Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-23T12:56:24.437Z Has data issue: false hasContentIssue false

Differential Contributions of Selective Attention and Sensory Integration to Driving Performance in Healthy Aging and Alzheimer’s Disease

Published online by Cambridge University Press:  28 December 2017

Umesh M. Venkatesan
Affiliation:
Department of Psychiatry and Human Behavior, Alpert Medical School, Brown University, Providence, Rhode Island Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
Elena K. Festa*
Affiliation:
Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
Brian R. Ott
Affiliation:
Department of Neurology, Alpert Medical School, Brown University, Providence, Rhode Island
William C. Heindel
Affiliation:
Department of Cognitive, Linguistic, and Psychological Sciences, Brown University, Providence, Rhode Island
*
Correspondence and reprint requests to: Elena K. Festa, Department of Cognitive, Linguistic, and Psychological Sciences, 190 Thayer Street, Brown University, Providence, RI 02912. E-mail: [email protected]

Abstract

Objectives: Patients with Alzheimer’s disease (AD) demonstrate deficits in cross-cortical feature binding distinct from age-related changes in selective attention. This may have consequences for driving performance given its demands on multisensory integration. We examined the relationship of visuospatial search and binding to driving in patients with early AD and elderly controls (EC). Methods: Participants (42 AD; 37 EC) completed search tasks requiring either luminance-motion (L-M) or color-motion (C-M) binding, analogs of within and across visual processing stream binding, respectively. Standardized road test (RIRT) and naturalistic driving data (CDAS) were collected alongside clinical screening measures. Results: Patients performed worse than controls on most cognitive and driving indices. Visual search and clinical measures were differentially related to driving behavior across groups. L-M search and Trail Making Test (TMT-B) were associated with RIRT performance in controls, while C-M binding, TMT-B errors, and Clock Drawing correlated with CDAS performance in patients. After controlling for demographic and clinical predictors, L-M reaction time significantly predicted RIRT performance in controls. In patients, C-M binding made significant contributions to CDAS above and beyond demographic and clinical predictors. RIRT and C-M binding measures accounted for 51% of variance in CDAS performance in patients. Conclusions: Whereas selective attention is associated with driving behavior in EC, cross-cortical binding appears most sensitive to driving in AD. This latter relationship may emerge only in naturalistic settings, which better reflect patients’ driving behavior. Visual integration may offer distinct insights into driving behavior, and thus has important implications for assessing driving competency in early AD. (JINS, 2018, 24, 486–497)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Anstey, K.J., & Wood, J. (2011). Chronological age and age-related cognitive deficits are associated with an increase in multiple types of driving errors in late life. Neuropsychology, 25(5), 613621. doi: 10.1037/a0023835 Google Scholar
Aretouli, E., & Brandt, J. (2010). Everyday functioning in mild cognitive impairment and its relationship with executive cognition. International Journal of Geriatric Psychiatry, 25(3), 224233. doi: 10.1002/gps.2325 Google Scholar
Baddeley, A.D., Baddeley, H.A., Bucks, R.S., & Wilcock, G.K. (2001). Attentional control in Alzheimer’s disease. Brain, 124(Pt 8), 14921508.Google Scholar
Baldock, M.R., Mathias, J.L., McLean, A.J., & Berndt, A. (2006). Self-regulation of driving and its relationship to driving ability among older adults. Accident; Analysis and Prevention, 38(5), 10381045. doi: 10.1016/j.aap.2006.04.016 Google Scholar
Ball, K., & Owsley, C. (1993). The useful field of view test: A new technique for evaluating age-related declines in visual function. Journal of the American Optometric Association, 64(1), 7179.Google Scholar
Ball, K., Owsley, C., Sloane, M.E., Roenker, D.L., & Bruni, J.R. (1993). Visual attention problems as a predictor of vehicle crashes in older drivers. Investigative Ophthalmology & Visual Science, 34(11), 31103123.Google Scholar
Ball, K., Owsley, C., & Beard, B. (1990). Clinical visual perimetry underestimates peripheral field problems in older adults. Clinical Vision Sciences, 5(2), 113125.Google Scholar
Beaunieux, H., Eustache, F., Busson, P., de la Sayette, V., Viader, F., & Desgranges, B. (2012). Cognitive procedural learning in early Alzheimer’s disease: Impaired processes and compensatory mechanisms. Journal of Neuropsychology, 6(1), 3142. doi: 10.1111/j.1748-6653.2011.02002.x Google Scholar
Bedard, M., Weaver, B., Darzins, P., & Porter, M.M. (2008). Predicting driving performance in older adults: We are not there yet! Traffic Injury Prevention, 9(4), 336341. doi: 10.1080/15389580802117184 CrossRefGoogle Scholar
Bixby, K., Davis, J.D., & Ott, B.R. (2015). Comparing caregiver and clinician predictions of fitness to drive in people with Alzheimer’s disease. The American Journal of Occupational Therapy, 69(3), 6903270030p16903270037p1. doi: 10.5014/ajot.2015.013631 Google Scholar
Blanchard, R.A., & Myers, A.M. (2010). Examination of driving comfort and self-regulatory practices in older adults using in-vehicle devices to assess natural driving patterns. Accident; Analysis and Prevention, 42(4), 12131219. doi: 10.1016/j.aap.2010.01.013 Google Scholar
Braak, H., & Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathologica, 82(4), 239259.Google Scholar
Brown, L.B., Ott, B.R., Papandonatos, G.D., Sui, Y., Ready, R.E., & Morris, J.C. (2005). Prediction of on-road driving performance in patients with early Alzheimer’s disease. Journal of the American Geriatrics Society, 53(1), 9498. doi: 10.1111/j.1532-5415.2005.53017.x Google Scholar
Carr, D.B., Barco, P.P., Wallendorf, M.J., Snellgrove, C.A., & Ott, B.R. (2011). Predicting road test performance in drivers with dementia. Journal of the American Geriatrics Society, 59(11), 21122117. doi: 10.1111/j.1532-5415.2011.03657.x Google Scholar
Carr, D.B., Duchek, J., & Morris, J.C. (2000). Characteristics of motor vehicle crashes of drivers with dementia of the Alzheimer type. Journal of the American Geriatrics Society, 48(1), 1822.Google Scholar
Clay, O.J., Wadley, V.G., Edwards, J.D., Roth, D.L., Roenker, D.L., & Ball, K.K. (2005). Cumulative meta-analysis of the relationship between useful field of view and driving performance in older adults: Current and future implications. Optometry and Vision Science, 82(8), 724731.Google Scholar
Coubard, O.A., Ferrufino, L., Boura, M., Gripon, A., Renaud, M., & Bherer, L. (2011). Attentional control in normal aging and Alzheimer’s disease. Neuropsychology, 25(3), 353367. doi: 10.1037/a0022058 Google Scholar
Davis, J.D., Papandonatos, G.D., Miller, L.A., Hewitt, S.D., Festa, E.K., Heindel, W.C., & Ott, B.R. (2012). Road test and naturalistic driving performance in healthy and cognitively impaired older adults: Does environment matter? Journal of the American Geriatrics Society, 60(11), 20562062. doi: 10.1111/j.1532-5415.2012.04206.x Google Scholar
Deiber, M.P., Ibanez, V., Missonnier, P., Herrmann, F., Fazio-Costa, L., Gold, G., & Giannakopoulos, P. (2009). Abnormal-induced theta activity supports early directed-attention network deficits in progressive MCI. Neurobiology of Aging, 30(9), 14441452. doi: 10.1016/j.neurobiolaging.2007.11.021 CrossRefGoogle ScholarPubMed
Delacourte, A., David, J.P., Sergeant, N., Buee, L., Wattez, A., Vermersch, P., & Di Menza, C. (1999). The biochemical pathway of neurofibrillary degeneration in aging and Alzheimer’s disease. Neurology, 52(6), 11581165.Google Scholar
Delbeuck, X., Collette, F., & Van der Linden, M. (2007). Is Alzheimer’s disease a disconnection syndrome? Evidence from a crossmodal audio-visual illusory experiment. Neuropsychologia, 45(14), 33153323. doi: 10.1016/j.neuropsychologia.2007.05.001 Google Scholar
Delbeuck, X., Van der Linden, M., & Collette, F. (2003). Alzheimer’s disease as a disconnection syndrome? Neuropsychology Review, 13(2), 7992.CrossRefGoogle ScholarPubMed
Dobbs, B.M., & Shergill, S.S. (2013). How effective is the Trail Making Test (Parts A and B) in identifying cognitively impaired drivers? Age and Ageing, 42(5), 577581. doi: 10.1093/ageing/aft073 Google Scholar
Dobkins, K.R., & Albright, T.D. (1998). The influence of chromatic information on visual motion processing in the primate visual system. In T. Watanabe (Ed.), High-level motion processsing--Computational, neurobiological, and psychophysical perspectives (pp. 5394). Cambridge, MA: MIT Press.Google Scholar
Duchek, J.M., Hunt, L., Ball, K., Buckles, V., & Morris, J.C. (1997). The role of selective attention in driving and dementia of the Alzheimer type. Alzheimer Disease and Associated Disorders, 11(Suppl 1), 4856.Google Scholar
Duchek, J.M., Hunt, L., Ball, K., Buckles, V., & Morris, J.C. (1998). Attention and driving performance in Alzheimer’s disease. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 53(2), P130P141.Google Scholar
Farias, S.T., Chou, E., Harvey, D.J., Mungas, D., Reed, B., DeCarli, C., & Beckett, L. (2013). Longitudinal trajectories of everyday function by diagnostic status. Psychology and Aging, 28(4), 10701075. doi: 10.1037/a0034069 CrossRefGoogle ScholarPubMed
Festa, E.K., Heindel, W.C., & Ott, B.R. (2010). Dual-task conditions modulate the efficiency of selective attention mechanisms in Alzheimer’s disease. Neuropsychologia, 48(11), 32523261. doi: 10.1016/j.neuropsychologia.2010.07.003 Google Scholar
Festa, E.K., Insler, R.Z., Salmon, D.P., Paxton, J., Hamilton, J.M., & Heindel, W.C. (2005). Neocortical disconnectivity disrupts sensory integration in Alzheimer’s disease. Neuropsychology, 19(6), 728738. doi: 10.1037/0894-4105.19.6.728 Google Scholar
Festa, E.K., Katz, A.P., Ott, B.R., Tremont, G., & Heindel, W.C. (2017). Dissociable effects of aging and mild cognitive impairment on bottom-up audiovisual integration. Journal of Alzheimer’s Disease, 59(1), 155167. doi: 10.3233/JAD-161062 Google Scholar
Festa, E.K., Ott, B.R., Manning, K.J., Davis, J.D., & Heindel, W.C. (2013). Effect of cognitive status on self-regulatory driving behavior in older adults: An assessment of naturalistic driving using in-car video recordings. Journal of Geriatric Psychiatry and Neurology, 26(1), 1018. doi: 10.1177/0891988712473801 CrossRefGoogle ScholarPubMed
Fitten, L.J., Perryman, K.M., Wilkinson, C.J., Little, R.J., Burns, M.M., Pachana, N., & Ganzell, S. (1995). Alzheimer and vascular dementias and driving. A prospective road and laboratory study. JAMA, 273(17), 13601365.Google Scholar
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.Google Scholar
Foster, J.K. (2001). Selective attention in Alzheimer’s disease. Frontiers in Bioscience, 6, D135D153.Google Scholar
Foster, J.K., Behrmann, M., & Stuss, D.T. (1999). Visual attention deficits in Alzheimer’s disease: Simple versus conjoined feature search. Neuropsychology, 13(2), 223245.Google Scholar
Freund, B., Gravenstein, S., Ferris, R., Burke, B.L., & Shaheen, E. (2005). Drawing clocks and driving cars. Journal of General Internal Medicine, 20(3), 240244. doi: 10.1111/j.1525-1497.2005.40069.x Google Scholar
Heindel, W.C., Festa, E.K., Davis, J.D., Miller, L.A., Knott, S., & Ott, B.R. (2010). Differential contributions of selective attention and sensory integration to the decline in driving skills in aging and early Alzheimer’s disease. Alzheimer’s & Dementia, 6(4), S128S129. doi:http://dx.doi.org/10.1016/j.jalz.2010.05.403.Google Scholar
Heindel, W.C., Festa, E.K., Ott, B.R., Landy, K.M., & Salmon, D.P. (2013). Prototype learning and dissociable categorization systems in Alzheimer’s disease. Neuropsychologia, 51(9), 16991708. doi: 10.1016/j.neuropsychologia.2013.06.001 Google Scholar
Hird, M.A., Egeto, P., Fischer, C.E., Naglie, G., & Schweizer, T.A. (2016). A systematic review and meta-analysis of on-road simulator and cognitive driving assessment in Alzheimer’s disease and mild cognitive impairment. Journal of Alzheimers Disease, 53(2), 713729. doi: 10.3233/jad-160276 Google Scholar
Hirono, N., Mori, E., Ikejiri, Y., Imamura, T., Shimomura, T., Ikeda, M., & Yamadori, A. (1997). Procedural memory in patients with mild Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 8(4), 210216.Google Scholar
Hof, P.R., & Morrison, J.H. (1999). The cellular basis of cortical disconnection in Alzheimer disease and related dementing conditions. In R.D. Terry, R. Katzman, L. Bick & S.S. Sisodia (Eds.), Alzheimer disease (pp. 207232). Philadelphia, PA: Lippincott/Williams & Wilkins.Google Scholar
Hoffman, L., McDowd, J.M., Atchley, P., & Dubinsky, R. (2005). The role of visual attention in predicting driving impairment in older adults. Psychology and Aging, 20(4), 610622. doi: 10.1037/0882-7974.20.4.610 Google Scholar
Hunt, L.A., Murphy, C.F., Carr, D., Duchek, J.M., Buckles, V., & Morris, J.C. (1997). Reliability of the Washington University Road Test. A performance-based assessment for drivers with dementia of the Alzheimer type. Archives of Neurology, 54(6), 707712.CrossRefGoogle Scholar
Jefferson, A.L., Byerly, L.K., Vanderhill, S., Lambe, S., Wong, S., Ozonoff, A., & Karlawish, J.H. (2008). Characterization of activities of daily living in individuals with mild cognitive impairment. The American Journal of Geriatric Psychiatry, 16(5), 375383. doi: 10.1097/JGP.0b013e318162f197 Google Scholar
Kurylo, D.D., Allan, W.C., Collins, T.E., & Baron, J. (2003). Perceptual organization based upon spatial relationships in Alzheimer’s disease. Behavioural Neurology, 14(1-2), 1928.CrossRefGoogle ScholarPubMed
Lakmache, Y., Lassonde, M., Gauthier, S., Frigon, J.Y., & Lepore, F. (1998). Interhemispheric disconnection syndrome in Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 95(15), 90429046.Google Scholar
Lam, B., Masellis, M., Freedman, M., Stuss, D.T., & Black, S.E. (2013). Clinical, imaging, and pathological heterogeneity of the Alzheimer’s disease syndrome. Alzheimer’s Research & Therapy, 5(1), 1. doi: 10.1186/alzrt155 Google Scholar
Landy, K.M., Salmon, D.P., Filoteo, J.V., Heindel, W.C., Galasko, D., & Hamilton, J.M. (2015). Visual search in Dementia with Lewy Bodies and Alzheimer’s disease. Cortex, 73, 228239. doi: 10.1016/j.cortex.2015.08.020 Google Scholar
Lesikar, S.E., Gallo, J.J., Rebok, G.W., & Keyl, P.M. (2002). Prospective study of brief neuropsychological measures to assess crash risk in older primary care patients. The Journal of the American Board of Family Practice, 15(1), 1119.Google Scholar
Levinoff, E.J., Li, K.Z., Murtha, S., & Chertkow, H. (2004). Selective attention impairments in Alzheimer’s disease: Evidence for dissociable components. Neuropsychology, 18(3), 580588. doi: 10.1037/0894-4105.18.3.580 Google Scholar
Lewis, D.A. (1997). Schizophrenia and disordered neural circuitry. Schizophrenia Bulletin, 23(3), 529531.Google Scholar
Lineweaver, T.T., Salmon, D.P., Bondi, M.W., & Corey-Bloom, J. (2005). Differential effects of Alzheimer’s disease and Huntington’s disease on the performance of mental rotation. Journal of the International Neuropsychological Society, 11(1), 3039. doi: 10.1017/s1355617705050034 Google Scholar
Machado, S., Cunha, M., Minc, D., Portella, C.E., Velasques, B., Basile, L.F., & Ribeiro, P. (2009). Alzheimer’s disease and implicit memory. Arquivos de Neuro-psiquiatria, 67(2a), 334342.CrossRefGoogle ScholarPubMed
Mann, U.M., Mohr, E., Gearing, M., & Chase, T.N. (1992). Heterogeneity in Alzheimer’s disease: Progression rate segregated by distinct neuropsychological and cerebral metabolic profiles. Journal of Neurology, Neurosurgery, and Psychiatry, 55(10), 956959.Google Scholar
Mathias, J.L., & Lucas, L.K. (2009). Cognitive predictors of unsafe driving in older drivers: A meta-analysis. International Psychogeriatrics, 21(4), 637653. doi: 10.1017/s1041610209009119 Google Scholar
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939944.CrossRefGoogle ScholarPubMed
Merigan, W.H., & Maunsell, J.H. (1993). How parallel are the primate visual pathways? Annual Review of Neuroscience, 16, 369402. doi: 10.1146/annurev.ne.16.030193.002101 Google Scholar
Morris, J.C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43(11), 24122414.Google Scholar
Morrison, J.H., Hof, P.R., & Bouras, C. (1991). An anatomic substrate for visual disconnection in Alzheimer’s disease. Annls of the New York Academy of Sciences, 640, 3643.Google Scholar
Ott, B.R., Anthony, D., Papandonatos, G.D., D’Abreu, A., Burock, J., Curtin, A., & Morris, J.C. (2005). Clinician assessment of the driving competence of patients with dementia. Journal of the American Geriatrics Society, 53(5), 829833. doi: 10.1111/j.1532-5415.2005.53265.x Google Scholar
Ott, B.R., Heindel, W.C., Papandonatos, G.D., Festa, E.K., Davis, J.D., Daiello, L.A., & Morris, J.C. (2008). A longitudinal study of drivers with Alzheimer disease. Neurology, 70(14), 11711178. doi: 10.1212/01.wnl.0000294469.27156.30 Google Scholar
Ott, B.R., Papandonatos, G.D., Davis, J.D., & Barco, P.P. (2012). Naturalistic validation of an on-road driving test of older drivers. Human Factors, 54(4), 663674. doi: 10.1177/0018720811435235 Google Scholar
Owsley, C., Ball, K., Sloane, M.E., Roenker, D.L., & Bruni, J.R. (1991). Visual/cognitive correlates of vehicle accidents in older drivers. Psychology and Aging, 6(3), 403415.Google Scholar
Papandonatos, G.D., Ott, B.R., Davis, J.D., Barco, P.P., & Carr, D.B. (2015). Clinical utility of the Trail-Making Test as a predictor of driving performance in older adults. Journal of the American Geriatrics Society, 63(11), 23582364. doi: 10.1111/jgs.13776 Google Scholar
Parasuraman, R., Greenwood, P.M., Haxby, J.V., & Grady, C.L. (1992). Visuospatial attention in dementia of the Alzheimer type. Brain, 115(Pt 3), 711733.Google Scholar
Parasuraman, R., & Nestor, P.G. (1991). Attention and driving skills in aging and Alzheimer’s disease. Human Factors, 33(5), 539557. doi: 10.1177/001872089103300506 Google Scholar
Parra, M.A., Abrahams, S., Logie, R.H., & Della Sala, S. (2010). Visual short-term memory binding in Alzheimer’s disease and depression. Journal of Neurology, 257(7), 11601169. doi: 10.1007/s00415-010-5484-9 Google Scholar
Paxton, J.L., Peavy, G.M., Jenkins, C., Rice, V.A., Heindel, W.C., & Salmon, D.P. (2007). Deterioration of visual-perceptual organization ability in Alzheimer’s disease. Cortex, 43(7), 967975.Google Scholar
Perry, R.J., & Hodges, J.R. (1999). Attention and executive deficits in Alzheimer’s disease. A critical review. Brain, 122(Pt 3), 383404.Google Scholar
Porter, G., Leonards, U., Wilcock, G., Haworth, J., Troscianko, T., & Tales, A. (2010). New insights into feature and conjunction search: II. Evidence from Alzheimer’s disease. Cortex, 46(5), 637649. doi: 10.1016/j.cortex.2009.04.014 Google Scholar
Porter, M.M., & Whitton, M.J. (2002). Assessment of driving with the global positioning system and video technology in young, middle-aged, and older drivers. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 57(9), M578M582.Google Scholar
Richardson, E.D., & Marottoli, R.A. (2003). Visual attention and driving behaviors among community-living older persons. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 58(9), M832M836.Google Scholar
Rodakowski, J., Skidmore, E.R., Reynolds, C.F. III, Dew, M.A., Butters, M.A., Holm, M.B., & Rogers, J.C. (2014). Can performance on daily activities discriminate between older adults with normal cognitive function and those with mild cognitive impairment? Journal of the American Geriatrics Society, 62(7), 13471352. doi: 10.1111/jgs.12878 Google Scholar
Schmitter-Edgecombe, M., & Parsey, C.M. (2014). Assessment of functional change and cognitive correlates in the progression from healthy cognitive aging to dementia. Neuropsychology, 28(6), 881893. doi: 10.1037/neu0000109 Google Scholar
Tales, A., Butler, S.R., Fossey, J., Gilchrist, I.D., Jones, R.W., & Troscianko, T. (2002). Visual search in Alzheimer’s disease: A deficiency in processing conjunctions of features. Neuropsychologia, 40(12), 18491857.Google Scholar
Treisman, A.M., & Gelade, G. (1980). A feature-integration theory of attention. Cognitive Psychology, 12(1), 97136.Google Scholar
Trick, L.M., & Enns, J.T. (2004). Driving and selection attention: A conceptual framework for understanding the role of selective attention in driving. Retrieved from http://www.psychology.uoguelph.ca/faculty/trick/research/publications-refereed-conference/publications_ref_conference/TrickEnns2003.pdf Google Scholar
Uhlhaas, P.J., Pantel, J., Lanfermann, H., Prvulovic, D., Haenschel, C., Maurer, K., & Linden, D.E. (2008). Visual perceptual organization deficits in Alzheimer’s dementia. Dementia and Geriatric Cognitive Disorders, 25(5), 465475. doi: 10.1159/000125671 Google Scholar
Van Gerven, P.W., & Guerreiro, M.J. (2016). Selective attention and sensory modality in aging: Curses and blessings. Frontiers in Human Neuroscience, 10, 147. doi: 10.3389/fnhum.2016.00147 Google Scholar
van Halteren-van Tilborg, I.A., Scherder, E.J., & Hulstijn, W. (2007). Motor-skill learning in Alzheimer’s disease: A review with an eye to the clinical practice. Neuropsychology Review, 17(3), 203212. doi: 10.1007/s11065-007-9030-1 Google Scholar
Vaucher, P., Herzig, D., Cardoso, I., Herzog, M.H., Mangin, P., & Favrat, B. (2014). The trail making test as a screening instrument for driving performance in older drivers; a translational research. BMC Geriatrics, 14, 123. doi: 10.1186/1471-2318-14-123 Google Scholar
Vrkljan, B.H., McGrath, C.E., & Letts, L.J. (2011). Assessment tools for evaluating fitness to drive: A critical appraisal of evidence. Canadian Journal of Occupational Therapy, 78(2), 8096. doi: 10.2182/cjot.2011.78.2.3 Google Scholar
Wadley, V.G., Okonkwo, O., Crowe, M., Vance, D.E., Elgin, J.M., Ball, K.K., & Owsley, C. (2009). Mild cognitive impairment and everyday function: An investigation of driving performance. Journal of Geriatric Psychiatry and Neurology, 22(2), 8794. doi: 10.1177/0891988708328215 Google Scholar
Wood, J.M., Chaparro, A., Lacherez, P., & Hickson, L. (2012). Useful field of view predicts driving in the presence of distracters. Optometry and Vision Science, 89(4), 373381. doi: 10.1097/OPX.0b013e31824c17ee Google Scholar
Zanto, T.P., & Gazzaley, A. (2014). Attention and Ageing. In A.C. Nobre & S. Kastner (Eds.), The Oxford Handbook of Attention. Oxford, UK: Oxford University Press.Google Scholar
Supplementary material: File

Venkatesan et al supplementary material

Tables S1-S3

Download Venkatesan et al supplementary material(File)
File 25 KB