Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T03:44:30.600Z Has data issue: false hasContentIssue false

The cognitive effects of hepatitis C in the presence and absence of a history of substance use disorder

Published online by Cambridge University Press:  01 January 2009

MARILYN HUCKANS*
Affiliation:
Northwest Hepatitis C Resource Center, Portland VA Medical Center, Portland, Oregon Behavioral Health & Clinical Neurosciences Division, Portland VA Medical Center, Portland, Oregon Department of Psychiatry, Oregon Health and Science University, Portland, Oregon
ADRIANA SEELYE
Affiliation:
Northwest Hepatitis C Resource Center, Portland VA Medical Center, Portland, Oregon Department of Psychology, Pacific University, Portland, Oregon
TIFFANY PARCEL
Affiliation:
Northwest Hepatitis C Resource Center, Portland VA Medical Center, Portland, Oregon Department of Psychology, Pacific University, Portland, Oregon
LISA MULL
Affiliation:
Northwest Hepatitis C Resource Center, Portland VA Medical Center, Portland, Oregon Department of Psychology, Pacific University, Portland, Oregon
JONATHAN WOODHOUSE
Affiliation:
Northwest Hepatitis C Resource Center, Portland VA Medical Center, Portland, Oregon Department of Psychology, George Fox University, Portland, Oregon
DANELL BJORNSON
Affiliation:
Northwest Hepatitis C Resource Center, Portland VA Medical Center, Portland, Oregon School of Nursing, Oregon Health and Science University, Portland, Oregon
BRET E. FULLER
Affiliation:
Northwest Hepatitis C Resource Center, Portland VA Medical Center, Portland, Oregon Behavioral Health & Clinical Neurosciences Division, Portland VA Medical Center, Portland, Oregon
JENNIFER M. LOFTIS
Affiliation:
Northwest Hepatitis C Resource Center, Portland VA Medical Center, Portland, Oregon Behavioral Health & Clinical Neurosciences Division, Portland VA Medical Center, Portland, Oregon Department of Psychiatry, Oregon Health and Science University, Portland, Oregon The JENS Lab, Portland VA Medical Center, Portland, Oregon
BENJAMIN J. MORASCO
Affiliation:
Northwest Hepatitis C Resource Center, Portland VA Medical Center, Portland, Oregon Behavioral Health & Clinical Neurosciences Division, Portland VA Medical Center, Portland, Oregon
ANNA W. SASAKI
Affiliation:
Northwest Hepatitis C Resource Center, Portland VA Medical Center, Portland, Oregon Department of Internal Medicine, Oregon Health and Science University, Portland, Oregon
DANIEL STORZBACH
Affiliation:
Behavioral Health & Clinical Neurosciences Division, Portland VA Medical Center, Portland, Oregon
PETER HAUSER
Affiliation:
Northwest Hepatitis C Resource Center, Portland VA Medical Center, Portland, Oregon Behavioral Health & Clinical Neurosciences Division, Portland VA Medical Center, Portland, Oregon Department of Psychiatry, Oregon Health and Science University, Portland, Oregon The JENS Lab, Portland VA Medical Center, Portland, Oregon Department of Internal Medicine, Oregon Health and Science University, Portland, Oregon Department of Behavioral Neurosciences, Oregon Health and Science University, Portland, Oregon
*
*Correspondence and reprint requests to: Marilyn Huckans, Portland VA Medical Center (P3MHDC), 3710 SW US Veteran’s Hospital Road, Portland, OR 97239. E-mail: [email protected]

Abstract

The aim of the study was to determine whether infection with the hepatitis C virus (HCV) is associated with cognitive impairment beyond the effects of prevalent comorbidities and a history of substance use disorder (SUD). Adult veterans were recruited from the Portland Veterans Affairs Medical Center into three groups: (1) HCV+/SUD+ (n = 39), (2) HCV+/SUD− (n = 24), and (3) HCV−/SUD− (n = 56). SUD+ participants were in remission for ≥90 days, while SUD− participants had no history of SUD. Groups did not significantly differ in terms of rates of psychiatric or medical comorbidities. Procedures included clinical interviews, medical record reviews, and neuropsychological testing. Significant group differences were found in the domains of Verbal Memory, Auditory Attention, Speeded Visual Information Processing, and Reasoning/Mental Flexibility (p ≤ .05). Post hoc comparisons indicated that HCV+/SUD− patients performed significantly worse than HCV−/SUD− controls on tests measuring verbal learning, auditory attention, and reasoning/mental flexibility, but only HCV+/SUD+ patients did worse than HCV−/SUD− controls on tests of speeded visual information processing. Results indicate that chronic HCV is associated with cognitive impairment in the absence of a history of SUD. The most robust deficits appear to be in verbal learning and reasoning/mental flexibility. (JINS, 2009, 15, 69–82.)

Type
Research Articles
Copyright
Copyright © INS 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adair, D.M., Radkowski, M., Jablonska, J., Pawelczyk, A., Wilkinson, J., Rakela, J., & Laskus, T. (2005). Differential display analysis of gene expression in brains from hepatitis C-infected patients. AIDS, 19(Suppl 3), S145S150.Google Scholar
American Psychiatric Association. (2000). Diagnostic and statistical manual for mental disorders (4th ed., Text Revision ed.). Washington, DC: American Psychiatric Association.Google Scholar
Beck, A.T., Steer, R.A., & Brown, G.K. (1996). Beck Depression Inventory manual (2nd ed.). New York: Psychological Corporation.Google Scholar
Benedict, R. (1997). Brief Visuospatial Memory Test—Revised. Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
Benton, A.L., Hamsher, K. deS., & Sivan, A.G. (1989). Multilingual Aphasia Examination. Iowa City, IA: AJA Associates.Google Scholar
Bieliauskas, L.A., Back-Madruga, C., Lindsay, K.L., Wright, E.C., Kronfol, Z., Lok, A.S., & Fontana, R.J. (2007). Cognitive reserve and neuropsychological functioning in patients infected with hepatitis C. Journal of the International Neuropsychological Society, 13(4), 687692.Google Scholar
Bleecker, M.L., Ford, D.P., Celio, M.A., Vaughan, C.G.,& Lindgren, K.N. (2007). Impact of cognitive reserve on the relationship of lead exposure and neurobehavioral performance. Neurology, 69(5), 470476.Google Scholar
Carey, C.L., Woods, S.P., Gonzalez, R., Conover, E., Marcotte, T.D., Grant, I., & Heaton, R.K. (2004). Predictive validity of global deficit scores in detecting neuropsychological impairment in HIV infection. Journal of Clinical and Experimental Neuropsychology, 26(3), 307319.Google Scholar
Cherner, M., Letendre, S., Heaton, R.K., Durelle, J., Marquie-Beck, J., Gragg, B., & Grant, I. (2005). Hepatitis C augments cognitive deficits associated with HIV infection and methamphetamine. Neurology, 64(8), 13431347.CrossRefGoogle ScholarPubMed
Collie, A. (2005). Cognition in liver disease. Liver International, 25(1), 18.Google Scholar
Cordoba, J., Flavia, M., Jacas, C., Sauleda, S., Esteban, J.I., Vargas, V., Esteban, R., & Guardia, J. (2003). Quality of life and cognitive function in hepatitis C at different stages of liver disease. Journal of Hepatol, 39(2), 231238.Google Scholar
Delis, D., Kaplan, E., & Kramer, J. (2001). Delis-Kaplan Executive Functioning System. New York, NY: Harcourt Assessment Company.Google Scholar
Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (1987). California Verbal Learning Test: Adult version manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Dominitz, J.A., Boyko, E.J., Koepsell, T.D., Heagert, P.J., Maynard, C., & Sporleder, J.L. (2004, March 4). Prevalence of hepatitis C infection in veterans: VA Cooperative Study #488. Paper presented at the VA Health Services Research & Development Meeting, Washington, DC.Google Scholar
Forton, D.M., Allsop, J.M., Main, J., Foster, G.R., Thomas, H.C., & Taylor-Robinson, S.D. (2001). Evidence for a cerebral effect of the hepatitis C virus. Lancet, 358(9275), 3839.Google Scholar
Forton, D.M., Karayiannis, P., Mahmud, N., Taylor-Robinson, S.D., & Thomas, H.C. (2004). Identification of unique hepatitis C virus quasispecies in the central nervous system and comparative analysis of internal translational efficiency of brain, liver, and serum variants. Journal of Virology, 78(10), 51705183.Google Scholar
Forton, D.M., Taylor-Robinson, S.D., & Thomas, H.C. (2003). Cerebral dysfunction in chronic hepatitis C infection. Journal of Viral Hepatitis, 10(2), 8186.Google Scholar
Forton, D.M., Taylor-Robinson, S.D., & Thomas, H.C. (2006). Central nervous system changes in hepatitis C virus infection. European Journal of Gastroenterology and Hepatology, 18(4), 333338.CrossRefGoogle ScholarPubMed
Forton, D.M., Thomas, H.C., Murphy, C.A., Allsop, J.M., Foster, G.R., Main, J., Wesnes, K.A., & Taylor-Robinson, S.D. (2002). Hepatitis C and cognitive impairment in a cohort of patients with mild liver disease. Hepatology, 35(2), 433439.Google Scholar
Global burden of disease (GBD) for hepatitis C. (2004). Journal of Clinical Pharmacology, 44(1), 2029.Google Scholar
Gossop, M., Marsden, J., & Stewart, D. (2002). Dual dependence: Assessment of dependence upon alcohol and illicit drugs, and the relationship of alcohol dependence among drug misusers to patterns of drinking, illicit drug use and health problems. Addiction, 97(2), 169178.CrossRefGoogle ScholarPubMed
Halstead, W.C. (1947). Brain and intelligence. Chicago, IL: University of Chicago Press.Google Scholar
Heaton, R.K., Grant, I., Butters, N., White, D.A., Kirson, D., Atkinson, J.H., McCutchan, J.A., Taylor, M.J., Kelly, M.D., Ellis, R.J., Wolfson, T., Velin, R., Marcotte, T.D., Hesselink, J.R., Jernigan, T.L., Chandler, J., Wallace, M., Abramson, I., & the HNRC Group. (1995). The HNRC 500—Neuropsychology of HIV infection at different disease stages. HIV Neurobehavioral Research Center. Journal of the International Neuropsychological Society, 1(3), 231251.Google Scholar
Heaton, R., Miller, W., Taylor, M., & Grant, I. (2004). Revised comprehensive norms for an expanded Halsted-Reitan Battery. Lutz, FL: Psychological Assessment Resources, Inc.Google Scholar
Hilsabeck, R.C., Hassanein, T.I., Carlson, M.D., Ziegler, E.A., & Perry, W. (2003). Cognitive functioning and psychiatric symptomatology in patients with chronic hepatitis C. Journal of the International Neuropsychological Society, 9(6), 847854.Google Scholar
Hilsabeck, R.C., Hassanein, T.I., Ziegler, E.A., Carlson, M.D., & Perry, W. (2005). Effect of interferon-alpha on cognitive functioning in patients with chronic hepatitis C. Journal of the International Neuropsychological Society, 11(1), 1622.Google Scholar
Hilsabeck, R.C., Perry, W., & Hassanein, T.I. (2002). Neuropsychological impairment in patients with chronic hepatitis C. Hepatology, 35(2), 440446.Google Scholar
Huckans, M.S., Blackwell, A.D., Harms, T.A., & Hauser, P. (2006). Hepatitis C disease management patterns in high-risk populations: Testing, infection, and treatment rates among patients with schizophrenia, schizoaffective disorder, and substance use disorders. Psychiatric Services, 57(3), 403406.CrossRefGoogle Scholar
Huckans, M.S., Blackwell, A.D., Harms, T.A., Indest, D.W., & Hauser, P. (2005). Integrated hepatitis C virus treatment: addressing comorbid substance use disorders and HIV infection. AIDS, 19(Suppl 3), S106S115.Google Scholar
Karaivazoglou, K., Assimakopoulos, K., Thomopoulos, K., Theocharis, G., Messinis, L., Sakellaropoulos, G., & Labropoulou-Karatza, C. (2007). Neuropsychological function in Greek patients with chronic hepatitis C. Liver International, 27(6), 798805.Google Scholar
Klove, H. (1963). Clinical neuropsychology. Medical Clinics of North America, 47, 16471658.Google Scholar
Kraus, M.R., Schafer, A., Wissmann, S., Reimer, P., & Scheurlen, M. (2005). Neurocognitive changes in patients with hepatitis C receiving interferon alfa-2b and ribavirin. Clinical Pharmacology and Therapeutics, 77(1), 90100.Google Scholar
Lackner, C., Struber, G., Liegl, B., Leibl, S., Ofner, P., Bankuti, C., Bauer, B., & Stauber, R.E. (2005). Comparison and validation of simple noninvasive tests for prediction of fibrosis in chronic hepatitis C. Hepatology, 41(6), 13761382.Google Scholar
Laskus, T., Radkowski, M., Adair, D.M., Wilkinson, J., Scheck, A.C., & Rakela, J. (2005). Emerging evidence of hepatitis C virus neuroinvasion. AIDS, 19(Suppl 3), S140S144.Google Scholar
Laskus, T., Radkowski, M., Bednarska, A., Wilkinson, J., Adair, D., Nowicki, M., Nikolopoulou, G.B., Vargas, H., & Rakela, J. (2002). Detection and analysis of hepatitis C virus sequences in cerebrospinal fluid. Journal of Virology, 76(19), 1006410068.CrossRefGoogle ScholarPubMed
Letendre, S.L., Cherner, M., Ellis, R.J., Marquie-Beck, J., Gragg, B., Marcotte, T., Heaton, R.K., McCutchan, J.A., & Grant, I. (2005). The effects of hepatitis C, HIV, and methamphetamine dependence on neuropsychological performance: Biological correlates of disease. AIDS, 19(Suppl 3), S72S78.Google Scholar
Lezak, M., Howieson, D., & Loring, D. (2005). Neuropsychological assessment. New York, NY: Oxford University Press.Google Scholar
Lieb, K., Engelbrecht, M.A., Gut, O., Fiebich, B.L., Bauer, J., Janssen, G., & Schaefer, M. (2006). Cognitive impairment in patients with chronic hepatitis treated with interferon alpha (IFNalpha): Results from a prospective study. European Psychiatry, 21(3), 204210.CrossRefGoogle ScholarPubMed
Loftis, J.M., Matthews, A.M., & Hauser, P. (2006). Psychiatric and substance use disorders in individuals with hepatitis C: Epidemiology and management. Drugs, 66(2), 155174.Google Scholar
Maggi, F., Giorgi, M., Fornai, C., Morrica, A., Vatteroni, M.L., Pistello, M., Siciliano, G., Nuccorini, A., & Bendinelli, M. (1999). Detection and quasispecies analysis of hepatitis C virus in the cerebrospinal fluid of infected patients. Journal of Neurovirology, 5(3), 319323.Google Scholar
Maier, S.F. (2003). Bi-directional immune-brain communication: Implications for understanding stress, pain, and cognition. Brain, Behavior, and Immunity, 17(2), 6985.Google Scholar
Martelli, M.F., Zasler, N.D., Bender, M.C., & Nicholson, K. (2004). Psychological, neuropsychological, and medical considerations in assessment and management of pain. Journal of Head Trauma Rehabilitation, 19(1), 1028.Google Scholar
Martin, E.M., Novak, R.M., Fendrich, M., Vassileva, J., Gonzalez, R., Grbesic, S., Nunnally, G., & Sworowski, L. (2004). Stroop performance in drug users classified by HIV and hepatitis C virus serostatus. Journal of the International Neuropsychological Society, 10(2), 298300.Google Scholar
McAndrews, M.P., Farcnik, K., Carlen, P., Damyanovich, A., Mrkonjic, M., Jones, S., & Heathcote, E.J. (2005). Prevalence and significance of neurocognitive dysfunction in hepatitis C in the absence of correlated risk factors. Hepatology, 41(4), 801808.Google Scholar
Michiels, V. & Cluydts, R. (2001). Neuropsychological functioning in chronic fatigue syndrome: A review. Acta Psychiatrica Scandinavica, 103(2), 8493.CrossRefGoogle ScholarPubMed
Miele, G.M., Carpenter, K.M., Cockerham, M.S., Trautman, K.D., Blaine, J., & Hasin, D.S. (2001). Substance Dependence Severity Scale: Reliability and validity for ICD-10 substance use disorders. Addictive Behaviors, 26(4), 603612.Google Scholar
Mitrushina, M., Boone, K., Razani, J., & D’Elia, L. (2005). Handbook of normative data for neuropsychological assessment. New York, NY: Oxford University Press, Inc.Google Scholar
Morsica, G., Bernardi, M.T., Novati, R., Uberti Foppa, C., Castagna, A., & Lazzarin, A. (1997). Detection of hepatitis C virus genomic sequences in the cerebrospinal fluid of HIV-infected patients. Journal of Medical Virology, 53(3), 252254.Google Scholar
Moselhy, H.F., Georgiou, G., & Kahn, A. (2001). Frontal lobe changes in alcoholism: A review of the literature. Alcohol and Alcoholism, 36(5), 357368.Google Scholar
Osterrieth, P.A. (1944). Le test de copie d’une figure complexe. Archives de Psychologie, 30, 206356; translated by Corwin, J. & Bylsma, F.W.(1993), The Clinical Neuropsychologist, 7, 9–15.Google Scholar
Pereda, M., Ayuso-Mateos, J.L., Gomez Del Barrio, A., Echevarria, S., Farinas, M.C., Garcia Palomo, D., Gonzalez Macias, J., & Vazquez-Barquero, J.L. (2000). Factors associated with neuropsychological performance in HIV-seropositive subjects without AIDS. Psychological Medicine, 30(1), 205217.Google Scholar
Pfennig, A., Littmann, E., & Bauer, M. (2007). Neurocognitive impairment and dementia in mood disorders. Journal of Neuropsychiatry and Clinical Neurosciences, 19(4), 373382.Google Scholar
Porter, R.J., Bourke, C., & Gallagher, P. (2007). Neuropsychological impairment in major depression: Its nature, origin and clinical significance. The Australian and New Zealand Journal of Psychiatry, 41(2), 115128.Google Scholar
Radkowski, M., Wilkinson, J., Nowicki, M., Adair, D., Vargas, H., Ingui, C., Rakela, J., & Laskus, T. (2002). Search for hepatitis C virus negative-strand RNA sequences and analysis of viral sequences in the central nervous system: Evidence of replication. Journal of Virology, 76(2), 600608.CrossRefGoogle ScholarPubMed
Reitan, R.B. (1955). Investigation of the validity of Halstead’s measures of biological intelligence. Archives of Neurology and Psychiatry, 73, 2835.CrossRefGoogle ScholarPubMed
Reitan, R.M. & Wolfson, D. (1985). The Halstead-Reitan Neuropsychological Test Battery. Tuscson, AZ: Neuropsychological Press.Google Scholar
Ropacki, S.A., Bert, A.A., Ropacki, M.T., Rogers, B.L., & Stern, R.A. (2007). The influence of cognitive reserve on neuropsychological functioning following coronary artery bypass grafting (CABG). Archives of Clinical Neuropsychology, 22(1), 7385.Google Scholar
Rosen, W.G. (1980). Verbal fluency in aging and dementia. Journal of Clinical Neuropsychology, 2, 135146.Google Scholar
Seeff, L.B. & Hoofnagle, J.H. (2003). Appendix: The National Institutes of Health Consensus Development Conference management of hepatitis C 2002. Clinics in Liver Disease, 7(1), 261287.Google Scholar
Silberbogen, A.K., Janke, E.A., & Hebenstreit, C. (2007). A closer look at pain and hepatitis C: Preliminary data from a veteran population. Journal of Rehabilitation Research and Development, 44(2), 231244.Google Scholar
Stern, R.A., Silva, S.G., Chaisson, N., & Evans, D.L. (1996). Influence of cognitive reserve on neuropsychological functioning in asymptomatic human immunodeficiency virus-1 infection. Archives of Neurology, 53(2), 148153.Google Scholar
Stern, Y. (2006). Cognitive reserve and Alzheimer disease. Alzheimer Disease and Associated Disorders, 20(3 Suppl 2), S69S74.CrossRefGoogle ScholarPubMed
Taylor, M.J., Letendre, S.L., Schweinsburg, B.C., Alhassoon, O.M., Brown, G.G., Gongvatana, A., Grant, I., & The HNRC. (2004). Hepatitis C virus infection is associated with reduced white matter N-acetylaspartate in abstinent methamphetamine users. Journal of the International Neuropsychological Society, 10, 110113.Google Scholar
Verdejo-Garcia, A., Lopez-Torrecillas, F., Gimenez, C.O., & Perez-Garcia, M. (2004). Clinical implications and methodological challenges in the study of the neuropsychological correlates of cannabis, stimulant, and opioid abuse. Neuropsychology Review, 14(1), 141.Google Scholar
Vik, P.W., Cellucci, T., Jarchow, A., & Hedt, J. (2004). Cognitive impairment in substance abuse. The Psychiatric Clinics of North America, 27(1), 97109, ix.Google Scholar
von Giesen, H.J., Heintges, T., Abbasi-Boroudjeni, N., Kucukkoylu, S., Koller, H., Haslinger, B.A., Oette, M., & Arendt, G. (2004). Psychomotor slowing in hepatitis C and HIV infection. Journal of Acquired Immune Deficiency Syndromes, 35(2), 131137.Google Scholar
Wai, C.T., Greenson, J.K., Fontana, R.J., Kalbfleisch, J.D., Marrero, J.A., Conjeevaram, H.S., & Lok, A.S. (2003). A simple noninvasive index can predict both significant fibrosis and cirrhosis in patients with chronic hepatitis C. Hepatology, 38(2), 518526.Google Scholar
Wechsler, D. (1997). Wechsler Adult Intelligence Scale, administration and scoring manual, third edition. New York, NY: Psychological Corporation.Google Scholar
Weissenborn, K., Krause, J., Bokemeyer, M., Hecker, H., Schuler, A., Ennen, J.C., Ahl, B., Manns, M.P., & Boker, K.W. (2004). Hepatitis C virus infection affects the brain-evidence from psychometric studies and magnetic resonance spectroscopy. Journal of Hepatology, 41(5), 845851.Google Scholar
Whitehead, A.J., Dobscha, S.K., Morasco, B.J., Ruimy, S., Bussell, C., & Hauser, P. (2008). Pain, substance use disorders and opioid analgesic prescription patterns in veterans with hepatitis C. Journal of Pain Symptom Management, 36(1), 3945.Google Scholar
Wilkinson, G. (1993). WRAT3 administration manual. DE: Wide Range.Google Scholar
Wilson, C.J., Finch, C.E., & Cohen, H.J. (2002). Cytokines and cognition—The case for a head-to-toe inflammatory paradigm. Journal of the American Geriatrics Society, 50(12), 20412056.Google Scholar