Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T16:43:50.588Z Has data issue: false hasContentIssue false

Discerning Temporal Expectancy Effects in Script Processing: Evidence from Pupillary and Eye Movement Recordings

Published online by Cambridge University Press:  23 January 2012

Steffen Landgraf*
Affiliation:
Institute of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany Ecole Doctoral 3c, Université Pierre et Marie Curie, Paris, France Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
Susanne Raisig
Affiliation:
Institute of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany
Elke van der Meer
Affiliation:
Institute of Psychology, Humboldt-Universität zu Berlin, Berlin, Germany Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
*
Correspondence and reprint requests to: Steffen Landgraf, Humboldt-Universität zu Berlin, Institute of Psychology, Rudower Chaussee 18, 12489 Berlin, Germany. E-mail: [email protected]

Abstract

Accessing the temporal position of events (early or late in the event sequence) can influence the generation of predictions about upcoming events. However, it is unclear how the temporal position is processed strategically. To investigate this, we presented event pairs to 23 healthy volunteers manipulating temporal order (chronological, inverse) and temporal position (early, late). Pupil dilation, eye movements, and behavioral data, showed that chronological and early event pairs are processed with more ease than inverse and late event pairs. Indexed by the pupillary response late events and inversely presented event pairs elicited greater cognitive processing demands than early events and chronologically presented event pairs. Regarding eye movements, fixation duration was less sensitive to temporal position than to temporal order. Looking at each item of the event sequence only once was behaviorally more effective than looking multiple times at each event regardless of whether temporal position or temporal order was processed. These results emphasize that accessing temporal position and temporal order information results in dissociable behavioral patterns. While more cognitive resources are necessary for processing late and inverse items, change of information acquisition strategies turns out to be most effective when temporal order processing is required. (JINS, 2012, 18, 351–360)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Araujo, C., Kowler, E., Pavel, M. (2001). Eye movements during visual search: The costs of choosing the optimal path. Vision Research, 41(25–26), 36133625.CrossRefGoogle ScholarPubMed
Aston-Jones, G., Cohen, J.D. (2005). An integrative theory of locus coerules-norepinephrine function: Adaptive gain and optimal performance. Annual Review of Neuroscience, 28(1), 443450.CrossRefGoogle ScholarPubMed
Bar, M. (2007). The proactive brain: Using analogies and associations to generate predictions. Trends in Cognitive Science, 11(7), 280289.CrossRefGoogle ScholarPubMed
Barsalou, L. (1999). Perceptual symbol systems. Behavioral Brain Science, 22, 577660.CrossRefGoogle ScholarPubMed
Barsalou, L.W. (2008). Grounded cognition. Annual Reviews in Psychology, 59, 617645.CrossRefGoogle ScholarPubMed
Barsalou, L.W., Sewell, D.R. (1985). Contrasting the representation of scripts and categories. Journal of Memory and Language, 24(6), 646665.CrossRefGoogle Scholar
Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91(2), 276292.CrossRefGoogle ScholarPubMed
Beatty, J., Lucero-Wagoner, B. (2000). The pupillary system. In J.T. Cacioppo, L.G. Tassinary, & G.G. Berntson (Eds.), Handbook of psychophysiology (pp. 142162). New York: Cambridge University Press.Google Scholar
Bethell-Fox, C.E., Lohmann, D.F., Snow, R.E. (1984). Adaptive reasoning: Componential and eye movement analysis of geometric analogy performance. Intelligence, 8, 205238.CrossRefGoogle Scholar
Botvinick, M.M., Braver, T.S., Barch, D.M., Carter, C.S., Cohen, J.D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108(3), 624652.CrossRefGoogle ScholarPubMed
Botvinick, M.M., Cohen, J.D., Carter, C.S. (2004). Conflict monitoring and anterior cingulate cortex: An update. Trends in Cognitive Sciences, 8(12), 539546.CrossRefGoogle ScholarPubMed
Brown, G., Kindermann, S.S., Siegle, G.J., Granholm, E., Wong, E.C., Buxton, R.B. (1999). Brain activation and pupil response during covert performance of the Stroop Color Word task. Journal of the International Neuropsychological Society, 5(4), 308319.CrossRefGoogle ScholarPubMed
Collins, A., Loftus, F.F. (1975). A spreading-activation theory of semantic processing. Psychology Review, 82(6), 407428.CrossRefGoogle Scholar
Galambos, J., Rips, L.J. (1982). Memory for routines. Journal of Verbal Learning and Verbal Behavior, 21(3), 260281.CrossRefGoogle Scholar
Galey, N., Galey, L. (1999). Fixation durations and saccadic latencies as indicators of mental speed. In I. Mervielde, I.J. Deary, F. De Fruyt, & F. Ostendorf (Eds.), Personality psychology in Europe (pp. 221234). Tilburg: Tilburg University Press.Google Scholar
Gilzenrat, M.S., Nieuwenhuis, S., Jepma, M., Cohen, J.D. (2010). Pupil diameter tracks changes in control state predicted by the adaptive gain theory of locus coeruleus function. Cognitive, Affective, & Behavioral Neuroscience, 10(2), 252269.CrossRefGoogle ScholarPubMed
Green, H.J., Lemaire, P., Dufau, S. (2007). Eye movement correlates of younger and older adults’ strategies for complex addition. Acta Psychologica, 125(3), 257278.CrossRefGoogle ScholarPubMed
Hogeboom, M., van Leeuwen, C. (1997). Visual search strategy and perceptual organization covary with individual preference and structural complexity. Acta Psychologica, 95(2), 141164.CrossRefGoogle ScholarPubMed
Joos, M., Rötting, M., Velichkovsky, B.M. (2003). Die Bewegungen des menschlichen Auges: Fakten, Methoden, innovative Anwendungen [Movements of the human eye: Facts, methods, and innovative applications]. In T. Herrmann, S. Deutsch, & G. Rickheit (Eds.), Handbuch der psycholinguistik [Handbook of psycholinguistics] (pp. 142168). Berlin/New York: De Greyter.Google Scholar
Just, M.A., Carpenter, P., Miyake, A. (2003). Neuroindices of cognitive workload: Neuroimaging, pupillo-metric and event-related potential studies of brain work. Theoretical Issues in Ergonomics Science, 4(1), 5688.CrossRefGoogle Scholar
Kosslyn, S.M. (1980). Image and mind. Cambridge, MA: Harvard University Press.Google Scholar
Landgraf, S., Amado, I., Bourdel, M.C., Leonardi, S., Krebs, M.O. (2008). Memory-guided saccade abnormalities in schizophrenic patients and their healthy, full biological siblings. Psychological Medicine, 38(6), 861870.CrossRefGoogle ScholarPubMed
Landgraf, S., Amado, I., Brucks, M., Krueger, F., Krebs, M.O., van der Meer, E. (2011). Inflexible information acquisition strategies mediate visuo-spatial reasoning in stabilized schizophrenia patients. World Journal of Biological Psychiatry, 12(8), 608619.CrossRefGoogle ScholarPubMed
Landgraf, S., Amado, I., Purkhart, R., Ries, J., Olie, J.P., van der Meer, E. (2011). Visuo-spatial cognition in schizophrenia: Confirmation of a preference for local information processing. Schizophrenia Research, 127(1–3), 163170.CrossRefGoogle ScholarPubMed
Landgraf, S., van der Meer, E., Krueger, F. (2010). Resource allocation of cognitive processes for neuronal activity underlying mathematical cognition: A multi-method study. International Journal of Mathematics Education, 42(6), 579590.Google Scholar
Nottenburg, G., Shoben, E.J. (1980). Scripts as linear orders. Journal of Experimental Social Psychology, 16(4), 329347.CrossRefGoogle Scholar
Nuthmann, A., van der Meer, E. (2005). Time's arrow and pupillary response. Psychophysiology, 42(3), 306317.CrossRefGoogle ScholarPubMed
Pohl, R.F. (1990). Position effects in chunked linear orders. Psychological Research, 52(1), 6875.CrossRefGoogle Scholar
Raisig, S., Hagendorf, H., van der Meer, E. (2011). The role of temporal properties on the detection of temporal violations: Insights from pupillometry. Cognitive Processing. doi:10.1007/s10339-011-0413-0.Google ScholarPubMed
Raisig, S., Welke, T., Hagendorf, H., van der Meer, E. (2007). Investigating dimensional organization in scripts using the pupillary response. Psychophysiology, 44(6), 864873.CrossRefGoogle ScholarPubMed
Raisig, S., Welke, T., Hagendorf, H., van der Meer, E. (2009). Insights into knowledge representation: The influence of amodal and perceptual variables on event knowledge retrieval from memory. Cognitive Science, 33, 12521266.CrossRefGoogle ScholarPubMed
Raisig, S., Welke, T., Hagendorf, H., van der Meer, E. (2010). I spy with my little eye: Detection of temporal violations in event sequences and the pupillary response. International Journal of Psychophysiology, 76(1), 18.CrossRefGoogle ScholarPubMed
Rushworth, M.F.S., Walton, M.E., Kennerley, S.W., Bannerman, D.M. (2004). Action sets and decisions in the medial frontal cortex. Trends in Cognitive Sciences, 8(9), 410417.CrossRefGoogle ScholarPubMed
Schank, R.C., Abelson, R.P. (1977). Scripts, plans, goals and understanding: Inquiry into human knowledge structures. Hillsdale, NJ: Erlbaum.Google Scholar
Siegle, G.J., Ichikawa, N., Steinhauer, S. (2008). Blink before and after you think: Blinks occur prior to and following cognitive load indexed by pupillary responses. Psychophysiology, 45(5), 679687.CrossRefGoogle ScholarPubMed
Sirigu, A., Zalla, T., Pillon, B., Grafman, J., Agid, Y., Dubois, B. (1995). Selective impairments in managerial knowledge following pre-frontal cortex damage. Cortex, 31(2), 301316.CrossRefGoogle ScholarPubMed
Sirigu, A., Zalla, T., Pillon, B., Grafman, J., Agid, Y., Dubois, B. (1996). Encoding of sequence and boundaries of scripts following prefrontal lesions. Cortex, 32(2), 297310.CrossRefGoogle ScholarPubMed
Sprague, N., Ballard, D. (2004). Eye movements for reward maximization. In S. Thrun, L. Saul, & B. Schölkopf (Eds.), Advances in neural information processing systems 16. Cambridge, MA: MIT Press.Google Scholar
van der Meer, E., Beyer, R., Heinze, B., Badel, I. (2002). Temporal order in language comprehension. Journal of Experimental Psychology: Learning, Memory, and Cognition, 28(4), 770779.Google ScholarPubMed
van der Meer, R., Beyer, R., Horn, J., Foth, M., Bornemann, B., Ries, J., Wartenburger, I. (2010). Resource allocation and fluid intelligence: Insights from pupillometry. Psychophysiolgy, 47, 158169 .CrossRefGoogle ScholarPubMed
van der Meer, E., Krueger, F., Strauch, D., Kuchinke, L. (2006). Coding of temporal order information in semantic memory. In J.A. Parker, J.A., Crawford, M., Harris (Eds.), Time and memory (pp. 7386). Boston: Brill, Leiden.CrossRefGoogle Scholar
Velichkovsky, B.M., Sprenger, A. (1997). Auf dem Weg zur Blickmaus: Die Beeinflussung der Fixationsdauer durch kognitive und kommunikative Aufgaben. In R. Liskowsky, B.M. Velichkovsky, & W. Wünschmann (Eds.). Software-Ergonomie 97: Usability Engineering. Stuttgart: Teubner Usability Engeneering.Google Scholar
Vigneau, F., Caissie, A.F., Bors, D.A. (2006). Eye-movement analysis demonstrates strategic influences on intelligence. Intelligence, 34, 261272.CrossRefGoogle Scholar
Walton, M.E., Bannerman, D.M., Alterescu, K., Rushworth, M.F. (2003). Functional specialization within medial frontal cortex of the anterior cingulate for evaluating effort-related decisions. Journal of Neuroscience, 23(16), 64756479.CrossRefGoogle ScholarPubMed
Zacks, J.M., Speer, N.K., Swallow, K.M., Braver, T.S., Reynolds, J.R. (2007). Event perception: A mind-brain perspective. Psychological Bulletin, 133(2), 273293.CrossRefGoogle ScholarPubMed
Zimmer, K. (1984). Ansätze der psychophysiologischen Indikation von Wissensrepräsentation: Die Pupillomotorik als sensbiler Indikator semantischer Informationsverarbeitungsaktivität. In F. Klix (Ed.), Gedächtnis, wissen, wissensnutzung (pp. 137155). Berlin: VEB Deutscher Verlag der Wissenschaft.Google Scholar