Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-26T21:17:42.539Z Has data issue: false hasContentIssue false

Device-Measured Physical Activity and Cognitive Processing Speed Impairment in a Large Sample of Persons with Multiple Sclerosis

Published online by Cambridge University Press:  25 March 2020

Brian M. Sandroff*
Affiliation:
Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, USA
Robert W. Motl
Affiliation:
Department of Physical Therapy, University of Alabama at Birmingham, Birmingham, AL, USA
*
*Correspondence and reprint requests to: Brian M. Sandroff, Department of Physical Therapy, University of Alabama at Birmingham, SHP 389, 1720 2nd Ave S, Birmingham, AL35294-2172, USA. E-mail: [email protected]

Abstract

Objective:

There is accumulating evidence regarding the beneficial effects of physical activity (PA) on cognitive processing speed in persons with multiple sclerosis (MS). However, one overarching limitation of this research is that researchers have not recruited samples who have the actual problem of being studied (i.e., cognitive processing speed impairment). This study examined associations between device-measured PA and cognitive processing speed in a large sample of persons with MS overall and between those with and without cognitive processing speed impairment.

Method:

Three hundred eighty-five persons with MS underwent the oral Symbol Digit Modalities Test (SDMT) and wore an accelerometer for 7 days for PA measurement. We divided the overall sample into subsamples with (n = 140) and without (n = 245) cognitive processing speed impairment based on age, sex, and education-adjusted SDMT Z-scores.

Results:

After controlling for age and disability status, higher levels of device-measured PA were significantly associated with faster cognitive processing speed overall, and the association was significantly stronger among persons with MS who presented with cognitive processing speed impairment.

Conclusions:

This examination provides initial cross-sectional support for informing the development of PA interventions as a possible approach for managing MS-related cognitive processing speed impairment. This highlights the importance of developing purposefully designed trials involving PA interventions for targeting cognitive processing speed as a primary end point among persons with MS with impaired cognitive processing speed.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Amato, M.P., Portaccio, E., Goretti, B., Zipoli, V., Iudice, A., Della Pina, D., & De Stefano, N. (2010). Relevance of cognitive deterioration in early relapsing-remitting MS: A 3-year follow-up study. Multiple Sclerosis Journal, 16(12), 14741482.10.1177/1352458510380089CrossRefGoogle ScholarPubMed
Baird, J.F., Cederberg, K.L.J., Sikes, E.M., Silveira, S.L., Jeng, B., Sasaki, J.E., … Motl, R.W. (2019). Physical activity and walking performance across the lifespan among adults with multiple sclerosis. Multiple Sclerosis and Related Disorders, 35, 3641.CrossRefGoogle ScholarPubMed
Benedict, R.H.B., DeLuca, J., Enzinger, C., Geurts, J.J.G., Krupp, L.B., & Rao, S.M. (2017). Neuropsychology of multiple sclerosis: Looking back and moving forward. Journal of the International Neuropsychological Society, 23(9–10), 832842.10.1017/S1355617717000959CrossRefGoogle ScholarPubMed
Benedict, R.H.B., DeLuca, J., Phillips, G., LaRocca, N., Hudson, L.D., Rudick, R., & Multiple Sclerosis Outcome Assessments Consortium. (2017). Validity of the Symbol Digit Modalities Test as a cognition performance outcome measure for multiple sclerosis. Multiple Sclerosis Journal, 23(5), 721733.CrossRefGoogle ScholarPubMed
Benedict, R.H.B., Holtzer, R., Motl, R.W., Foley, F.W., Kaur, S., Hojnacki, D., & Weinstock-Guttman, B. (2011). Upper and lower extremity motor function and cognitive impairment in multiple sclerosis. Journal of the International Neuropsychological Society, 17(4), 643653.10.1017/S1355617711000403CrossRefGoogle ScholarPubMed
Bherer, L., Erickson, K.I., & Liu-Ambrose, T. (2013). A review of the effects of physical activity and exercise on cognitive and brain functions in older adults. Journal of Aging Research, 2013, 657508.Google ScholarPubMed
Chiaravalloti, N.D. & DeLuca, J. (2008). Cognitive impairment in multiple sclerosis. Lancet Neurology, 7, 11391151.10.1016/S1474-4422(08)70259-XCrossRefGoogle ScholarPubMed
Cohen, J. (1998). Statistical power analysis for the behavioral sciences, (second edition). Hillsdale NJ: Lawrence Erlbaum Associates.Google Scholar
Costa, S.L., Genova, H.M., DeLuca, J., & Chiaravalloti, N.D. (2017). Information processing speed in multiple sclerosis: Past, present, and future. Multiple Sclerosis Journal, 23(6), 772789.CrossRefGoogle ScholarPubMed
Daly, M., McMinn, D., & Allan, J.L. (2015). A bidirectional relationship between physical activity and executive function in older adults. Frontiers in Human Neuroscience, 8, 1044.10.3389/fnhum.2014.01044CrossRefGoogle ScholarPubMed
Dlugonski, D., Pilutti, L.A., Sandroff, B.M., Suh, Y., Balantrapu, S., & Motl, R.W. (2013). Steps per day among persons with multiple sclerosis: Variation by demographic, clinical, and device characteristics. Archives of Physical Medicine and Rehabilitation, 94(8), 15341539.10.1016/j.apmr.2012.12.014CrossRefGoogle ScholarPubMed
Goldman, M.D., Motl, R.W., Scagnelli, J., Pula, J.H., Sosnoff, J.J., & Cadavid, D. (2013). Clinically meaningful performance benchmarks in MS: Timed 25-foot walk and the real world. Neurology, 81(21), 18561863.10.1212/01.wnl.0000436065.97642.d2CrossRefGoogle ScholarPubMed
Groot, C., Hooghiemstra, A.M., Raijmakers, P.G., van Berckel, B.N., Scheltens, P., Scherder, E.J., … Ossenkoppele, R. (2016). The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized controlled trials. Ageing Research Review, 25, 1323.10.1016/j.arr.2015.11.005CrossRefGoogle Scholar
Hadjimichael, O., Kerns, R.D., Rizzo, M.A., Cutter, G., & Vollmer, T. (2007). Persistent pain and uncomfortable sensations in persons with multiple sclerosis. Pain, 127(1–2), 3541.CrossRefGoogle ScholarPubMed
Kinnett-Hopkins, D., Adamson, B., Rougeau, K., & Motl, R.W. (2017). People with MS are less physically active than healthy controls but as active as those with other chronic diseases: An updated meta-analysis. Multiple Sclerosis and Related Disorders, 13, 3843.CrossRefGoogle ScholarPubMed
Klaren, R.E., Hubbard, E.A., Zhu, W., & Motl, R.W. (2016). Reliability of accelerometer scores for measuring sedentary and physical activity behaviors in persons with multiple sclerosis. Adapted Physical Activity Quarterly, 33(2), 195204.10.1123/APAQ.2015-0007CrossRefGoogle ScholarPubMed
Klaren, R.E., Motl, R.W., Dlugonski, D., Sandroff, B.M., & Pilutti, L.A. (2013). Objectively quantified physical activity in persons with multiple sclerosis. Archives of Physical Medicine and Rehabilitation, 94(12), 23422348.10.1016/j.apmr.2013.07.011CrossRefGoogle ScholarPubMed
Learmonth, Y.C., Motl, R.W., Sandroff, B.M., Pula, J.H., & Cadavid, D. (2013). Validation of Patient Determined Disease Steps (PDDS) Scale Scores in persons with multiple sclerosis. BMC Neurology, 13(1), 37.10.1186/1471-2377-13-37CrossRefGoogle ScholarPubMed
Motl, R.W. (2014). Lifestyle physical activity in persons with multiple sclerosis: The new kid on the MS block. Multiple Sclerosis Journal, 20(8), 10251029.10.1177/1352458514525873CrossRefGoogle ScholarPubMed
Motl, R.W., Gappmaier, E., Nelson, K., & Benedict, R.H.B. (2011). Physical activity and cognitive function in multiple sclerosis. Journal of Sport and Exercise Psychology, 33(5), 734741.10.1123/jsep.33.5.734CrossRefGoogle ScholarPubMed
Motl, R.W., Pilutti, L.A., Sandroff, B.M., Dlugonski, D., Sosnoff, J.J., & Pula, J.H. (2013). Validation of accelerometry as a measure of walking behavior in multiple sclerosis. Acta Neurologica Scandinavica, 127(6), 384390.CrossRefGoogle ScholarPubMed
Motl, R.W., Sandroff, B.M., & Benedict, R.H.B. (2011). Cognitive dysfunction and multiple sclerosis: Developing a rationale for considering the efficacy of exercise training. Multiple Sclerosis Journal, 17(9), 10341040.10.1177/1352458511409612CrossRefGoogle ScholarPubMed
Motl, R.W., Sandroff, B.M., & DeLuca, J. (2016). Exercise training and cognitive rehabilitation: A symbiotic approach for rehabilitating walking and cognitive functions in multiple sclerosis? Neurorehabilitation and Neural Repair, 30, 499511.CrossRefGoogle ScholarPubMed
Motl, R.W., Sandroff, B.M., Kwakkel, G., Dalgas, U., Feinstein, A., Heesen, C., … Thompson, A.J. (2017). Exercise in patients with multiple sclerosis. Lancet Neurology, 16(10), 848856.CrossRefGoogle ScholarPubMed
Motl, R.W., Zhu, W., Park, Y., McAuley, E., Scott, J.A., & Snook, E.M. (2007). Reliability of scores from physical activity monitors in adults with multiple sclerosis. Adapted Physical Activity Quarterly, 24(3), 245253.CrossRefGoogle ScholarPubMed
Parmenter, B.A., Testa, S.M., Schretlen, D.J., Weinstock-Guttman, B., & Benedict, R.H. (2010). The utility of regression-based norms in interpreting the minimal assessment of cognitive function in multiple sclerosis (MACFIMS). Journal of the International Neuropsychological Society, 16(1), 616.CrossRefGoogle Scholar
Prakash, R.S., Patterson, B., Janssen, A., Abduljalil, A., & Boster, A. (2011). Physical activity associated with increased resting-state functional connectivity in multiple sclerosis. Journal of the International Neuropsychological Society, 17, 986997.CrossRefGoogle ScholarPubMed
Rao, S.M., Martin, A.L., Huelin, R., Wissinger, E., Khankhel, Z., Kim, E., & Fahrbach, K. (2014). Correlations between MRI and information processing speed in MS: A meta-analysis. Multiple Sclerosis International, 2014, 975803.10.1155/2014/975803CrossRefGoogle ScholarPubMed
Rousselet, G.A. & Pernet, C.R. (2012). Improving standards in brain-behavior correlation analyses. Frontiers in Human Neuroscience, 6, 119.10.3389/fnhum.2012.00119CrossRefGoogle ScholarPubMed
Sanders, L.M.J., Hortobagyi, T., la Bastide-van Gemert, S., van der Zee, E.A., & van Heuvelen, M.J.G. (2019). Dose-response relationship between exercise and cognitive function in older adults with and without cognitive impairment: A systematic review and meta-analysis. PLoS ONE, 14(1), e0210036.10.1371/journal.pone.0210036CrossRefGoogle ScholarPubMed
Sandroff, B.M., Bollaert, R.E., Pilutti, L.A., Peterson, M.L., Baynard, T., Fernhall, B., … Motl, R.W. (2017). Multimodal exercise training in multiple sclerosis: A randomized controlled trial in persons with substantial mobility disability. Contemporary Clinical Trials, 61, 3947.CrossRefGoogle ScholarPubMed
Sandroff, B.M., Dlugonski, D., Pilutti, L.A., Pula, J.H., Benedict, R.H.B., & Motl, R.W. (2014). Physical activity is associated with cognitive processing speed in persons with multiple sclerosis. Multiple Sclerosis and Related Disorders, 3(1), 123128.10.1016/j.msard.2013.04.003CrossRefGoogle ScholarPubMed
Sandroff, B.M., Dlugonski, D., Weikert, M., Suh, Y., & Motl, R.W. (2012). Physical activity and multiple sclerosis: New insights regarding inactivity. Acta Neurologica Scandinavica, 126(4), 256262.CrossRefGoogle ScholarPubMed
Sandroff, B.M., Klaren, R.E., Pilutti, L.A., Dlugonski, D., Benedict, R.H.B., & Motl, R.W. (2014). Randomized controlled trial of physical activity, cognition, and walking in multiple sclerosis. Journal of Neurology, 261(2), 363372.10.1007/s00415-013-7204-8CrossRefGoogle ScholarPubMed
Sandroff, B.M. & Motl, R.W. (2012). Fitness and cognitive processing speed in persons with multiple sclerosis: A cross-sectional investigation. Journal of Clinical and Experimental Neuropsychology, 34(10), 10411052.10.1080/13803395.2012.715144CrossRefGoogle ScholarPubMed
Sandroff, B.M., Motl, R.W., & DeLuca, J. (2017). The influence of cognitive impairment on the fitness/cognition relationship in MS. Medicine and Science in Sports and Exercise, 49(6), 11841189.10.1249/MSS.0000000000001215CrossRefGoogle Scholar
Sandroff, B.M., Motl, R.W., Scudder, M.R., & DeLuca, J. (2016). Systematic, evidence-based review of exercise, physical activity, and physical fitness effects on cognition in persons with multiple sclerosis. Neuropsychology Review, 26(3), 271294.10.1007/s11065-016-9324-2CrossRefGoogle ScholarPubMed
Sandroff, B.M., Pilutti, L.A., Dlugonski, D., & Motl, R.W. (2013). Physical activity and information processing speed in persons with multiple sclerosis: A prospective study. Mental Health and Physical Activity, 6(3), 205211.CrossRefGoogle Scholar
Smith, A. (1982). Symbol digit modalities test: Manual. Los Angeles, CA: Western Psychological Services.Google Scholar
Sumowski, J.F., Benedict, R., Enzinger, C., Filippi, M., Geurts, J.J., Hamalainen, P., … Rao, S. (2018). Cognition in multiple sclerosis: State of the field and priorities for the future. Neurology, 90(6), 278288.CrossRefGoogle ScholarPubMed
Trapp, B.D. & Nave, K-A. (2008). Multiple sclerosis: An immune or neurodegenerative disease? Annual Review of Neuroscience, 31, 247269.10.1146/annurev.neuro.30.051606.094313CrossRefGoogle ScholarPubMed
Tudor-Locke, C., Johnson, W.D., & Katzmarzyk, P.T. (2009). Accelerometer-determined steps per day in US adults. Medicine and Science in Sports and Exercise, 41, 13841391.10.1249/MSS.0b013e318199885cCrossRefGoogle Scholar
Wallin, M.T., Culpepper, W.J., Campbell, J.D., Nelson, L.M., Langer-Gould, A., Marrie, R.A., … LaRocca, N.G. (2019). The prevalence of MS in the United States: A population-based estimate using health claims data. Neurology, 92(10), e1029e1040.10.1212/WNL.0000000000007035CrossRefGoogle ScholarPubMed