Hostname: page-component-78c5997874-dh8gc Total loading time: 0 Render date: 2024-11-19T02:11:52.914Z Has data issue: false hasContentIssue false

Visual and Auditory Interference Control of Attention in Developmental Dyslexia

Published online by Cambridge University Press:  15 November 2019

Yafit Gabay*
Affiliation:
Department of Special Education and the Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, Haifa31905, Israel
Shai Gabay
Affiliation:
Department of Psychology and the Institute of Information Processing and Decision Making, University of Haifa, Haifa31905, Israel
Rachel Schiff
Affiliation:
School of Education and Haddad Center for Research in Dyslexia and Learning Disabilities, Bar-Ilan University, Ramat-Gan5290002, Israel
Avishai Henik
Affiliation:
Department of Psychology and Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva 653, Israel
*
*Correspondence and reprint requests to: Yafit Gabay, Department of Special Education, University of Haifa, Mount Carmel, Haifa 31905, Israel. E-mail: [email protected]

Abstract

An accumulating body of evidence highlights the contribution of general cognitive processes, such as attention, to language-related skills.

Objective:

The purpose of the present study was to explore how interference control (a subcomponent of selective attention) is affected in developmental dyslexia (DD) by means of control over simple stimulus-response mappings. Furthermore, we aimed to examine interference control in adults with DD across sensory modalities.

Methods:

The performance of 14 dyslexic adults and 14 matched controls was compared on visual/auditory Simon tasks, in which conflict was presented in terms of an incongruent mapping between the location of a visual/auditory stimulus and the appropriate motor response.

Results:

In the auditory task, dyslexic participants exhibited larger Simon effect costs; namely, they showed disproportionately larger reaction times (RTs)/errors costs when the auditory stimulus and response were incongruent relative to RT/errors costs of non-impaired readers. In the visual Simon task, both groups presented Simon effect costs to the same extent.

Conclusion:

These results indicate that the ability to control auditory selective attention is carried out less effectively in those with DD compared with visually controlled processing. The implications of this impaired process for the language-related skills of individuals with DD are discussed.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

American Psychiatric Association (2000). Diagnostic and Statistical Manual of Mental Disorders (4th ed.). Arlington, VA: American Psychiatric Publishing, Inc.Google Scholar
Astheimer, L., Janus, M., Moreno, S., & Bialystok, E. (2014). Electrophysiological measures of attention during speech perception predict metalinguistic skills in children. Developmental Cognitive Neuroscience, 7, 112.CrossRefGoogle ScholarPubMed
Beidas, H., Khateb, A., & Breznitz, Z. (2013). The cognitive profile of adult dyslexics and its relation to their reading abilities. Reading and Writing, 26(9), 14871515.CrossRefGoogle Scholar
Ben-Artzi, E., Fostick, L., & Babkoff, H. (2005). Deficits in temporal-order judgments in dyslexia: Evidence from diotic stimuli differing spectrally and from dichotic stimuli differing only by perceived location. Neuropsychologia, 43(5), 714723.CrossRefGoogle ScholarPubMed
Brady, S., Shankweiler, D., & Mann, V. (1983). Speech perception and memory coding in relation to reading ability. Journal of Experimental Child Psychology, 35(2), 345367.CrossRefGoogle ScholarPubMed
Brosnan, M., Demetre, J., Hamill, S., Robson, K., Shepherd, H., & Cody, G. (2002). Executive functioning in adults and children with developmental dyslexia. Neuropsychologia, 40(12), 21442155.CrossRefGoogle ScholarPubMed
Buchholz, J., & Aimola Davies, A. (2008). Adults with dyslexia demonstrate attentional orienting deficits. Dyslexia, 14(4), 247270.CrossRefGoogle ScholarPubMed
Castel, A.D., Balota, D.A., Hutchison, K.A., Logan, J.M., & Yap, M.J. (2007). Spatial attention and response control in healthy younger and older adults and individuals with Alzheimer’s disease: Evidence for disproportionate selection impairments in the Simon task. Neuropsychology, 21(2), 170.CrossRefGoogle ScholarPubMed
de Jong, C.G., Van De Voorde, S., Roeyers, H., Raymaekers, R., Oosterlaan, J., & Sergeant, J.A. (2009). How distinctive are ADHD and RD? Results of a double dissociation study. Journal of Abnormal Child Psychology, 37(7), 10071017.CrossRefGoogle Scholar
Démonet, J.-F., Taylor, M.J., & Chaix, Y. (2004). Developmental dyslexia. The Lancet, 363(9419), 14511460.CrossRefGoogle ScholarPubMed
Denckla, M.B., & Rudel, R.G. (1976). Rapid “automatized” naming (RAN): Dyslexia differentiated from other learning disabilities. Neuropsychologia, 14(4), 471479.CrossRefGoogle Scholar
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.CrossRefGoogle ScholarPubMed
Dufor, O., Serniclaes, W., Sprenger-Charolles, L., & Démonet, J.-F. (2007). Top-down processes during auditory phoneme categorization in dyslexia: A PET study. NeuroImage, 34(4), 16921707.CrossRefGoogle ScholarPubMed
Everatt, J., Warner, J., Miles, T., & Thomson, M. (1997). The incidence of Stroop interference in dyslexia. Dyslexia, 3(4), 222228.3.0.CO;2-P>CrossRefGoogle Scholar
Faccioli, C., Peru, A., Rubini, E., & Tassinari, G. (2008). Poor readers but compelled to read: Stroop effects in developmental dyslexia. Child Neuropsychology, 14(3), 277283.CrossRefGoogle ScholarPubMed
Facoetti, A., Lorusso, M.L., Paganoni, P., Cattaneo, C., Galli, R., Umilta, C., & Mascetti, G.G. (2003). Auditory and visual automatic attention deficits in developmental dyslexia. Cognitive Brain Research, 16(2), 185191.CrossRefGoogle ScholarPubMed
Farmer, M.E., & Klein, R.M. (1995). The evidence for a temporal processing deficit linked to dyslexia: A review. Psychonomic Bulletin & Review, 2(4), 460493.CrossRefGoogle ScholarPubMed
Faul, F., Erdfelder, E., Lang, A.-G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 39(2), 175191.CrossRefGoogle ScholarPubMed
Fawcett, A.J., & Nicolson, R.I. (2019). Development of dyslexia: The delayed neural commitment framework. Frontiers in Behavioral Neuroscience, 13, 112.Google Scholar
Francis, A.L., & Nusbaum, H.C. (2002). Selective attention and the acquisition of new phonetic categories. Journal of Experimental Psychology: Human Perception and Performance, 28(2), 349.Google ScholarPubMed
Gabay, Y., Gabay, S., Henik, A., Schiff, R., & Behrmann, M. (2015). Word and line bisection in typical and impaired readers and a cross-language comparison. Brain and Language, 150, 143152.CrossRefGoogle Scholar
Gabay, Y., Gabay, S., Schiff, R., Ashkenazi, S., & Henik, A. (2013). Visuospatial attention deficits in developmental dyslexia: Evidence from visual and mental number line bisection tasks. Archives of Clinical Neuropsychology, 28(8), 829836.CrossRefGoogle ScholarPubMed
Gabay, Y., & Holt, L.L. (2015). Incidental learning of sound categories is impaired in developmental dyslexia. Cortex, 73, 131143.CrossRefGoogle ScholarPubMed
Gabay, Y., Schiff, R., & Vakil, E. (2012). Dissociation between the procedural learning of letter names and motor sequences in developmental dyslexia. Neuropsychologia, 50(10), 24352441.CrossRefGoogle ScholarPubMed
Gabay, Y., Thiessen, E.D., & Holt, L.L. (2015). Impaired statistical learning in developmental dyslexia. Journal of Speech, Language, and Hearing Research, 58(3), 934945.CrossRefGoogle ScholarPubMed
Gabay, Y., Vakil, E., Schiff, R., & Holt, L.L. (2015). Probabilistic category learning in developmental dyslexia: Evidence from feedback and paired-associate weather prediction tasks. Neuropsychology, 29(6), 844.CrossRefGoogle ScholarPubMed
Goldfarb, L., & Shaul, S. (2013). Abnormal attentional internetwork link in dyslexic readers. Neuropsychology, 27(6), 725.CrossRefGoogle ScholarPubMed
Goldstone, R.L. (1994). Influences of categorization on perceptual discrimination. Journal of Experimental Psychology: General, 123(2), 178.CrossRefGoogle ScholarPubMed
Gomes, H., Wolfson, V., & Halperin, J.M. (2007). Is there a selective relationship between language functioning and auditory attention in children? Journal of Clinical and Experimental Neuropsychology, 29(6), 660668.CrossRefGoogle Scholar
Helland, T., & Asbjørnsen, A. (2000). Executive functions in dyslexia. Child Neuropsychology, 6(1), 3748.CrossRefGoogle ScholarPubMed
Holt, L.L., & Lotto, A.J. (2010). Speech perception as categorization. Attention, Perception, & Psychophysics, 72(5), 12181227.CrossRefGoogle ScholarPubMed
Holt, L.L., Lotto, A.J., & Kluender, K.R. (1998). Incorporating principles of general learning in theories of language acquisition, In Chicago linguistic society: The panels, ed. M. Gruber, Higgins, C.D., Olson, K.S., & Wysocki, T., 34, 253268. Chicago, IL: Chicago Linguist. Soc.Google Scholar
Holt, L.L., Tierney, A.T., Guerra, G., Laffere, A., & Dick, F. (2018). Dimension-selective attention as a possible driver of dynamic, context-dependent re-weighting in speech processing. Hearing Research, 366, 5064.CrossRefGoogle ScholarPubMed
Homack, S., & Riccio, C.A. (2004). A meta-analysis of the sensitivity and specificity of the Stroop Color and Word Test with children. Archives of Clinical Neuropsychology, 19(6), 725743.CrossRefGoogle ScholarPubMed
Hommel, B. (1994). Effects of irrelevant spatial SR compatibility depend on stimulus complexity. Psychological Research, 56(3), 179184.CrossRefGoogle Scholar
International Dyslexia Association (2002). Definition of dyslexia. Retrieved from http://eida.org/definition-of-dyslexia/Google Scholar
Lehmann, A., & Schönwiesner, M. (2014). Selective attention modulates human auditory brainstem responses: Relative contributions of frequency and spatial cues. PloS One, 9(1), e85442.CrossRefGoogle ScholarPubMed
Lehto, J.E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21(1), 5980.CrossRefGoogle Scholar
Lu, C.-H., & Proctor, R.W. (1995). The influence of irrelevant location information on performance: A review of the simon and spatial stroop effects. Psychonomic Bulletin & Review, 2(2), 174207.CrossRefGoogle ScholarPubMed
Milne, R.D., Nicholson, T., & Corballis, M.C. (2003). Lexical access and phonological decoding in adult dyslexic subtypes. Neuropsychology, 17(3), 362.CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., & Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41(1), 49100.CrossRefGoogle ScholarPubMed
Mullane, J.C., Corkum, P.V., Klein, R.M., & McLaughlin, E. (2009). Interference control in children with and without ADHD: A systematic review of flanker and simon task performance. Child Neuropsychology, 15(4), 321342.CrossRefGoogle ScholarPubMed
Neill, W.T., Valdes, L.A., & Terry, K.M. (1995). Selective attention and the inhibitory control of cognition. In Interference and inhibition in cognition (pp. 207261). Elsevier.CrossRefGoogle Scholar
Nicolson, R.I., & Fawcett, A.J. (2011). Dyslexia, dysgraphia, procedural learning and the cerebellum. Cortex: A Journal Devoted to the Study of the Nervous System and Behavior, 47(1), 117127.CrossRefGoogle ScholarPubMed
Nosofsky, R.M. (1986). Attention, similarity, and the identification–categorization relationship. Journal of Experimental Psychology: General, 115(1), 39.CrossRefGoogle ScholarPubMed
Pennington, B.F. (2006). From single to multiple deficit models of developmental disorders. Cognition, 101(2), 385413.CrossRefGoogle ScholarPubMed
Protopapas, A., Archonti, A., & Skaloumbakas, C. (2007). Reading ability is negatively related to Stroop interference. Cognitive Psychology, 54(3), 251282.CrossRefGoogle ScholarPubMed
Ratcliff, R. (1979). Group reaction time distributions and an analysis of distribution statistics. Psychological Bulletin, 86(3), 446.CrossRefGoogle Scholar
Raveh, M., & Schiff, R. (2008). Visual and auditory morphological priming in adults with developmental dyslexia. Scientific Studies of Reading, 12(3), 221252.CrossRefGoogle Scholar
Reetzke, R., Maddox, W.T., & Chandrasekaran, B. (2016). The role of age and executive function in auditory category learning. Journal of Experimental Child Psychology, 142, 4865.CrossRefGoogle ScholarPubMed
Reiter, A., Tucha, O., & Lange, K.W. (2005). Executive functions in children with dyslexia. Dyslexia, 11(2), 116131.CrossRefGoogle ScholarPubMed
Romberg, A.R., & Saffran, J.R. (2010). Statistical learning and language acquisition. Wiley Interdisciplinary Reviews: Cognitive Science, 1(6), 906914.Google ScholarPubMed
Schiff, R., & Kahta, S. (2009a). Non-word reading test. Unpublished test.Google Scholar
Schiff, R., & Kahta, S. (2009b). Single-word reading test. Unpublished test.Google Scholar
Schmid, J.M., Labuhn, A.S., & Hasselhorn, M. (2011). Response inhibition and its relationship to phonological processing in children with and without dyslexia. International Journal of Disability, Development and Education, 58(1), 1932.CrossRefGoogle Scholar
Shany, M., Lachman, D., Shalem, Z., Bahat, A., & Zeiger, T. (2006). Aleph-taph. A test for the diagnosis of reading and writing disabilities, based on national Israeli norms. Tel Aviv: Yesod Publishing.Google Scholar
Sireteanu, R., Goertz, R., Bachert, I., & Wandert, T. (2005). Children with developmental dyslexia show a left visual “minineglect”. Vision Research, 45(25–26), 30753082.CrossRefGoogle ScholarPubMed
Snowling, M.J. (2000a). Dyslexia. Blackwell Publishing.Google Scholar
Snowling, M.J. (2000b). Language and literacy skills: Who is at risk and why, In Bishop, D.V.M. & Leonard, L.B. (Eds.), Speech and language impairments in children: Causes, characteristics, intervention and outcome (pp. 245259). Hove, UK: Psychology Press.Google Scholar
Spaulding, T.J., Plante, E., & Vance, R. (2008). Sustained selective attention skills of preschool children with specific language impairment: Evidence for separate attentional capacities. Journal of Speech, Language, and Hearing Research, 51(1), 16.CrossRefGoogle ScholarPubMed
Stein, J., & Walsh, V. (1997). To see but not to read; the magnocellular theory of dyslexia. Trends in Neurosciences, 20(4), 147152.CrossRefGoogle Scholar
Stoel-Gammon, C. (2011). Relationships between lexical and phonological development in young children. Journal of Child Language, 38(1), 134.CrossRefGoogle ScholarPubMed
Toscano, J.C., & McMurray, B. (2010). Cue integration with categories: Weighting acoustic cues in speech using unsupervised learning and distributional statistics. Cognitive Science, 34(3), 434464.CrossRefGoogle ScholarPubMed
Valdois, S., Bosse, M.L., & Tainturier, M.J. (2004). The cognitive deficits responsible for developmental dyslexia: Review of evidence for a selective visual attentional disorder. Dyslexia, 10(4), 339363.CrossRefGoogle ScholarPubMed
Vellutino, F.R., Fletcher, J.M., Snowling, M.J., & Scanlon, D.M. (2004). Specific reading disability (dyslexia): What have we learned in the past four decades? Journal of Child Psychology and Psychiatry, 45(1), 240.CrossRefGoogle ScholarPubMed
Vidyasagar, T.R., & Pammer, K. (2010). Dyslexia: A deficit in visuo-spatial attention, not in phonological processing. Trends in Cognitive Sciences, 14(2), 5763.CrossRefGoogle Scholar
Wang, S., & Gathercole, S.E. (2015). Interference control in children with reading difficulties. Child Neuropsychology, 21(4), 418431.CrossRefGoogle ScholarPubMed
Wechsler, D. (1997). Wechsler Adult Intelligence Scale-(WAIS-3). San Antonio, TX: Harcourt Assessment.Google Scholar
Weiss, D.J., Gerfen, C., & Mitchel, A.D. (2010). Colliding cues in word segmentation: The role of cue strength and general cognitive processes. Language and Cognitive Processes, 25(3), 402422.CrossRefGoogle Scholar
Willcutt, E.G., Pennington, B.F., Boada, R., Ogline, J.S., Tunick, R.A., Chhabildas, N.A., & Olson, R.K. (2001). A comparison of the cognitive deficits in reading disability and attention-deficit/hyperactivity disorder. Journal of Abnormal Psychology, 110(1), 157.CrossRefGoogle ScholarPubMed
Willcutt, E.G., Pennington, B.F., Olson, R.K., Chhabildas, N., & Hulslander, J. (2005). Neuropsychological analyses of comorbidity between reading disability and attention deficit hyperactivity disorder: In search of the common deficit. Developmental Neuropsychology, 27(1), 3578.CrossRefGoogle ScholarPubMed
Yoncheva, Y., Maurer, U., Zevin, J.D., & McCandliss, B.D. (2014). Selective attention to phonology dynamically modulates initial encoding of auditory words within the left hemisphere. NeuroImage, 97, 262270.CrossRefGoogle ScholarPubMed
Ziegler, J.C., Pech-Georgel, C., George, F., & Lorenzi, C. (2009). Speech-perception-in-noise deficits in dyslexia. Developmental Science, 12(5), 732745.CrossRefGoogle ScholarPubMed