Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T09:50:21.416Z Has data issue: false hasContentIssue false

Conflict adaptation and cognitive control adjustments following traumatic brain injury

Published online by Cambridge University Press:  01 November 2009

MICHAEL J. LARSON*
Affiliation:
Departments of Psychology and Neuroscience, Brigham Young University, Provo, Utah
DAVID A.S. KAUFMAN
Affiliation:
Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida
WILLIAM M. PERLSTEIN
Affiliation:
Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida Department of Psychiatry and the McKnight Brain Institute, University of Florida, Gainesville, Florida
*
*Correspondence and reprint requests to: Michael J. Larson, Department of Psychology, Brigham Young University, 244 TLRB, Provo, Utah 84602. E-mail: [email protected]

Abstract

Survivors of severe traumatic brain injury (TBI) often demonstrate impairments in the cognitive control functions of detecting response conflict and signaling for recruitment of cognitive resources to appropriately adjust performance. These cognitive control functions can be measured using conflict adaptation effects, wherein manifestations of conflict detection and processing are reduced following high- relative to low-conflict trials. Event-related potentials (ERPs) were collected while 18 survivors of severe traumatic brain injury (TBI) and 21 demographically matched control participants performed a modified Stroop task. The incongruent-minus-congruent trial Stroop effect for trials preceded by incongruent (high conflict) and congruent (low conflict) trials were compared for behavioral (response time [RT] and error rate) and ERP reflections of cognitive control. Behavioral data showed a reduction in the Stroop effect for both control and TBI participant RTs when preceded by incongruent trials. The magnitude of these effects did not differentiate control and TBI participants. ERP data revealed a centro-parietal conflict slow potential (conflict SP) that differentiated incongruent from congruent trials. Planned comparisons showed a decreased amplitude conflict SP when ERPs were preceded by incongruent trials in control, but not TBI participants. Results indicate subtle TBI-related impairments in conflict resolution mechanisms in the context of intact RT-related conflict adaptation. (JINS, 2009, 15, 927–937.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Benton, A., & Hamsher, K. (1976). Multilingual Aphasia Examination. Iowa City, IA: University of Iowa.Google Scholar
Berg, P., & Scherg, M. (1994). A multiple source approach to the correction of eye artifacts. Electroencephalography and Clinical Neurophysiology, 90, 229241.CrossRefGoogle Scholar
Botvinick, M., Braver, T.S., Barch, D.M., Carter, C.S., & Cohen, J.D. (2001). Conflict monitoring and cognitive control. Psychological Review, 108, 624652.CrossRefGoogle ScholarPubMed
Brandt, J., & Benedict, R.H.B. (2001). Hopkins Verbal Learning Test–Revised. Professional Manual. Lutz, FL: Psychological Assessment Resources.Google Scholar
Carroll, J.F.X., & McGinley, J.J. (2001). Mental Health Screening Form-III (MHSF-III). New York, NY: Project Return Foundation, Inc.Google Scholar
Carter, C.S., & van Veen, V. (2007). Anterior cingulate cortex and conflict detection: An update of theory and data. Cognitive, Affective, & Behavioral Neuroscience, 7, 367379.CrossRefGoogle ScholarPubMed
Cazalis, F., Feydy, A., Valabreque, R., Pelegrini-Issac, M., Pierot, L., & Azouvi, P. (2006). fMRI study of problem-solving after severe traumatic brain injury. Brain Injury, 20, 10191028.CrossRefGoogle ScholarPubMed
Christodoulou, C., DeLuca, J., Ricker, J.H., Madigan, N.K., Bly, B.M., Lange, G., et al. (2001). Functional magnetic resonance imaging of working memory impairment after traumatic brain injury. Journal of Neurology, Neurosurgery, and Psychiatry, 71, 161168.CrossRefGoogle ScholarPubMed
Di Pellegrino, G., Ciaramelli, E., & Ladavas, E. (2007). The regulation of cognitive control following rostral anterior cingulate cortex lesion in humans. Journal of Cognitive Neuroscience, 19, 275286.CrossRefGoogle ScholarPubMed
Dockree, P.M., Bellgrove, M.A., O’Keeffe, F.M., Moloney, P., Aimola, L., Carton, S., et al. (2006). Sustained attention in traumatic brain injury (TBI) and healthy controls: Enhanced sensitivity with dual-task load. Experimental Brain Research, 168, 218229.CrossRefGoogle ScholarPubMed
Egner, T. (2007). Congruency sequence effects and cognitive control. Cognitive, Affective, & Behavioral Neuroscience, 7, 380390.CrossRefGoogle ScholarPubMed
Egner, T., & Hirsch, J. (2005). The neural correlates of functional integration of cognitive control in a Stroop task. Neuroimage, 15, 539547.CrossRefGoogle Scholar
Gratton, G., Coles, M.G.H., & Donchin, E. (1992). Optimizing the use of information: Strategic control of activation responses. Journal of Experimental Psychology: General, 480506.CrossRefGoogle Scholar
Hanslmayr, S., Pastotter, B., Mauml, K.H., Gruber, S., Wimber, M., & Klimesch, W. (2008). The electrophysiological dynamics of interference during the Stroop task. Journal of Cognitive Neuroscience, 20, 215225.CrossRefGoogle ScholarPubMed
Hommel, B. (1998). Event files: Evidence for automatic integration of stimulus-response episodes. Visual Cognition, 5, 183216.CrossRefGoogle Scholar
Hommel, B., Proctor, R.W., & Vu, K.P. (2004). A feature-integration account of sequential effects in the Simon task. Psychological Research, 68, 117.CrossRefGoogle ScholarPubMed
Ille, N., Berg, P., & Scherg, M. (1997). A spatial components method for continuous artifact correction in EEG and MEG. Biomedical Technology, 42, 8083.Google Scholar
Ille, N., Berg, P., & Scherg, M. (2002). Artifact correction of the ongoing EEG using spatial filters based on artifact and brain signal topographies. Journal of Clinical Neurophysiology, 19, 113124.CrossRefGoogle ScholarPubMed
Kerns, J.G. (2006). Anterior cingulate and prefrontal activity in an fMRI study of trial-to-trial adjustments on the Simon task. Neuroimage, 15, 399405.CrossRefGoogle Scholar
Kerns, J.G., Cohen, J.D., MacDonald, A.W., Cho, R.Y., Stenger, V.A., & Carter, C.S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 10231026.CrossRefGoogle ScholarPubMed
King, N.S., Crawford, S., Wenden, F.J., Moss, N.E., & Wade, D.T. (1997). Interventions and service need following mild and moderate head injury: The Oxford Head Injury Service. Clinical Rehabilitation, 11, 1327.CrossRefGoogle ScholarPubMed
Larson, M.J., Kaufman, D.A.S., & Perlstein, W.M. (2009). Neural time course of conflict adaptation effects on the Stroop task. Neuropsychologia, 47, 663670.CrossRefGoogle ScholarPubMed
Larson, M.J., Kaufman, D.A.S., Schmalfuss, I.M., & Perlstein, W.M. (2007a). Performance monitoring, error processing, and evaluative control following severe TBI. Journal of the International Neuropsychological Society, 13, 961971.CrossRefGoogle ScholarPubMed
Larson, M.J., Kelly, K.G., Stigge-Kaufman, D., Schmalfuss, I.M., & Perlstein, W.M. (2007b). Reward context sensitivity impairment following severe TBI: An event-related potential investigation. Journal of the International Neuropsychological Society, 13, 615625.CrossRefGoogle ScholarPubMed
Larson, M.J., Perlstein, W.M., Demery, J.A., & Stigge-Kaufman, D. (2006). Cognitive control impairments in traumatic brain injury. Journal of Clinical and Experimental Neuropsychology, 28, 968986.CrossRefGoogle ScholarPubMed
Leclercq, M., Couillet, J., Azouvi, P., Marlier, N., Martin, Y., Strypstein, E., et al. (2000). Dual task performance after severe diffuse traumatic brain injury or vascular prefrontal damage. Journal of Clinical and Experimental Neuropsychology, 22, 339350.CrossRefGoogle ScholarPubMed
Liotti, M., Woldorff, M.G., Perez, R., & Mayberg, H.S. (2000). An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38, 701711.CrossRefGoogle ScholarPubMed
MacDonald, A.W., Cohen, J.D., Stenger, V.A., & Carter, C.S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288, 18351838.CrossRefGoogle ScholarPubMed
Mayr, U., & Awh, E. (in press). The elusive link between conflict and conflict adaptation. Psychological Research.Google Scholar
Mayr, U., Awh, E., & Laurey, P. (2003). Conflict adaptation effects in the absence of executive control. Nature Neuroscience, 6, 450452.CrossRefGoogle ScholarPubMed
McAllister, T.W., Flashman, L.A., McDonald, B.C., & Saykin, A.J. (2006). Mechanisms of working memory dysfunction after mild and moderate TBI: Evidence from functional MRI and neurogenetics. Journal of Neurotrauma, 23, 14501467.CrossRefGoogle ScholarPubMed
McAllister, T.W., Saykin, A.J., Flashman, L.A., Sparling, M.B., Johnson, S.C., Guerin, S.J., et al. (1999). Brain activation during working memory 1 month after mild traumatic brain injury: A functional MRI study. Neurology, 53, 13001308.CrossRefGoogle ScholarPubMed
McAllister, T.W., Sparling, M.B., Flashman, L.A., Guerin, S.J., Mamourian, A.C., & Saykin, A.J. (2001). Differential working memory load effects after mild traumatic brain injury. Neuroimage, 14, 10041012.CrossRefGoogle ScholarPubMed
McDowell, S., Whyte, J., & D’Esposito, M. (1997). Working memory impairments in traumatic brain injury: Evidence from a dual-task paradigm. Neuropsychologia, 35, 13411353.CrossRefGoogle ScholarPubMed
McMillan, T.M., Jongen, E.L., & Greenwood, R.J. (1996). Assessment of post-traumatic amnesia after severe closed head injury: Retrospective or prospective. Journal of Neurology, Neurosurgery, and Psychiatry, 60, 422427.CrossRefGoogle ScholarPubMed
Neter, J., Wasserman, W., & Kutner, M.H. (1985). Applied Linear Statistical Models: Regression, Analysis of Variance, and Experimental Designs (2nd ed.). Homewood, Ill: RD Irwin.Google Scholar
Newsome, M.R., Scheibel, R.S., Steinberg, J.L., Troyanskaya, M., Sharma, R.G., Rauch, R.A., et al. (2007). Working memory brain activation following severe traumatic brain injury. Cortex, 43, 95111.CrossRefGoogle ScholarPubMed
Newsome, M.R., Steinberg, J.L., Scheibel, R.S., Troyanskaya, M., Chu, Z., Hanten, G., et al. (2008). Effects of traumatic brain injury on working memory-related brain activation in adolescents. Neuropsychology, 22, 419425.CrossRefGoogle ScholarPubMed
Notebaert, W., Soetens, E., & Melis, A. (2001). Sequential analysis of a Simon task–evidence for an attention-shift account. Psychological Research, 65, 170184.CrossRefGoogle Scholar
Perlstein, W.M., Cole, M.A., Demery, J.A., Seignourel, P.J., Dixit, N.K., Larson, M.J., et al. (2004). Parametric manipulation of working memory load in traumatic brain injury: Behavioral and neural correlates. Journal of the International Neuropsychological Society, 10, 724741.CrossRefGoogle ScholarPubMed
Perlstein, W.M., Larson, M.J., Dotson, V.M., & Kelly, K.G. (2006). Temporal dissociation of components of cognitive control dysfunction in severe TBI: ERPs and the cued-Stroop task. Neuropsychologia, 44, 260274.CrossRefGoogle ScholarPubMed
Rabbitt, P.M. (1966). Errors and error correction in choice-response tasks. Journal of Experimental Psychology, 71, 264272.CrossRefGoogle ScholarPubMed
Rasmussen, I.A., Xu, J., Antonsen, I.K., Brunner, J., Skandsen, T., Axelson, D.E., et al. (2008). Simple dual tasking recruits prefrontal cortices in chronic severe traumatic brain injury patients, but not in controls. Journal of Neurotrauma, 25, 10571070.CrossRefGoogle Scholar
Ratcliff, R. (1993). Methods for dealing with reaction time outliers. Psychological Bulletin, 114, 510532.CrossRefGoogle ScholarPubMed
Reitan, R.M. (1958). Validity of the Trail Making Test as an indicator of organic brain damage. Perceptual and Motor Skills, 8, 271276.CrossRefGoogle Scholar
Ridderinkhof, K.R. (2002). Activation and suppression in conflict tasks: Empirical clarification through distributional analyses. In Prinz, W. & Hommel, B. (Eds.), Attention and Performance XIX. Oxford: Oxford University Press.Google Scholar
Sanchez-Carrion, R., Fernandez-Espejo, D., Junque, C., Falcon, C., Bargallo, N., Roig, T., et al. (2008). A longitudinal fMRI study of working memory in severe TBI patients with diffuse axonal injury. Neuroimage, 43, 421429.CrossRefGoogle ScholarPubMed
Scheibel, R.S., Newsome, M.R., Steinberg, J.L., Pearson, D.A., Rauch, R.A., Mao, H., et al. (2007). Altered brain activation during cognitive control in patients with moderate to severe traumatic brain injury. Neurorehabilitation and Neural Repair, 21, 3645.CrossRefGoogle ScholarPubMed
Scheibel, R.S., Pearson, D.A., Faria, L.P., Kotrla, K.J., Aylward, E., Bachevalier, J., et al. (2003). An fMRI study of executive functioning after severe diffuse TBI. Brain Injury, 17, 919930.CrossRefGoogle ScholarPubMed
Scherg, M. (1990). Fundamentals of dipole source potential analysis. In Grandori, F. & Hoke, M. (Eds.), Auditory Evoked Magnetic Fields and Electric Potentials. Advances in Audiology, Vol. 6 (pp. 6578). Basel: Karger.Google Scholar
Seignourel, P.J., Robins, D.L., Larson, M.J., Demery, J.A., Cole, M.A., & Perlstein, W.M. (2005). Cognitive control in closed head injury: Context maintenance dysfunction or prepotent response inhibition deficit? Neuropsychology, 19, 578590.CrossRefGoogle ScholarPubMed
Soeda, A., Nakashima, T., Okumura, A., Kuwata, K., Shinoda, J., & Iwama, T. (2005). Cognitive impairment after traumatic brain injury: A functional magnetic resonance imaging study using the Stroop task. Neuroradiology, 47, 501506.CrossRefGoogle ScholarPubMed
Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662.CrossRefGoogle Scholar
Teasdale, G., & Jennett, B. (1974). Assessment of coma and impaired consciousness: A practical scale. Lancet, ii, 8184.CrossRefGoogle Scholar
Turner, G.R., & Levine, B. (2008). Augmented neural activity during executive control processing following diffuse axonal injury. Neurology, 71, 812818.CrossRefGoogle ScholarPubMed
Ullsperger, M., Bylsma, L.M., & Botvinick, M. (2005). The conflict adaptation effect: It’s not just priming. Cognitive, Affective, & Behavioral Neuroscience, 5, 467472.CrossRefGoogle Scholar
Wechsler, D. (1987). Wechsler Memory Scale-Revised. San Antonio, TX: The Psychological Corporation.Google Scholar
Wechsler, D. (1997). Wechsler Adult Intelligence Scale–Third Edition. San Antonio, TX: The Psychological Corporation.Google Scholar
Wendt, M., Kluwe, R.H., & Peters, A. (2006). Sequential modulations of interference evoked by processing task-irrelevant stimulus features. Journal of Experimental Psychology: Human Perception and Performance, 32, 644667.Google ScholarPubMed
West, R. (2003). Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologia, 41, 11221135.CrossRefGoogle ScholarPubMed
West, R. (2004). The effects of aging on controlled attention and conflict processing in the Stroop task. Journal of Cognitive Neuroscience, 16, 103113.CrossRefGoogle ScholarPubMed
West, R., & Alain, C. (1999). Event-related neural activity associated with the Stroop task. Brain Research. Cognitive Brain Research, 8, 157164.CrossRefGoogle ScholarPubMed
West, R., & Alain, C. (2000). Effect of task context and fluctuations of attention on neural activity supporting the Stroop task. Brain Research, 873, 102111.CrossRefGoogle ScholarPubMed
West, R., & Moore, K. (2005). Adjustments of cognitive control in younger and older adults. Cortex, 41, 570581.CrossRefGoogle ScholarPubMed