Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-09T00:52:35.326Z Has data issue: false hasContentIssue false

Autobiographical Memory Fluency Reductions in Cognitively Unimpaired Middle-Aged and Older Adults at Increased Risk for Alzheimer’s Disease Dementia

Published online by Cambridge University Press:  29 January 2021

Matthew D. Grilli*
Affiliation:
Psychology Department, University of Arizona, Tucson, AZ, USA Neurology Department, University of Arizona, Tucson, AZ, USA Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
Aubrey A. Wank
Affiliation:
Psychology Department, University of Arizona, Tucson, AZ, USA
Matthew J. Huentelman
Affiliation:
The Translational Genomics Research Institute, Phoenix, AZ, USA Arizona Alzheimer’s Consortium, Phoenix, AZ, USA
Lee Ryan
Affiliation:
Psychology Department, University of Arizona, Tucson, AZ, USA Neurology Department, University of Arizona, Tucson, AZ, USA Evelyn F. McKnight Brain Institute, University of Arizona, Tucson, AZ, USA
*
*Correspondence and reprint requests to: Matthew D. Grilli, Psychology Department, University of Arizona, 1503 E. University Blvd, PO Box 210068, Tucson, AZ85721, USA. E-mail: [email protected]

Abstract

Objective:

Recent research has revealed that cognitively unimpaired older adults who are at higher risk for developing Alzheimer’s disease (AD) dementia often exhibit subtle cognitive alterations in their neuropsychological profiles. Emerging evidence suggests that autobiographical memory, which is memory for personal events and knowledge, may be sensitive to early AD-related cognitive alterations. In the present study, we investigated whether the rapid generation of autobiographical memory category exemplars, a retrieval process that taxes the neural network that is vulnerable to early AD, is compromised in cognitively unimpaired middle-aged and older carriers of the e4 allele of the apolipoprotein E gene (APOE4), which increases risk for AD dementia.

Methods:

In addition to standard neuropsychological tests, we administered a fluency task that requires generating exemplars for two types of autobiographical memory, namely episodic memories and personal semantics, to a group of cognitively unimpaired middle-aged and older adults (n = 45) enriched with APOE4 carriers (n = 20).

Results:

While no APOE4 deficits were found on standard neuropsychological tests, episodic and personal semantic exemplar generation was reduced in the APOE4 group.

Discussion:

Autobiographical memory aberrations associated with a higher risk for AD are evident in fluency and affect both episodic memory and personal semantics.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Addis, D.R., Knapp, K., Roberts, R.P., & Schacter, D.L. (2012). Routes to the past: Neural substrates of direct and generative autobiographical memory retrieval. NeuroImage, 59(3), 29082922. https://doi.org/10.1016/j.neuroimage.2011.09.066 CrossRefGoogle ScholarPubMed
Addis, D.R. & Tippett, L.J. (2004). Memory of myself: Autobiographical memory and identity in Alzheimer’s disease. Memory, 12(1), 5674. https://doi.org/10.1080/09658210244000423 CrossRefGoogle ScholarPubMed
Benoit, R.G. & Schacter, D.L. (2015). Specifying the core network supporting episodic simulation and episodic memory by activation likelihood estimation. Neuropsychologia, 75, 450457. https://doi.org/10.1016/j.neuropsychologia.2015.06.034 CrossRefGoogle ScholarPubMed
Benton, A.L. (1969). Development of a multilingual aphasia battery: progress and problems. Journal of the Neurological Sciences, 9, 3948.10.1016/0022-510X(69)90057-4CrossRefGoogle ScholarPubMed
Berryhill, M.E., Phuong, L., Picasso, L., Cabeza, R., & Olson, I.R. (2007). Parietal lobe and episodic memory: bilateral damage causes impaired free recall of autobiographical memory. Journal of Neuroscience, 27(52), 1441514423. https://doi.org/10.1523/JNEUROSCI.4163-07.2007 CrossRefGoogle ScholarPubMed
Bertossi, E., Tesini, C., Cappelli, A., & Ciaramelli, E. (2016). Ventromedial prefrontal damage causes a pervasive impairment of episodic memory and future thinking. Neuropsychologia, 90, 1224. https://doi.org/10.1016/j.neuropsychologia.2016.01.034 CrossRefGoogle ScholarPubMed
Bondi, M.W., Edmonds, E.C., Jak, A.J., Clark, L.R., Delano-Wood, L., McDonald, C.R., … Salmon, D.P. (2014). Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. Journal of Alzheimer’s Disease, 42(1), 275289. https://doi.org/10.3233/JAD-140276 CrossRefGoogle ScholarPubMed
Bondi, M.W., Jak, A.J., Delano-Wood, L., Jacobson, M.W., Delis, D.C., & Salmon, D.P. (2008). Neuropsychological contributions to the early identification of Alzheimer’s disease. Neuropsychology Review, 18(1), 7390. https://doi.org/10.1007/s11065-008-9054-1 CrossRefGoogle ScholarPubMed
Bonnici, H.M., Cheke, L.G., Green, D.A.E., Fitzgerald, T.H.M.B., & Simons, J.S. (2018). Specifying a causal role for angular gyrus in autobiographical memory. Journal of Neuroscience, 38(49), 1043810443. https://doi.org/10.1523/JNEUROSCI.1239-18.2018 CrossRefGoogle ScholarPubMed
Bretsky, P., Guralnik, J.M., Launer, L., Albert, M., & Seeman, T.E. (2003). The role of APOE-ϵ4 in longitudinal cognitive decline: MacArthur studies of successful aging. Neurology, 60(7), 10771081. https://doi.org/10.1212/01.WNL.0000055875.26908.24 CrossRefGoogle Scholar
Caselli, R.J., Dueck, A.C., Locke, D.E.C., Hoffman-Synder, C.R., Woodruff, B.K., Rapcsak, S.Z., & Reiman, E.M. (2011). Longitudinal modeling of frontal cognition in APOE e4 homozygotes, heterozygotes, and noncarriers. Neurology, 76(16), 13831388. https://doi.org/10.1212/WNL.0b013e3182167147 CrossRefGoogle ScholarPubMed
Caselli, R.J., Dueck, A.C., Osborne, D., Sabbagh, M.N., Connor, D.J., Ahern, G.L., … Reiman, E.M. (2009). Longitudinal modeling of age-related memory decline and the APOE ϵ4 effect. New England Journal of Medicine, 361(3), 255263. https://doi.org/10.1056/NEJMoa0809437 CrossRefGoogle Scholar
Caselli, R.J., Langlais, B.T., Dueck, A.C., Chen, Y., Su, Y., Locke, D.E.C., … Reiman, E.M. (in press). Neuropsychological decline up to 20 years before incident mild cognitive impairment. Alzheimer’s and Dementia. https://doi.org/10.1016/j.jalz.2019.09.085 CrossRefGoogle Scholar
Caselli, R.J. & Reiman, E.M. (2013). Characterizing the preclinical stages of Alzheimer’s disease and the prospect of presymptomatic intervention, Journal of Alzheimer’s Disease, 33(1), 405416. https://doi.org/10.3233/JAD-2012-129026 CrossRefGoogle ScholarPubMed
Caselli, R.J., Reiman, E.M., Osborne, D., Hentz, J.G., Baxter, L.C., Hernandez, J.L., & Alexander, G.G. (2004). Longitudinal changes in cognition and behavior in asymptomatic carriers of the APOE e4 allele. Neurology, 62(11), 19901995. https://doi.org/10.1212/01.WNL.0000129533.26544.BF CrossRefGoogle ScholarPubMed
Chen, H.Y., Gilmore, A.W., Nelson, S.M., & McDermott, K.B. (2017). Are there multiple kinds of episodic memory? An fMRI investigation comparing autobiographical and recognition memory tasks. Journal of Neuroscience, 37(10), 27642775. https://doi.org/10.1523/JNEUROSCI.1534-16.2017 CrossRefGoogle ScholarPubMed
Clarke, A. & Tyler, L.K. (2014). Object-specific semantic coding in human perirhinal cortex. Journal of Neuroscience, 34(14), 47664775. doi: 10.1523/JNEUROSCI.2828-13.2014 CrossRefGoogle ScholarPubMed
Conway, M.A. (2005). Memory and the self. Journal of Memory and Language, 53(4), 594628. https://doi.org/10.1016/j.jml.2005.08.005 CrossRefGoogle Scholar
Conway, M.A. & Rubin, D.C. (1993). The structure of autobiographical memory. In Collins, A.E., Gathercole, S.E., Conway, M.A., & Morris, P.E.M. (Eds.), Theories of Memory (pp. 103137). Hove, UK: Lawrence Erlbaum.Google Scholar
Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., … Pericak-Vance, M.A. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261(5123), 921923. https://doi.org/10.1126/science.8346443 CrossRefGoogle ScholarPubMed
Corneveaux, J.J., Liang, W.S., Reiman, E.M., Webster, J.A., Myers, A.J., Zismann, V.L., … Huentelman, M.J. (2010). Evidence for an association between KIBRA and late-onset Alzheimer’s disease. Neurobiology of Aging, 31(6), 901909. https://doi.org/10.1016/j.neurobiolaging.2008.07.014 CrossRefGoogle ScholarPubMed
Davidson, P.S.R., Anaki, D., Ciaramelli, E., Cohn, M., Kim, A.S.N., Murphy, K.J., … Levine, B. (2008). Does lateral parietal cortex support episodic memory? Evidence from focal lesion patients. Neuropsychologia, 46(7), 17431755. https://doi.org/10.1016/j.neuropsychologia.2008.01.011 CrossRefGoogle ScholarPubMed
Delis, D.C., Kramer, J.H., Kaplan, E., and Ober, B.A. (2000). California Verbal Learning Test - Second Edition, New York, NY: Psychological Corporation.Google Scholar
Dritschel, B.H., Williams, J.M.G., Baddeley, A.D., & Nimmo-Smith, I. (1992). Autobiographical fluency: a method for the study of personal memory. Memory & Cognition, 20(2), 133140. https://doi.org/10.3758/BF03197162 CrossRefGoogle Scholar
Edmonds, E.C., Delano-Wood, L., Galasko, D.R., Salmon, D.P., & Bondi, M.W. (2015). Subtle cognitive decline and biomarker staging in preclinical Alzheimer’s disease. Journal of Alzheimer’s Disease, 47(1), 231242. https://doi.org/10.3233/JAD-150128 CrossRefGoogle ScholarPubMed
Eichenbaum, H., Yonelinas, A.P., & Ranganath, C. (2007). The medial temporal lobe and recognition memory. Annual Review of Neuroscience, 30(1), 123152. https://doi.org/10.1146/annurev.neuro.30.051606.094328 CrossRefGoogle ScholarPubMed
Faul, F., Erdfelder, E., Lang, A.G., & Buchner, A. (2007). G*Power 3: a flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175191. https://doi.org/10.3758/BF03193146 CrossRefGoogle ScholarPubMed
Goodglass, H., Kaplan, E., & Barresi, B. (2001). Boston Diagnostic Aphasia Examination (3rd ed.). Philadelphia: Lippincott Williams & Wilkins.Google Scholar
Greenberg, D.L., Keane, M.M., Ryan, L., & Verfaellie, M. (2009). Impaired category fluency in medial temporal lobe amnesia: the role of episodic memory. Journal of Neuroscience, 29(35), 1090010908. https://doi.org/10.1523/JNEUROSCI.1202-09.2009 CrossRefGoogle ScholarPubMed
Grilli, M.D. & Verfaellie, M. (2014). Personal semantic memory: insights from neuropsychological research on amnesia. Neuropsychologia, 61(1), 5664. https://doi.org/10.1016/j.neuropsychologia.2014.06.012 CrossRefGoogle ScholarPubMed
Grilli, M.D. & Verfaellie, M. (2016). Experience-near but not experience-far autobiographical facts depend on the medial temporal lobe for retrieval: evidence from amnesia. Neuropsychologia, 81, 180185. https://doi.org/10.1016/j.neuropsychologia.2015.12.023 CrossRefGoogle Scholar
Grilli, M.D., Wank, A.A., Bercel, J.J., & Ryan, L. (2018). Evidence for reduced autobiographical memory episodic specificity in cognitively normal middle-aged and older individuals at increased risk for Alzheimer’s disease dementia. Journal of the International Neuropsychological Society, 24(10), 10731083. https://doi.org/10.1017/S1355617718000577 CrossRefGoogle ScholarPubMed
Han, S.D., Nguyen, C.P., Stricker, N.H., & Nation, D.A. (2017). Detectable Neuropsychological differences in early preclinical Alzheimer’s disease: a meta-analysis. Neuropsychology Review, 27(4), 305325. https://doi.org/10.1007/s11065-017-9345-5 CrossRefGoogle ScholarPubMed
Jack, C.R., Knopman, D.S., Jagust, W.J., Petersen, R.C., Weiner, M.W., Aisen, P.S., … Trojanowski, J.Q. (2013). Tracking pathophysiological processes in Alzheimer’s disease: an updated hypothetical model of dynamic biomarkers. The Lancet Neurology, 12(2), 207216. https://doi.org/10.1016/S1474-4422(12)70291-0.CrossRefGoogle ScholarPubMed
Jack, C.R., Wiste, H.J., Weigand, S.D., Knopman, D.S., Vemuri, P., Mielke, M.M., … Petersen, R.C. (2015). Age, sex, and APOE ϵ4 effects on memory, brain structure, and β-Amyloid across the adult life Span. JAMA Neurology, 72(5), 511519. https://doi.org/10.1001/jamaneurol.2014.4821 CrossRefGoogle Scholar
JASP Team. (2020). JASP (Version 0.12.2)[Computer software].Google Scholar
Levine, B., Svoboda, E., Hay, J.F., Winocur, G., & Moscovitch, M. (2002). Aging and autobiographical memory: dissociating episodic from semantic retrieval. Psychology and Aging, 17(4), 677689. https://doi.org/10.1037/0882-7974.17.4.677 CrossRefGoogle ScholarPubMed
Martinelli, P., Sperduti, M., & Piolino, P. (2013). Neural substrates of the self-memory system: new insights from a meta-analysis. Human Brain Mapping, 34(7), 15151529. https://doi.org/10.1002/hbm.22008 CrossRefGoogle ScholarPubMed
Masters, C.L., Bateman, R., Blennow, K., Rowe, C.C., Sperling, R.A., & Cummings, J.L. (2015). Alzheimer’s disease: Nature Reviews Disease Primers, 1, 118. https://doi.org/10.1038/nrdp.2015.56 CrossRefGoogle ScholarPubMed
Monge, Z.A., Wing, E.A., Stokes, J., & Cabeza, R. (2018). Search and recovery of autobiographical and laboratory memories: shared and distinct neural components. Neuropsychologia, 110, 4454. https://doi.org/10.1016/j.neuropsychologia.2017.07.030 CrossRefGoogle ScholarPubMed
Montandon, M.L., Herrmann, F.R., Garibotto, V., Rodriguez, C., Haller, S., & Giannakopoulos, P. (2020). Determinants of mesial temporal lobe volume loss in older individuals with preserved cognition: a longitudinal PET amyloid study. Neurobiology of Aging, 87, 108114. https://doi.org/10.1016/j.neurobiolaging.2019.12.002 CrossRefGoogle ScholarPubMed
Moscovitch, M., Cabeza, R., Winocur, G., & Nadel, L. (2016). Episodic memory and beyond: The hippocampus and neocortex in transformation. Annual Review of Psychology, 67(1), 105134. https://doi.org/10.1146/annurev-psych-113011-143733 CrossRefGoogle ScholarPubMed
Osuna, J., Thomas, K., Edmonds, E., Bangen, K., Weigand, A., Wong, C., … Bondi, M. (2019). Subtle cognitive decline predicts progression to mild cognitive impairment above and beyond Alzheimer’s disease risk factors. Archives of Clinical Neuropsychology, 34(6), 846, https://doi.org/10.1093/arclin/acz035.14 CrossRefGoogle Scholar
Papp, K.V., Buckley, R., Mormino, E., Maruff, P., Villemagne, V.L., Masters, C.L., … Amariglio, R.E. (in press). Clinical meaningfulness of subtle cognitive decline on longitudinal testing in preclinical AD. Alzheimer’s and Dementia. https://doi.org/10.1016/j.jalz.2019.09.074 CrossRefGoogle Scholar
Parra, M.A., Della Sala, S., Abrahams, S., Logie, R.H., Méndez, L.G., & Lopera, F. (2011). Specific deficit of colour-colour short-term memory binding in sporadic and familial Alzheimer’s disease. Neuropsychologia, 49(7), 19431952. https://doi.org/10.1016/j.neuropsychologia.2011.03.022 CrossRefGoogle ScholarPubMed
Philippi, C.L., Tranel, D., Duff, M., & Rudrauf, D. (2013). Damage to the default mode network disrupts autobiographical memory retrieval. Social Cognitive and Affective Neuroscience, 10(3), 318326. https://doi.org/10.1093/scan/nsu070 CrossRefGoogle Scholar
Piolino, P., Coste, C., Martinelli, P., Macé, A.L., Quinette, P., Guillery-Girard, B., & Belleville, S. (2010). Reduced specificity of autobiographical memory and aging: Do the executive and feature binding functions of working memory have a role? Neuropsychologia, 48(2), 429440. https://doi.org/10.1016/j.neuropsychologia.2009.09.035 CrossRefGoogle ScholarPubMed
Radloff, L.S. (1977). The CES-D scale: a self-report depression scale for research in the general population. Applied Psychological Measurements, 1, 385401.10.1177/014662167700100306CrossRefGoogle Scholar
Ranganath, C. & Ritchey, M. (2012). Two cortical systems for memory-guided behaviour. Nature Reviews Neuroscience, 13(10), 713726. https://doi.org/10.1038/nrn3338 CrossRefGoogle ScholarPubMed
Rathbone, C.J., Moulin, C.J.A., & Conway, M.A. (2008). Self-centered memories: the reminiscence bump and the self. Memory and Cognition, 36(8), 14031414. https://doi.org/10.3758/MC.36.8.1403 CrossRefGoogle ScholarPubMed
Reagh, Z.M. & Ranganath, C. (2018). What does the functional organization of cortico-hippocampal networks tell us about the functional organization of memory? Neuroscience Letters, 680, 6976. https://doi.org/10.1016/j.neulet.2018.04.050 CrossRefGoogle Scholar
Reiman, E.M., Chen, K., Alexander, G.E., Caselli, R.J., Bandy, D., Osborne, D., … Hardy, J. (2005). Correlations between apolipoprotein E ϵ4 gene dose and brain-imaging measurements of regional hypometabolism. Proceedings of the National Academy of Sciences of the United States of America, 102(23), 82998302. https://doi.org/10.1073/pnas.0500579102 CrossRefGoogle ScholarPubMed
Reitan, R.M., & Wolfson, D. (1993). The Haldstead-Reitan Neuropsychological Test Battery: Theory and Clinical Interpretation. Tucson: Neuropsychology Press.Google Scholar
Renoult, L., Davidson, P.S.R., Palombo, D.J., Moscovitch, M., & Levine, B. (2012). Personal semantics: at the crossroads of semantic and episodic memory, Trends in Cognitive Sciences, 16(11), 550558. https://doi.org/10.1016/j.tics.2012.09.003 CrossRefGoogle Scholar
Rentz, D.M., Parra Rodriguez, M.A., Amariglio, R., Stern, Y., Sperling, R., & Ferris, S. (2013). Promising developments in neuropsychological approaches for the detection of preclinical Alzheimer’s disease: a selective review. Alzheimer’s Research and Therapy, 5(6): 58. https://doi.org/10.1186/alzrt222 CrossRefGoogle ScholarPubMed
Rey, A. (1941). L’examen psychologique dans les cas d’encephalopathie traumatique. Archives de Psychologie, 28, 286340.Google Scholar
Rosenbaum, R.S., Moscovitch, M., Foster, J.K., Schnyer, D.M., Gao, F., Kovacevic, N., … Levine, B. (2008). Patterns of autobiographical memory loss in medial-temporal lobe amnesic patients. Journal of Cognitive Neuroscience, 20(8), 14901506. https://doi.org/10.1162/jocn.2008.20105 CrossRefGoogle ScholarPubMed
Rubin, D.C., Wetzler, S.E., & Nebes, R.D. (1986). Autobiographical memory across the adult lifespan. In Rubin, D.C. (Ed.), Autobiographical Memory (pp. 202221). Cambridge, UK: Cambridge University Press.10.1017/CBO9780511558313.018CrossRefGoogle Scholar
R Core Team (2019). R: A language and environment for statistical computing. R Foundation for Statistical Computing. Vienna, Austria. https://www.R-project.org/ Google Scholar
Rugg, M.D., & Vilberg, K.L. (2013). Brain networks underlying episodic memory retrieval. Current Opinion in Neurobiology, 23(2), 255260. https://doi.org/10.1016/J.CONB.2012.11.005 CrossRefGoogle ScholarPubMed
Ryan, L., Cox, C., Hayes, S.M., & Nadel, L. (2008). Hippocampal activation during episodic and semantic memory retrieval: comparing category production and category cued recall. Neuropsychologia, 46(8), 21092121. https://doi.org/10.1016/j.neuropsychologia.2008.02.030 CrossRefGoogle ScholarPubMed
Ryan, L., Walther, K., Bendlin, B.B., Lue, L.F., Walker, D.G., & Glisky, E.L. (2011). Age-related differences in white matter integrity and cognitive function are related to APOE status. NeuroImage, 54(2), 15651577. https://doi.org/10.1016/j.neuroimage.2010.08.052 CrossRefGoogle ScholarPubMed
Sheldon, S., McAndrews, M.P., Pruessner, J., & Moscovitch, M. (2016). Dissociating patterns of anterior and posterior hippocampal activity and connectivity during distinct forms of category fluency. Neuropsychologia, 90, 148158. https://doi.org/10.1016/j.neuropsychologia.2016.06.028 CrossRefGoogle ScholarPubMed
Sheldon, S. & Moscovitch, M. (2012). The nature and time-course of medial temporal lobe contributions to semantic retrieval: an fMRI study on verbal fluency. Hippocampus, 22(6), 14511466. https://doi.org/10.1002/hipo.20985 CrossRefGoogle Scholar
Sheline, Y.I., Morris, J.C., Snyder, A.Z., Price, J.L., Yan, Z., D’Angelo, G., … Mintun, M.A. (2010). APOE4 allele disrupts resting state fMRI connectivity in the absence of amyloid plaques or decreased CSF Aβ42. Journal of Neuroscience, 30(50), 1703517040. https://doi.org/10.1523/JNEUROSCI.3987-10.2010 CrossRefGoogle ScholarPubMed
Sheline, Y.I. & Raichle, M.E. (2013). Resting state functional connectivity in preclinical Alzheimer’s disease. Biol Psychiatry, 74(5), 340347. doi: 10.1016/j.biopsych.2012.11.028 CrossRefGoogle ScholarPubMed
Sperling, R.A., Aisen, P.S., Beckett, L.A., Bennett, D.A., Craft, S., Fagan, A.M., … Phelps, C.H. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 280292. https://doi.org/10.1016/J.JALZ.2011.03.003 CrossRefGoogle ScholarPubMed
Svoboda, E., McKinnon, M. C., & Levine, B. (2006). The functional neuroanatomy of autobiographical memory: a meta-analysis. Neuropsychologia, 44(12), 21892208. https://doi.org/10.1016/j.neuropsychologia.2006.05.023 CrossRefGoogle ScholarPubMed
Thakral, P.P., Madore, K.P., & Schacter, D.L. (2017). A role for the left angular gyrus in episodic simulation and memory. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 37(34), 81428149. https://doi.org/10.1523/JNEUROSCI.1319-17.2017 CrossRefGoogle ScholarPubMed
Thomsen, D.K., Pillemer, D.B., & Ivcevic, Z. (2011). Life story chapters, specific memories and the reminiscence bump. Memory, 19(3), 267279. https://doi.org/10.1080/09658211.2011.558513 CrossRefGoogle ScholarPubMed
Tomadesso, C., Gonneaud, J., Egret, S., Perrotin, A., Pélerin, A., de Flores, R., … La Joie, R. (2019). Is there a specific memory signature associated with Aβ-PET positivity in patients with amnestic mild cognitive impairment? Neurobiology of Aging, 77, 94103. https://doi.org/10.1016/j.neurobiolaging.2019.01.017 CrossRefGoogle Scholar
Tranel, D. (2009). The left temporal pole is important for retrieving words for unique concrete entities. Aphasiology, 23(7), 867. doi: 10.1080/02687030802586498 CrossRefGoogle ScholarPubMed
Vos, S.J.B., Xiong, C., Visser, P.J., Jasielec, M.S., Hassenstab, J., Grant, E.A., … Fagan, A.M. (2013). Preclinical Alzheimer’s disease and its outcome: a longitudinal cohort study. The Lancet Neurology, 12(10), 957965. https://doi.org/10.1016/S1474-4422(13)70194-7 CrossRefGoogle ScholarPubMed
Wechsler, D. (2008) WAIS-IV Manual. New York, NY: Psychological Corporation.Google Scholar
Wickham, H. (2016). ggplot2: Elegant graphics for data analysis. New York: Springer-Verlag.10.1007/978-3-319-24277-4CrossRefGoogle Scholar