.156 CrossRefGoogle ScholarPubMed
Lesh, T.A., Westphal, A.J., Niendam, T.A., Yoon, J.H., Minzenberg, M.J., Ragland, J.D., … Carter, C.S. (2013). Proactive and reactive cognitive control and dorsolateral prefrontal cortex dysfunction in first episode schizophrenia. NeuroImage Clinical, 2, 590599. doi: 10.1016/j.nicl.2013.04.010 CrossRefGoogle ScholarPubMed
Lin, H.-F., Liu, Y.-L., Liu, C.-M., Hung, S.-I., Hwu, H.-G., & Chen, W.J. (2005). Neuregulin 1 gene and variations in perceptual aberration of schizotypal personality in adolescents. Psychological Medicine, 35(11), 15891598. doi: 10.1017/S0033291705005957 CrossRefGoogle ScholarPubMed
Liotti, M., Woldorff, M.G., Perez, R. III, & Mayberg, H. S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38(5), 701711. doi: 10.1016/S0028-3932(99)00106-2 CrossRefGoogle ScholarPubMed
Logan, G.D., & Zbrodoff, N.J. (1979). When it helps to be misled: Facilitative effects of increasing the frequency of conflicting stimuli in a Stroop-Like task. Memory & Cognition, 7, 166174. doi: 10.3758/BF03197535 CrossRefGoogle Scholar
Luck, S.J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology., 54(1), 146157. doi: 10.1111/psyp.12639 CrossRefGoogle Scholar
MacDonald, A.W., Cohen, J.D., Stenger, V.A., & Carter, C.S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 18351838. doi: 10.1126/science.288.5472.1835 CrossRefGoogle ScholarPubMed
Manard, M., François, S., Phillips, C., Salmon, E., & Collette, F. (2017). The neural bases of proactive and reactive control processes in normal aging. Behavioural Brain Research, 320, 504516. doi: 10.1016/j.bbr.2016.10.026 CrossRefGoogle ScholarPubMed
Marini, F., Chelazzi, L., & Maravita, A. (2013). The costly filtering of potential distraction: Evidence for a supramodal mechanism. Journal of Experimental Psychology-General, 142(3), 906922. doi: 10.1037/a0029905 CrossRefGoogle ScholarPubMed
Marini, F., Demeter, E., Roberts, K.C., Chelazzi, L., & Woldorff, M.G. (2016). Orchestrating proactive and reactive mechanisms for filtering distracting information: brain-behavior relationships revealed by a mixed-design fMRI Study. The Journal of Neuroscience, 36(3), 9881000. doi: 10.1523/jneurosci.2966-15.2016 CrossRefGoogle ScholarPubMed
Markela-Lerenc, J., Schmidt-Kraepelin, C., Roesch-Ely, D., Mundt, C., Weisbrod, M., & Kaiser, S. (2009). Stroop interference effect in schizophrenic patients: an electrophysiological approach. International Journal of Psychophysiology, 71(3), 248257. doi: 10.1016/j.ijpsycho.2008.10.005 CrossRefGoogle ScholarPubMed
McNeely, H.E., West, R., Christensen, B.K., & Alain, C. (2003). Neurophysiological evidence for disturbances of conflict processing in patients with schizophrenia. Journal of Abnormal Psychology, 112(4), 679688. doi: 10.1037/0021-843X.112.4.679 CrossRefGoogle ScholarPubMed
Miller, E.K., & Cohen, J.D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167202. doi: 10.1146/annurev.neuro.24.1.167 CrossRefGoogle ScholarPubMed
Mohr, C., & Claridge, G. (2015). Schizotypy--do not worry, it is not all worrisome. Schizophrenia Bulletin, 41(Suppl 2), S436S443. doi: 10.1093/schbul/sbu185 CrossRefGoogle Scholar
Noguchi, H., Hori, H., & Kunugi, H. (2008). Schizotypal traits and cognitive function in healthy adults. Psychiatry Research, 161(2), 162169. doi: 10.1016/j.psychres.2007.07.023 CrossRefGoogle ScholarPubMed
Oliveira, F.T.P., Hickey, C., & McDonald, J.J. (2014). Proactive and reactive processes in the medial frontal cortex: an electrophysiological study. PLoS One, 9(1), e84351. doi: 10.1371/journal.pone.0084351 CrossRefGoogle Scholar
Qiao, L., Xu, L., Che, X., Zhang, L., Li, Y., Xue, G., … Chen, A. (2018). The motivation-based promotion of proactive control: the role of salience network. Frontiers in Human Neuroscience, 12, 328. doi: 10.3389/fnhum.2018.00328 CrossRefGoogle ScholarPubMed
Raine, A. (1991). The SPQ: a scale for the assessment of schizotypal personality based on DSM-III-R criteria. Schizophrenia Bulletin, 17(4), 555564. doi: 10.1093/schbul/17.4.555 CrossRefGoogle ScholarPubMed
Rawlings, D., Williams, B., Haslam, N., & Claridge, G. (2008). Taxometric analysis supports a dimensional latent structure for schizotypy. Personality and Individual Differences, 44(8), 16401651. doi: 10.1016/j.paid.2007.06.005 CrossRefGoogle Scholar
Ray, K.L., Lesh, T.A., Howell, A.M., Salo, T.P., Ragland, J.D., MacDonald, A.W., … Carter, C.S. (2017). Functional network changes and cognitive control in schizophrenia. NeuroImage: Clinical, 15, 161170. doi: 10.1016/j.nicl.2017.05.001 CrossRefGoogle Scholar
Ryman, S.G., Cavanagh, J.F., Wertz, C.J., Shaff, N.A., Dodd, A.B., Stevens, B., … Mayer, A.R. (2018). Impaired midline theta power and connectivity during proactive cognitive control in schizophrenia. Biological Psychiatry, 84(9), 675683. doi: 10.1016/j.biopsych.2018.04.021 CrossRefGoogle Scholar
Shipstead, Z., Lindsey, D.R.B., Marshall, R.L., & Engleb, R.W. (2014). The mechanisms of working memory capacity: primary memory, secondary memory, and attention control. Journal of Memory and Language, 72, 116141. doi: 10.1016/j.jml.2014.01.004 CrossRefGoogle Scholar
Spinelli, G., & Lupker, S.J. (2020). Proactive control in the stroop task: a conflict frequency manipulation free of item-specific, contingency-learning, and color-word correlation confounds. Journal of Experimental Psychology: Learning, Memory, and Cognition. doi: 10.1037/xlm0000820 Google ScholarPubMed
Steffens, M., Meyhofer, I., Fassbender, K., Ettinger, U., & Kambeitz, J. (2018). Association of schizotypy with dimensions of cognitive control: a meta-analysis. Schizophrenia Bulletin, 44(suppl 2), S512S524. doi: 10.1093/schbul/sby030 CrossRefGoogle ScholarPubMed
Uhlhaas, P.J., Silverstein, S.M., Phillips, W.A., & Lovell, P.G. (2004). Evidence for impaired visual context processing in schizotypy with thought disorder. Schizophrenia Research, 68(2–3), 249260. doi: 10.1016/s0920-9964(03)00184-1 CrossRefGoogle ScholarPubMed
Vollema, M.G., & Hoijtink, H. (2000). The multidimensionality of self-report schizotypy in a psychiatric population: an analysis using multidimensional rasch models. Schizophrenia Bulletin, 26(3), 565575. doi: 10.1093/oxfordjournals.schbul.a033478 CrossRefGoogle Scholar
Wang, C.S., Wu, J.Y.W., Chang, W.C., & Chuang, S.P. (2013). Cognitive functioning correlates of self-esteem and health locus of control in schizophrenia. Neuropsychiatric Disease and Treatment, 9, 16471654. doi: 10.2147/ndt.s51682 Google Scholar
Wang, Y.M., Cai, X.L., Zhang, R.T., Zhang, Y.J., Zhou, H.Y., Wang, Y., … Chan, R.C.K. (2020). Altered brain structural and functional connectivity in schizotypy. Psychological Medicine, 110. doi: 10.1017/S0033291720002445 Google ScholarPubMed
West, R. (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia, 41(8), 11221135. doi: 10.1016/S0028-3932(02)00297-X CrossRefGoogle ScholarPubMed
West, R., & Alain, C. (2000). Effects of task context and fluctuations of attention on neural activity supporting performance of the Stroop task. Brain Research, 873(1), 102111. doi: 10.1016/S0006-8993(00)02530-0 CrossRefGoogle ScholarPubMed
West, R., & Bailey, K. (2012). ERP correlates of dual mechanisms of control in the counting Stroop task. Psychophysiology, 49(10), 13091318. doi: 10.1111/j.1469-8986.2012.01464.x CrossRefGoogle ScholarPubMed
Xiang, L., Chen, Y., Chen, A., Zhang, F., Xu, F., & Wang, B. (2018). The effects of trait impulsivity on proactive and reactive interference control. Brain Research, 1680, 93104. doi: 10.1016/j.brainres.2017.12.009 CrossRefGoogle ScholarPubMed
Zinke, K., Altgassen, M., Mackinlay, R.J., Rizzo, P., Drechsler, R., & Kliegel, M. (2010). Time-Based Prospective Memory Performance and Time-Monitoring in Children with ADHD. Child Neuropsychology, 16(4), 338349. doi: 10.1080/09297041003631451 CrossRefGoogle ScholarPubMed
Supplementary material: File

Jia et al. supplementary material

Table S1

Download Jia et al. supplementary material(File)
File 23.1 KB