Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-23T06:55:57.108Z Has data issue: false hasContentIssue false

Alzheimer’s Disease Polygenic Scores Predict Changes in Episodic Memory and Executive Function Across 12 Years in Late Middle Age

Published online by Cambridge University Press:  21 February 2022

Daniel E. Gustavson*
Affiliation:
Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
Chandra A. Reynolds
Affiliation:
Department of Psychology, University of California, Riverside, 900 University Ave., Riverside, CA, USA
Timothy J. Hohman
Affiliation:
Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
Angela L. Jefferson
Affiliation:
Vanderbilt Memory and Alzheimer’s Center, Vanderbilt University Medical Center, Nashville, TN, USA
Jeremy A. Elman
Affiliation:
Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
Matthew S. Panizzon
Affiliation:
Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
Michael C. Neale
Affiliation:
Virginia Institute for Psychiatric and Behavior Genetics, Virginia Commonwealth University, Richmond, VA, USA
Mark W. Logue
Affiliation:
National Center for PTSD, Behavioral Sciences Division, VA Boston Healthcare System, Boston, MA, USA Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA Biomedical Genetics, Boston University School of Medicine, Boston, MA, USA Department of Biostatistics, Boston University School of Public Health, Boston, MA, USA
Michael J. Lyons
Affiliation:
Department of Psychological and Brain Sciences, Boston University, Boston, MA, USA
Carol E. Franz
Affiliation:
Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
William S. Kremen
Affiliation:
Department of Psychiatry and Center for Behavior Genetics of Aging, University of California, San Diego, La Jolla, CA, USA
*
*Correspondence and reprint requests to: Daniel Gustavson, Department of Medicine, Vanderbilt University Medical Center, 2525 West End Ave., Suite 700, Nashville, TN, 37203. E-mail: [email protected]

Abstract

Objective:

Alzheimer’s disease (AD) is highly heritable, and AD polygenic risk scores (AD-PRSs) have been derived from genome-wide association studies. However, the nature of genetic influences very early in the disease process is still not well known. Here we tested the hypothesis that an AD-PRSs would be associated with changes in episodic memory and executive function across late midlife in men who were cognitively unimpaired at their baseline midlife assessment..

Method:

We examined 1168 men in the Vietnam Era Twin Study of Aging (VETSA) who were cognitively normal (CN) at their first of up to three assessments across 12 years (mean ages 56, 62, and 68). Latent growth models of episodic memory and executive function were based on 6–7 tests/subtests. AD-PRSs were based on Kunkle et al. (Nature Genetics, 51, 414–430, 2019), p < 5×10−8 threshold.

Results:

AD-PRSs were correlated with linear slopes of change for both cognitive abilities. Men with higher AD-PRSs had steeper declines in both memory (r = −.19, 95% CI [−.35, −.03]) and executive functioning (r = −.27, 95% CI [−.49, −.05]). Associations appeared driven by a combination of APOE and non-APOE genetic influences.

Conclusions:

Memory is most characteristically impaired in AD, but executive functions are one of the first cognitive abilities to decline in midlife in normal aging. This study is among the first to demonstrate that this early decline also relates to AD genetic influences, even in men CN at baseline.

Type
Research Article
Copyright
Copyright © INS. Published by Cambridge University Press, 2022

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1000 Genomes Project Consortium, Auton, A., Brooks, L. D., Durbin, R. M., Garrison, E. P., Kang, H. M., … Abecasis, G. R. (2015). A global reference for human genetic variation. Nature, 526, 6874. doi: 10.1038/nature15393 Google ScholarPubMed
Aizenstein, H. J., Nebes, R. D., Saxton, J. A., Price, J. C., Mathis, C. A., Tsopelas, N. D., … Klunk, W. E. (2008). Frequent amyloid deposition without significant cognitive impairment among the elderly. Archives of Neurology, 65, 15091517. doi: 10.1001/archneur.65.11.1509 CrossRefGoogle ScholarPubMed
Aretouli, E. & Brandt, J. (2010). Everyday functioning in mild cognitive impairment and its relationship with executive cognition. International Journal of Geriatric Psychiatry, 25, 224233. doi: 10.1002/gps.2325 CrossRefGoogle ScholarPubMed
Bakkour, A., Morris, J. C., Wolk, D. A., & Dickerson, B. C. (2013). The effects of aging and Alzheimer’s disease on cerebral cortical anatomy: Specificity and differential relationships with cognition. Neuroimage, 76, 332-–344. doi: 10.1016/j.neuroimage.2013.02.059 CrossRefGoogle ScholarPubMed
Bateman, R. J., Xiong, C., Benzinger, T. L., Fagan, A. M., Goate, A., Fox, N. C., … Dominantly Inherited Alzheimer, N. (2012). Clinical and biomarker changes in dominantly inherited Alzheimer’s disease. New England Journal of Medicine, 367, 795804. doi: 10.1056/NEJMoa1202753 CrossRefGoogle ScholarPubMed
Baudic, S., Dalla Barba, G., Thibaudet, M. C., Smagghe, A., Remy, P., & Traykov, L. (2006). Executive function deficits in early Alzheimer’s disease and their relations with episodic memory. Archives of Clinical Neuropsychology, 21, 1521. doi: 10.1016/j.acn.2005.07.002 CrossRefGoogle ScholarPubMed
Bellenguez, C., Grenier-Boley, B., & Lambert, J. C. (2020). Genetics of Alzheimer’s disease: Where we are, and where we are going. Current Opinion in Neurobiology, 61, 4048. doi: 10.1016/j.conb.2019.11.024 CrossRefGoogle ScholarPubMed
Bellou, E., Stevenson-Hoare, J., & Escott-Price, V. (2020). Polygenic risk and pleiotropy in neurodegenerative diseases. Neurobiology of Disease, 142, 104953. doi: 10.1016/j.nbd.2020.104953 CrossRefGoogle ScholarPubMed
Bennett, D. A., Schneider, J. A., Arvanitakis, Z., Kelly, J. F., Aggarwal, N. T., Shah, R. C., & Wilson, R. S. (2006). Neuropathology of older persons without cognitive impairment from two community-based studies. Neurology, 66, 18371844. doi: 10.1212/01.wnl.0000219668.47116.e6 CrossRefGoogle ScholarPubMed
Blair, C. K., Folsom, A. R., Knopman, D. S., Bray, M. S., Mosley, T. H., Boerwinkle, E., & Atherosclerosis Risk in Communities Study, I. (2005). APOE genotype and cognitive decline in a middle-aged cohort. Neurology, 64, 268276. doi: 10.1212/01.WNL.0000149643.91367.8A CrossRefGoogle Scholar
Bondi, M. W., Edmonds, E. C., Jak, A. J., Clark, L. R., Delano-Wood, L., McDonald, C. R., … Salmon, D. P. (2014). Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. Journal of Alzheimer’s Disease, 42, 275289. doi: 10.3233/JAD-140276 CrossRefGoogle ScholarPubMed
Buckner, R. L. (2004). Memory and executive function in aging and AD: Multiple factors that cause decline and reserve factors that compensate. Neuron, 44, 195208. doi: 10.1016/j.neuron.2004.09.006 CrossRefGoogle Scholar
Bunce, D., Bielak, A. A., Anstey, K. J., Cherbuin, N., Batterham, P. J., & Easteal, S. (2014). APOE genotype and cognitive change in young, middle-aged, and older adults living in the community. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 69, 379386. doi: 10.1093/gerona/glt103 CrossRefGoogle ScholarPubMed
Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second-generation PLINK: Rising to the challenge of larger and richer datasets. Gigascience, 4, 7. doi: 10.1186/s13742-015-0047-8 CrossRefGoogle Scholar
Chen, C. Y., Pollack, S., Hunter, D. J., Hirschhorn, J. N., Kraft, P., & Price, A. L. (2013). Improved ancestry inference using weights from external reference panels. Bioinformatics, 29, 13991406. doi: 10.1093/bioinformatics/btt144 CrossRefGoogle ScholarPubMed
Choi, S. W., Mak, T. S., & O’Reilly, P. F. (2020). Tutorial: A guide to performing polygenic risk score analyses. Nature Protocols, 15, 27592772. doi: 10.1038/s41596-020-0353-1 CrossRefGoogle ScholarPubMed
Daneman, M. & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19, 450466. doi: 10.1016/S0022-5371(80)90312-6 CrossRefGoogle Scholar
Davies, G., Harris, S. E., Reynolds, C. A., Payton, A., Knight, H. M., Liewald, D. C., … Deary, I. J. (2014). A genome-wide association study implicates the APOE locus in nonpathological cognitive ageing. Molecular Psychiatry, 19, 7687. doi: 10.1038/mp.2012.159 CrossRefGoogle ScholarPubMed
Deary, I. J., Whiteman, M. C., Pattie, A., Starr, J. M., Hayward, C., Wright, A. F., … Whalley, L. J. (2002). Cognitive change and the APOE epsilon 4 allele. Nature, 418, 932. doi: 10.1038/418932a CrossRefGoogle ScholarPubMed
Delis, D. C., Kaplan, E., & Kramer, J. H. (2001). Delis-Kaplan executive function system (D-KEFS). San Antonio, TX: Psychological Corporation.Google Scholar
Delis, D. C., Kramer, J. H., Kaplan, E., & Ober, B. A. (2000). California verbal learning test (CVLT-2). 2nd ed. San Antonio, TX: Psychological Corporation.Google Scholar
Duncan, L., Shen, H., Gelaye, B., Meijsen, J., Ressler, K., Feldman, M., … Domingue, B. (2019). Analysis of polygenic risk score usage and performance in diverse human populations. Nature Communications, 10, 3328. doi: 10.1038/s41467-019-11112-0 CrossRefGoogle ScholarPubMed
Elman, J. A., Jak, A. J., Panizzon, M. S., Tu, X. M., Chen, T., Reynolds, C. A., … Kremen, W. S. (2018). Underdiagnosis of mild cognitive impairment: A consequence of ignoring practice effects. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 10, 372381. doi: 10.1016/j.dadm.2018.04.003 Google ScholarPubMed
Elman, J. A., Panizzon, M. S., Gustavson, D. E., Franz, C. E., Sanderson-Cimino, M. E., Lyons, M. J., … Initiative, A. s. D. N. (2020). Amyloid-beta positivity predicts cognitive decline but cognition predicts progression to amyloid-beta positivity. Biological Psychiatry. doi: 10.1016/j.biopsych.2019.12.021 CrossRefGoogle Scholar
Fjell, A. M., Westlye, L. T., Amlien, I., Espeseth, T., Reinvang, I., Raz, N., … Walhovd, K. B. (2009). High consistency of regional cortical thinning in aging across multiple samples. Cerebral Cortex, 19, 20012012. doi: 10.1093/cercor/bhn232 CrossRefGoogle ScholarPubMed
Friedman, N. P. & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186204. doi: 10.1016/j.cortex.2016.04.023 CrossRefGoogle ScholarPubMed
Fuchsberger, C., Abecasis, G. R., & Hinds, D. A. (2015). minimac2: Faster genotype imputation. Bioinformatics, 31, 782784. doi: 10.1093/bioinformatics/btu704 CrossRefGoogle ScholarPubMed
Golden, C. J. & Freshwater, S. M. (2002). The Stroop color and word test: A manual for clinical and experimental uses [adult version]. Stoelting.Google Scholar
Greene, J. D., Hodges, J. R., & Baddeley, A. D. (1995). Autobiographical memory and executive function in early dementia of Alzheimer type. Neuropsychologia, 33, 16471670. doi: 10.1016/0028-3932(95)00046-1 CrossRefGoogle ScholarPubMed
Gustavson, D. E., Elman, J. A., Panizzon, M. S., Franz, C. E., Zuber, J., Sanderson-Cimino, M., … Kremen, W. S. (2020a). Association of baseline semantic fluency and progression to mild cognitive impairment in middle-aged men. Neurology, 95, e973e983. doi: 10.1212/WNL.0000000000010130 CrossRefGoogle ScholarPubMed
Gustavson, D. E., Elman, J. A., Sanderson-Cimino, M., Franz, C. E., Panizzon, M. S., Jak, A. J., … Kremen, W. S. (2020b). Extensive memory testing improves prediction of progression to MCI in late middle age. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 12, e12004. doi: 10.1002/dad2.12004 Google ScholarPubMed
Gustavson, D. E., Franz, C. E., Panizzon, M. S., Lyons, M. J., & Kremen, W. S. (2019). Internalizing and externalizing psychopathology in middle age: Genetic and environmental architecture and stability of symptoms over 15 to 20 years. Psychological Medicine, 19. doi: 10.1017/S0033291719001533 Google ScholarPubMed
Gustavson, D. E., Panizzon, M. S., Elman, J. A., Franz, C. E., Reynolds, C. A., Jacobson, K. C., … Kremen, W. S. (2018). Stability of genetic and environmental influences on executive functions in midlife. Psychology and Aging, 33, 219231. doi: 10.1037/pag0000230 CrossRefGoogle ScholarPubMed
Gustavson, D. E., Panizzon, M. S., Franz, C. E., Friedman, N. P., Reynolds, C. A., Jacobson, K. C., … Kremen, W. S. (2018). Genetic and environmental architecture of executive functions in midlife. Neuropsychology, 32, 1830. doi: 10.1037/neu0000389 CrossRefGoogle ScholarPubMed
Howie, B., Fuchsberger, C., Stephens, M., Marchini, J., & Abecasis, G. R. (2012). Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nature Genetics, 44, 955. doi: 10.1038/ng.2354 CrossRefGoogle ScholarPubMed
Jak, A. J., Bondi, M. W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., Salmon, D. P., & Delis, D. C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. The American Journal of Geriatric Psychiatry, 17, 368375. doi: 10.1097/JGP.0b013e31819431d5 CrossRefGoogle ScholarPubMed
Junquera, A., Garcia-Zamora, E., Olazaran, J., Parra, M. A., & Fernandez-Guinea, S. (2020). Role of executive functions in the conversion from mild cognitive impairment to dementia. Journal of Alzheimer’s Disease, 77, 641653. doi: 10.3233/JAD-200586 CrossRefGoogle Scholar
Kauppi, K., Ronnlund, M., Nordin Adolfsson, A., Pudas, S., & Adolfsson, R. (2020). Effects of polygenic risk for Alzheimer’s disease on rate of cognitive decline in normal aging. Translational Psychiatry, 10, 250. doi: 10.1038/s41398-020-00934-y CrossRefGoogle ScholarPubMed
Kirova, A. M., Bays, R. B., & Lagalwar, S. (2015). Working memory and executive function decline across normal aging, mild cognitive impairment, and Alzheimer’s disease. BioMed Research International, 2015, 748212. doi: 10.1155/2015/748212 CrossRefGoogle ScholarPubMed
Kochhann, R., Pereira, A. H., Holz, M. R., Chaves, M. L., & Fonseca, R. P. (2016). Deficits in unconstrained, phonemic and semantic verbal fluency in healthy elders, mild cognitive impairment, and mild Alzheimer’s disease patients. Alzheimer’s & Dementia, 12, P751P752.CrossRefGoogle Scholar
Kremen, W. S., Jak, A. J., Panizzon, M. S., Spoon, K. M., Franz, C. E., Thompson, W. K., … Lyons, M. J. (2014a). Early identification and heritability of mild cognitive impairment. International Journal of Epidemiology, 43, 600610. doi: 10.1093/ije/dyt242 CrossRefGoogle ScholarPubMed
Kremen, W. S., Panizzon, M. S., Franz, C. E., Spoon, K. M., Vuoksimaa, E., Jacobson, K. C., … Lyons, M. J. (2014b). Genetic complexity of episodic memory: A twin approach to studies of aging. Psychology and Aging, 29, 404417. doi: 10.1037/a0035962 CrossRefGoogle ScholarPubMed
Kremen, W. S., Panizzon, M. S., Xian, H., Barch, D. M., Franz, C. E., Grant, M. D., … Lyons, M. J. (2011). Genetic architecture of context processing in late middle age: More than one underlying mechanism. Psychology and Aging, 26, 852863. doi: 10.1037/a0025098 CrossRefGoogle ScholarPubMed
Kremen, W. S., Thompson-Brenner, H., Leung, Y. M., Grant, M. D., Franz, C. E., Eisen, S. A., … Lyons, M. J. (2006). Genes, environment, and time: The Vietnam Era Twin Study of Aging (VETSA). Twin Research and Human Genetics, 9, 10091022. doi: 10.1375/183242706779462750 CrossRefGoogle ScholarPubMed
Kunkle, B. W., Grenier-Boley, B., Sims, R., Bis, J. C., Damotte, V., Naj, A. C., … Environmental Risk for Alzheimer’s Disease, C. (2019). Genetic meta-analysis of diagnosed Alzheimer’s disease identifies new risk loci and implicates Abeta, tau, immunity and lipid processing. Nature Genetics, 51, 414430. doi: 10.1038/s41588-019-0358-2 CrossRefGoogle ScholarPubMed
Lafleche, G., & Albert, M. S. (1995). Executive function deficits in mild Alzheimer’s disease. Neuropsychology, 9, 313320. doi: 10.1037/0894-4105.9.3.313 CrossRefGoogle Scholar
Lambert, J. C., Ibrahim-Verbaas, C. A., Harold, D., Naj, A. C., Sims, R., Bellenguez, C., … Amouyel, P. (2013). Meta-analysis of 74,046 individuals identifies 11 new susceptibility loci for Alzheimer’s disease. Nature Genetics, 45, 14521458. doi: 10.1038/ng.2802 CrossRefGoogle ScholarPubMed
Leonenko, G., Baker, E., Stevenson-Hoare, J., Sierksma, A., Fiers, M., Williams, J., … Escott-Price, V. (2021). Identifying individuals with high risk of Alzheimer’s disease using polygenic risk scores. Nature Communications, 12, 110. doi: 10.1038/s41467-021-24082-z CrossRefGoogle ScholarPubMed
Lloyd-Jones, L. R., Zeng, J., Sidorenko, J., Yengo, L., Moser, G., Kemper, K. E., … Visscher, P. M. (2019). Improved polygenic prediction by Bayesian multiple regression on summary statistics. Nature Communications, 10, 5086. doi: 10.1038/s41467-019-12653-0 CrossRefGoogle ScholarPubMed
Logue, M. W., Panizzon, M. S., Elman, J. A., Gillespie, N. A., Hatton, S. N., Gustavson, D. E., … Kremen, W. S. (2019). Use of an Alzheimer’s disease polygenic risk score to identify mild cognitive impairment in adults in their 50s. Molecular Psychiatry, 24, 421430. doi: 10.1038/s41380-018-0030-8 CrossRefGoogle ScholarPubMed
Lyons, M. J., Genderson, M., Grant, M. D., Logue, M., Zink, T., McKenzie, R., … Kremen, W. S. (2013). Gene-environment interaction of ApoE genotype and combat exposure on PTSD. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 162B, 762769. doi: 10.1002/ajmg.b.32154 CrossRefGoogle ScholarPubMed
Marden, J. R., Mayeda, E. R., Walter, S., Vivot, A., Tchetgen Tchetgen, E. J., Kawachi, I., & Glymour, M. M. (2016). Using an Alzheimer Disease polygenic risk score to predict memory decline in black and white Americans over 14 years of follow-up. Alzheimer Disease and Associated Disorders, 30, 195202. doi: 10.1097/WAD.0000000000000137 CrossRefGoogle ScholarPubMed
Martin, A. R., Gignoux, C. R., Walters, R. K., Wojcik, G. L., Neale, B. M., Gravel, S., … Kenny, E. E. (2017). Human demographic history impacts genetic risk prediction across diverse populations. American Journal of Human Genetics, 100, 635649. doi: 10.1016/j.ajhg.2017.03.004 CrossRefGoogle ScholarPubMed
Miyake, A. & Friedman, N. P. (2012). The nature and organization of individual differences in executive functions: Four general conclusions. Current Directions in Psychological Science, 21, 814. doi: 10.1177/0963721411429458 CrossRefGoogle ScholarPubMed
Muthén, L. K. & Muthén, B. O. (1998–2017). Mplus user’s guide: Eighth edition. Los Angeles, CA: Muthén & Muthén.Google Scholar
Nutter-Upham, K. E., Saykin, A. J., Rabin, L. A., Roth, R. M., Wishart, H. A., Pare, N., & Flashman, L. A. (2008). Verbal fluency performance in amnestic MCI and older adults with cognitive complaints. Archives of Clinical Neuropsychology, 23, 229241. doi: 10.1016/j.acn.2008.01.005 CrossRefGoogle ScholarPubMed
Panizzon, M. S., Hauger, R., Xian, H., Vuoksimaa, E., Spoon, K. M., Mendoza, S. P., … Franz, C. E. (2014). Interaction of APOE genotype and testosterone on episodic memory in middle-aged men. Neurobiology of Aging, 35, 1778 e17711778. doi: 10.1016/j.neurobiolaging.2013.12.025 CrossRefGoogle ScholarPubMed
Panizzon, M. S., Neale, M. C., Docherty, A. R., Franz, C. E., Jacobson, K. C., Toomey, R., … Kremen, W. S. (2015). Genetic and environmental architecture of changes in episodic memory from middle to late middle age. Psychology and Aging, 30, 286300. doi: 10.1037/pag0000023 CrossRefGoogle ScholarPubMed
Ramanan, S., Bertoux, M., Flanagan, E., Irish, M., Piguet, O., Hodges, J. R., & Hornberger, M. (2017). Longitudinal executive function and episodic memory profiles in behavioral-variant frontotemporal dementia and Alzheimer’s Disease. Journal of the International Neuropsychological Society, 23, 3443. doi: 10.1017/S1355617716000837 CrossRefGoogle ScholarPubMed
Rowe, C. C., Bourgeat, P., Ellis, K. A., Brown, B., Lim, Y. Y., Mulligan, R., … Villemagne, V. L. (2013). Predicting Alzheimer disease with beta-amyloid imaging: Results from the Australian imaging, biomarkers, and lifestyle study of ageing. Annals of Neurology, 74, 905913. doi: 10.1002/ana.24040 CrossRefGoogle ScholarPubMed
Satorra, A. & Bentler, P. M. (2001). A scaled difference chi-square test statistic for moment structure analysis. Psychometrika, 66, 507514. doi: 10.1007/Bf02296192 CrossRefGoogle Scholar
Schoenborn, C. A. & Heyman, K. M. (2009). Health characteristics of adults aged 55 years and over: United States, 2004–2007. National Health Statistics Report, 16, 131.Google Scholar
Sperling, R. A., Mormino, E., & Johnson, K. (2014). The evolution of preclinical Alzheimer’s disease: Implications for prevention trials. Neuron, 84, 608622. doi: 10.1016/j.neuron.2014.10.038 CrossRefGoogle ScholarPubMed
Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662. doi: 10.1037/0096-3445.121.1.15 CrossRefGoogle Scholar
Tsuang, M. T., Bar, J. L., Harley, R. M., & Lyons, M. J. (2001). The Harvard twin study of substance abuse: What we have learned. Harvard Review of Psychiatry, 9, 267279. doi: 10.1093/hrp/9.6.267 CrossRefGoogle ScholarPubMed
Tucker-Drob, E. M., Brandmaier, A. M., & Lindenberger, U. (2019). Coupled cognitive changes in adulthood: A meta-analysis. Psychological Bulletin, 145, 273301. doi: 10.1037/bul0000179 CrossRefGoogle ScholarPubMed
Vos, S. J. B. & Duara, R. (2019). The prognostic value of ATN Alzheimer biomarker profiles in cognitively normal individuals. Neurology, 94, 643644. doi: 10.1212/WNL.0000000000007223 CrossRefGoogle Scholar
Wang, G., Coble, D., McDade, E. M., Hassenstab, J., Fagan, A. M., Benzinger, T. L. S., … Dominantly Inherited Alzheimer Network (2019). Staging biomarkers in preclinical autosomal dominant Alzheimer’s disease by estimated years to symptom onset. Alzheimer’s & Dementia. doi: 10.1016/j.jalz.2018.12.008 Google ScholarPubMed
Wechsler, D. (1997). Wechsler memory scale (WMS-III). San Antonio, TX: Psychological Corporation.Google Scholar
Zhang, Q., Sidorenko, J., Couvy-Duchesne, B., Marioni, R. E., Wright, M. J., Goate, A. M., … Visscher, P. M. (2020). Risk prediction of late-onset Alzheimer’s disease implies an oligogenic architecture. Nature Communications, 11, 4799. doi: 10.1038/s41467-020-18534-1 CrossRefGoogle ScholarPubMed
Zhao, Q., Guo, Q., & Hong, Z. (2013). Clustering and switching during a semantic verbal fluency test contribute to differential diagnosis of cognitive impairment. Neuroscience Bulletin, 29, 7582. doi: 10.1007/s12264-013-1301-7 CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Gustavson et al. supplementary material

Gustavson et al. supplementary material

Download Gustavson et al. supplementary material(PDF)
PDF 412.5 KB