Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T06:19:48.796Z Has data issue: false hasContentIssue false

Structural and Functional Changes of the Cingulate Gyrus following Traumatic Brain Injury: Relation to Attention and Executive Skills

Published online by Cambridge University Press:  11 July 2013

Tricia L. Merkley
Affiliation:
Department of Psychology, Brigham Young University, Provo, Utah Physical Medicine and Rehabilitation Alliance of Baylor College of Medicine and the University of Texas-Houston Medical School, Houston, Texas The Institute for Rehabilitation and Research (TIRR) Memorial Hermann, Houston, Texas
Michael J. Larson*
Affiliation:
Department of Psychology, Brigham Young University, Provo, Utah Neuroscience Center, Brigham Young University, Provo, Utah
Erin D. Bigler
Affiliation:
Department of Psychology, Brigham Young University, Provo, Utah Neuroscience Center, Brigham Young University, Provo, Utah Department of Psychiatry, University of Utah, Salt Lake City, Utah
Daniel A. Good
Affiliation:
Department of Psychology, Brigham Young University, Provo, Utah
William M. Perlstein
Affiliation:
Department of Clinical and Health Psychology, University of Florida, Gainesville, Florida VA RR&D Brain Rehabilitation and Research Center of Excellence, Malcom Randall VA, Gainesville, Florida
*
Correspondence and reprint requests to: Michael J. Larson, Department of Psychology and Neuroscience Center, 244 TLRB, Brigham Young University, Provo, UT 84602. E-mail: [email protected]

Abstract

Impairments of attention and executive functions are common sequelae of traumatic brain injury (TBI). The anterior cingulate is implicated in conflict-related task performance, such as the Stroop, and is susceptible to TBI-related injury due to its frontal location and proximity to the rough surface of the falx cerebri. We investigated the relationship between cingulate cortex volume and performance on tasks of selective attention and cognitive flexibility (single-trial Stroop and Auditory Consonant Trigrams [ACT]). Participants consisted of 12 adults with severe TBI and 18 controls. T1-weighted volumetric MRI data were analyzed using automated cortical reconstruction, segmentation, parcellation, and volume measurement. Cortical volume reductions were prominent bilaterally in frontal, temporal, and inferior parietal regions. Specific regional reduction of the cingulate cortex was observed only for cortical volume of right caudal anterior cingulate (cACC). The TBI group performed significantly worse than control participants on the Stroop and ACT tasks. Findings suggest that atrophy of the right cACC may contribute to reduced performance on executive function tasks, such as the Stroop and ACT, although this is likely but one node of an extensive brain network involved in these cognitive processes. (JINS, 2013, 19, 1–12)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bendlin, B.B., Ries, M.L., Lazar, M., Alexander, A.L., Dempsey, R.J., Rowley, H.A., Johnson, S.C. (2008). Longitudinal changes in patients with traumatic brain injury assessed with diffusion-tensor and volumetric imaging. Neuroimage, 42(2), 503514. doi:10.1016/j.neuroimage.2008.04.254CrossRefGoogle ScholarPubMed
Benjamini, Y., Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society, 57(1), 289300.Google Scholar
Bigler, E.D. (2006). Neuroimaging correlates in functional outcome. In N. D. Zasler, D. I. Katz & R. D. Zafonte (Eds.), Brain injury medicine: Principles and practice (pp. 201224). New York: Demost Medical Publishing, Inc.Google Scholar
Bigler, E.D. (2007). Anterior and middle cranial fossa in traumatic brain injury: Relevant neuroanatomy and neuropathology in the study of neuropsychological outcome. Neuropsychology, 21(5), 515531. doi:10.1037/0894-4105.21.5.515CrossRefGoogle Scholar
Bigler, E.D., Abildskov, T.J., Wilde, E.A., McCauley, S.R., Li, X., Merkley, T.L., Levin, H.S. (2010). Diffuse damage in pediatric traumatic brain injury: A comparison of automated versus operator-controlled quantification methods. Neuroimage, 50(3), 10171026.CrossRefGoogle ScholarPubMed
Bigler, E.D., Maxwell, W.L. (2011). Neuroimaging and neuropathology of TBI. Neurorehabilitation, 28(2), 6374. doi:10.3233/NRE-2011-0633CrossRefGoogle ScholarPubMed
Blair, J.R., Spreen, O. (1989). Predicting premorbid IQ: A revision of the National Adult Reading Test. The Clinical Neuropsychologist, 3, 129136.CrossRefGoogle Scholar
Boone, K.B., Pontón, M.O., Gorsuch, R.L., González, J.J., Miller, B.L. (1998). Factor analysis of four measures of prefrontal lobe functioning. Archives of Clinical Neuropsychology, 13(7), 585595. doi:10.1016/s0887-6177(97)00074-7CrossRefGoogle ScholarPubMed
Brown, J. (1958). Some tests of the decay of immediate memory. Quarterly Journal of Experimental Psychology, 10, 1221.CrossRefGoogle Scholar
Buckner, R.L., Head, D., Parker, J., Fotenos, A.F., Marcus, D., Morris, J.C., Snyder, A.Z. (2004). A unified approach for morphometric and functional data analysis in young, old, and demented adults using automated atlas-based head size normalization: Reliability and validation against manual measurement of total intracranial volume. Neuroimage, 23(2), 724738. doi:S1053811904003271.10.1016/j.neuroimage.2004.06.018CrossRefGoogle ScholarPubMed
Burgess, P.W., Alderman, N., Wilson, B.A., Evans, J.J., Emslie, H. (1996). The Dysexecutive Questionnaire. In B.A. Wilson, N. Alderman, P.W. Burgess, H. Emslie & J.J. Evans (Eds.), Behavioral assessment of the dysexecutive syndrome. Bury St. Edmunds, UK: Thames Valley Test Company.Google Scholar
Bush, G., Frazier, J.A., Rauch, S.L., Seidman, L.J., Whalen, P.J., Jenike, M.A., Biederman, J. (1999). Anterior cingulate cortex dysfunction in attention-deficit/hyperactivity disorder revealed by fMRI and the Counting Stroop. Biological Psychiatry, 45(12), 15421552.CrossRefGoogle ScholarPubMed
Bush, G., Luu, P., Posner, M.I. (2000). Cognitive and emotional influences in anterior cingulate cortex. Trends in Cognitive Sciences, 4(6), 215222.CrossRefGoogle ScholarPubMed
Bush, G., Whalen, P.J., Rosen, B.R., Jenike, M.A., McInerney, S.C., Rauch, S.L. (1998). The counting Stroop: An interference task specialized for functional neuroimaging--validation study with functional MRI. Human Brain Mapping, 6(4), 270282.3.0.CO;2-0>CrossRefGoogle ScholarPubMed
Carter, C.S., Braver, T.S., Barch, D.M., Botvinick, M.M., Noll, D., Cohen, J.D. (1998). Anterior cingulate cortex, error detection, and the online monitoring of performance. Science, 280(5364), 747749.CrossRefGoogle ScholarPubMed
Carter, C.S., Macdonald, A.M., Botvinick, M., Ross, L.L., Stenger, V.A., Noll, D., Cohen, J.D. (2000). Parsing executive processes: Strategic vs. evaluative functions of the anterior cingulate cortex. Proceedings of the National Academy of Sciences of the United States of America, 97(4), 19441948.CrossRefGoogle ScholarPubMed
Clayson, P.E., Larson, M.J. (2011). Conflict adaptation and sequential trial effects: Support for the conflict monitoring theory. Neuropsychologia, 49(7), 19531961. doi:10.1016/j.neuropsychologia.2011.03.023CrossRefGoogle ScholarPubMed
Cohen. (1988). Statistical power analysis for the behavioral sciences. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.Google Scholar
Cohen, J.D., Barch, D.M., Carter, C., Servan-Schreiber, D. (1999). Context-processing deficits in schizophrenia: Converging evidence from three theoretically motivated cognitive tasks. Journal of Abnormal Psychology, 108(1), 120133.CrossRefGoogle ScholarPubMed
Collin, G., Sporns, O., Mandl, R.C., van den Heuvel, M.P. (2013). Structural and functional aspects relating to cost and benefit of rich club organization in the human cerebral cortex. Cerebral Cortex. [Epub ahead of print] doi:10.1093/cercor/bht064Google ScholarPubMed
Damasio, A.R., Anderson, S.W., Tranel, D. (2011). The frontal lobes. In K.M. Heilman & E. Valenstein (Eds.), Clinical Neuropsychology (5th ed., pp. 417465). New York: Oxford University.Google Scholar
Dennis, M., Simic, N., Bigler, E.D., Abildskov, T., Agostino, A., Taylor, H.G., Yeates, K.O. (2012). Cognitive, affective, and conative theory of mind (ToM) in children with traumatic brain injury. Developmental Cognitive Neuroscience, 5, 2539. doi:10.1016/j.dcn.2012.11.006CrossRefGoogle ScholarPubMed
Desikan, R.S., Segonne, F., Fischl, B., Quinn, B.T., Dickerson, B.C., Blacker, D., Killiany, R.J. (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage, 31(3), 968980.CrossRefGoogle ScholarPubMed
Etkin, A., Egner, T., Peraza, D.M., Kandel, E.R., Hirsch, J. (2006). Resolving emotional conflict: A role for the rostral anterior cingulate cortex in modulating activity in the amygdala. Neuron, 51(6), 871882. doi:10.1016/j.neuron.2006.07.029CrossRefGoogle ScholarPubMed
Etkin, A., Schatzberg, A.F. (2011). Common abnormalities and disorder-specific compensation during implicit regulation of emotional processing in generalized anxiety and major depressive disorders. American Journal of Psychiatry, 168(9), 968978. doi:10.1176/appi.ajp.2011.10091290CrossRefGoogle ScholarPubMed
Fassbender, C., Schweitzer, J.B. (2006). Is there evidence for neural compensation in attention deficit hyperactivity disorder? A review of the functional neuroimaging literature. Clinical Psychology Review, 26(4), 445465. doi:10.1016/j.cpr.2006.01.003CrossRefGoogle ScholarPubMed
Fischl, B., Sereno, M.I., Tootell, R.B., Dale, A.M. (1999). High-resolution intersubject averaging and a coordinate system for the cortical surface. Human Brain Mapping, 8(4), 272284.3.0.CO;2-4>CrossRefGoogle Scholar
Gehring, W.J., Goss, B., Coles, M.G.H., Meyer, D.E., Donchin, E. (1993). A neural system for error detection and compensation. Psychological Science, 4, 385390.CrossRefGoogle Scholar
Gu, B.M., Park, J.Y., Kang, D.H., Lee, S.J., Yoo, S.Y., Jo, H.J., Kwon, J.S. (2008). Neural correlates of cognitive inflexibility during task-switching in obsessive-compulsive disorder. Brain, 131, 155164. doi:10.1093/brain/awm277CrossRefGoogle ScholarPubMed
Hagler, D.J. Jr., Saygin, A.P., Sereno, M.I. (2006). Smoothing and cluster thresholding for cortical surface-based group analysis of fMRI data. Neuroimage, 33(4), 10931103. doi:10.1016/j.neuroimage.2006.07.036CrossRefGoogle ScholarPubMed
Hajcak, G., MacNamara, A., Olvet, D.M. (2010). Event-related potentials, emotion, and emotion regulation: An integrative review. Developmental Neuropsychology, 35(2), 120155.CrossRefGoogle ScholarPubMed
Heflin, L.H., Laluz, V., Jang, J., Ketelle, R., Miller, B.L., Kramer, J.H. (2011). Let's inhibit our excitement: The relationships between Stroop, behavioral disinhibition, and the frontal lobes. Neuropsychology, 25(5), 655665. doi:10.1037/a0023863CrossRefGoogle ScholarPubMed
Hillary, F.G., Medaglia, J.D., Gates, K.M., Molenaar, P.C., Good, D.C. (2012). Examining network dynamics after traumatic brain injury using the extended unified SEM approach. Brain Imaging and Behavior. [Epub ahead of print] doi:10.1007/s11682-012-9205-0Google Scholar
Hinnant, D.W. (1999). Neurobehavioral consequences:assessment, treatment, and outcome. In D. W. Marion (Ed.), Traumantic brain injury (pp. 187197). New York: Thieme Medical.Google Scholar
Holroyd, C.B., Coles, M.G.H. (2002). The neural basis of human error processing: Reinforcement learning, dopamine, and the error-related negativity. Psychological Review, 109, 679709.CrossRefGoogle ScholarPubMed
Hudak, A., Warner, M., Marquez de la Plata, C., Moore, C., Harper, C., Diaz-Arrastia, R. (2011). Brain morphometry changes and depressive symptoms after traumatic brain injury. Psychiatry Research, 191(3), 160165. doi:10.1016/j.pscychresns.2010.10.003CrossRefGoogle ScholarPubMed
Kennedy, D.P., Adolphs, R. (2012). The social brain in psychiatric and neurological disorders. Trends in Cognitive Sciences, 16(11), 559572. doi:10.1016/j.tics.2012.09.006CrossRefGoogle ScholarPubMed
Kerns, J.G., Cohen, J.D., MacDonald, A.W. III, Cho, R.Y., Stenger, V.A., Carter, C.S. (2004). Anterior cingulate conflict monitoring and adjustments in control. Science, 303(5660), 10231026. doi:10.1126/science.1089910CrossRefGoogle ScholarPubMed
Kim, C., Chung, C., Kim, J. (2010). Multiple cognitive control mechanisms associated with the nature of conflict. Neuroscience Letters, 476(3), 156160. doi:10.1016/j.neulet.2010.04.019.CrossRefGoogle ScholarPubMed
King, N.S., Crawford, S., Wenden, F.J., Moss, N.E., Wade, D.T., Caldwell, F.E. (1997). Measurement of post-traumatic amnesia: How reliable is it? Journal of Neurology, Neurosurgery, and Psychiatry, 62(1), 3842.CrossRefGoogle Scholar
Kondo, H., Morishita, M., Osaka, N., Osaka, M., Fukuyama, H., Shibasaki, H. (2004). Functional roles of the cingulo-frontal network in performance on working memory. Neuroimage, 21(1), 214.CrossRefGoogle ScholarPubMed
Kraus, M.F., Susmaras, T., Caughlin, B.P., Walker, C.J., Sweeney, J.A., Little, D.M. (2007). White matter integrity and cognition in chronic traumatic brain injury: A diffusion tensor imaging study. Brain, 130, 26082619.CrossRefGoogle ScholarPubMed
Krebs, R.M., Boehler, C.N., Roberts, K.C., Song, A.W., Woldorff, M.G. (2012). The involvement of the dopaminergic midbrain and cortico-striatal-thalamic circuits in the integration of reward prospects and attentional task demands. Cerebral Cortex, 22(3), 607615. doi:10.1093/cercor/bhr134CrossRefGoogle ScholarPubMed
Levin, H.S. (1995). Neurobehavioral outcome of closed head injury: Implications for clinical trials. Journal of Neurotrauma, 12(4), 601610.CrossRefGoogle ScholarPubMed
Levine, B., Kovacevic, N., Nica, E.L., Cheung, G., Gao, F., Schwartz, M.L., Black, S.E. (2008). The Toronto traumatic brain injury study: Injury severity and quantified MRI. Neurology, 771778. doi:10.1212/01.wnl.0000304108.32283.aaCrossRefGoogle ScholarPubMed
Margulies, D.S., Kelly, A.M., Uddin, L.Q., Biswal, B.B., Castellanos, F.X., Milham, M.P. (2007). Mapping the functional connectivity of anterior cingulate cortex. Neuroimage, 37(2), 579588. doi:10.1016/j.neuroimage.2007.05.019CrossRefGoogle ScholarPubMed
Mathias, J.L., Bowden, S.C., Bigler, E.D., Rosenfeld, J.V. (2007). Is performance on the Wechsler test of adult reading affected by traumatic brain injury? The British Journal of Clinical Psychology, 46, 457466. doi:10.1348/014466507×190197CrossRefGoogle ScholarPubMed
McMillan, T.M., Jongen, E.L., Greenwood, R.J. (1996). Assessment of post-traumatic amnesia after severe closed head injury: Retrospective or prospective? Journal of Neurology, Neurosurgery, and Psychiatry, 60(4), 422427.CrossRefGoogle ScholarPubMed
Meador, K.J., Baker, G.A., Browning, N., Clayton-Smith, J., Cohen, M.J., Kalayjian, L.A., Loring, D.W. (2011). Relationship of child IQ to parental IQ and education in children with fetal antiepileptic drug exposure. Epilepsy and Behavior, 21(2), 147152. doi:10.1016/j.yebeh.2011.03.020CrossRefGoogle ScholarPubMed
Merkley, T.L., Bigler, E.D., Wilde, E.A., McCauley, S.R., Hunter, J.V., Levin, H.S. (2008). Diffuse changes in cortical thickness in pediatric moderate-to-severe traumatic brain injury. Journal of Neurotrauma, 25(11), 13431345. doi:10.1089/neu.2008.0615CrossRefGoogle ScholarPubMed
Mertens, V.B., Gagnon, M., Coulombe, D., Messier, C. (2006). Exploratory factor analysis of neuropsychological tests and their relationship to the Brown-Peterson task. Archives of Clinical Neuropsychology, 21(7), 733739. doi:10.1016/j.acn.2006.08.005CrossRefGoogle Scholar
Nebel, K., Wiese, H., Stude, P., de Greiff, A., Diener, H.C., Keidel, M. (2005). On the neural basis of focused and divided attention. Brain Research: Cognitive Brain Research, 25(3), 760776. doi:10.1016/j.cogbrainres.2005.09.011Google ScholarPubMed
Nieuwenhuis, S., Forstmann, B.U., Wagenmakers, E.J. (2011). Erroneous analyses of interactions in neuroscience: A problem of significance. Nature Neuroscience, 14(9), 11051107. doi:10.1038/nn.2886CrossRefGoogle ScholarPubMed
Overbeek, T.J.M., Nieuwenhuis, S., Ridderinkhof, K.R. (2005). Dissociable components of error processing: On the functional significance of the Pe vis-a-vis the ERN/Ne. Journal of Psychophysiology, 19(4), 319329.CrossRefGoogle Scholar
Pandit, A.S., Expert, P., Lambiotte, R., Bonnelle, V., Leech, R., Turkheimer, F.E., Sharp, D.J. (2013). Traumatic brain injury impairs small-world topology. Neurology, 80(20), 18261833. doi:10.1212/WNL.0b013e3182929f38CrossRefGoogle ScholarPubMed
Perlstein, W.M., Carter, C.S., Barch, D.M., Baird, J.W. (1998). The Stroop task and attention deficits in schizophrenia: A critical evaluation of card and single-trial Stroop methodologies. Neuropsychology, 12, 414425.CrossRefGoogle ScholarPubMed
Perlstein, W.M., Larson, M.J., Dotson, V.M., Kelly, K.G. (2006). Temporal dissociation of components of cognitive control dysfunction in severe TBI: ERPs and the cued-Stroop task. Neuropsychologia, 44(2), 260274.CrossRefGoogle ScholarPubMed
Peterson, L.R., Peterson, M.J. (1959). Short-term retention of individual verbal items. Journal of Experimental Psychology, 58, 193198.CrossRefGoogle ScholarPubMed
Posner, M.I., Petersen, S.E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 2542.CrossRefGoogle ScholarPubMed
Posner, M.I., Rothbart, M.K. (1998). Attention, self-regulation and conciousness. Philosophical Transactions of the Royal Society of London, 353, 19151927.Google Scholar
Rutgers, D.R., Toulgoat, F., Cazejust, J., Fillard, P., Lasjaunias, P., Ducreux, D. (2008). White matter abnormalities in mild traumatic brain injury: A diffusion tensor imaging study. American Journal of Neuroradiology, 29(3), 514519. doi:10.3174/ajnr.A0856CrossRefGoogle ScholarPubMed
Sattler, J.M. (2008). Assessment of Children: Cognitive Foundations. La Mesa, CA: Jerome M. Sattler Publisher, Inc.Google Scholar
Seignourel, P.J., Robins, D.L., Larson, M.J., Demery, J.A., Cole, M., Perlstein, W.M. (2005). Cognitive control in closed head injury: Context maintenance dysfunction or prepotent response inhibition deficit? Neuropsychology, 19(5), 578590. doi:10.1037/0894-4105.19.5.578CrossRefGoogle ScholarPubMed
Shackman, A.J., Salomons, T.V., Slagter, H.A., Fox, A.S., Winter, J.J., Davidson, R.J. (2011). The integration of negative affect, pain and cognitive control in the cingulate cortex. Nature Reviews. Neuroscience, 12(3), 154167. doi:10.1038/nrn2994CrossRefGoogle ScholarPubMed
Shafritz, K.M., Kartheiser, P., Belger, A. (2005). Dissociation of neural systems mediating shifts in behavioral response and cognitive set. Neuroimage, 25(2), 600606. doi:10.1016/j.neuroimage.2004.12.054CrossRefGoogle ScholarPubMed
Soeda, A., Nakashima, T., Okumura, A., Kuwata, K., Shinoda, J., Iwama, T. (2005). Cognitive impairment after traumatic brain injury: A functional magnetic resonance imaging study using the Stroop task. Neuroradiology, 47(7), 501506. doi:10.1007/s00234-005-1372-xCrossRefGoogle ScholarPubMed
Sohn, M.H., Albert, M.V., Jung, K., Carter, C.S., Anderson, J.R. (2007). Anticipation of conflict monitoring in the anterior cingulate cortex and the prefrontal cortex. Proceedings of the National Academy of Sciences of the United States of America, 104(25), 1033010334. doi:10.1073/pnas.0703225104CrossRefGoogle ScholarPubMed
Sozda, C.N., Larson, M.J., Kaufman, D.A., Schmalfuss, I.M., Perlstein, W.M. (2011). Error-related processing following severe traumatic brain injury: An event-related functional magnetic resonance imaging (fMRI) study. International Journal of Psychophysiology, 82(1), 97106. doi:10.1016/j.ijpsycho.2011.06.019CrossRefGoogle ScholarPubMed
Spielberger, C.D. (1983). Manual for the State-Trait Anxiety Inventory: STAI (Form Y). Palo Alto, CA: Consulting Psychologists Press.Google Scholar
Stamatakis, E.A., Wilson, J.T.L., Hadley, D.M., Wyper, D.J. (2002). SPECT imaging in head injury interpreted with Statistical Parametric Mapping. Journal of Nuclear Medicine, 43(4), 476483.Google ScholarPubMed
Tate, D.F., Khedraki, R., Neeley, E.S., Ryser, D.K., Bigler, E.D. (2011). Cerebral volume loss, cognitive deficit, and neuropsychological performance: Comparative measures of brain atrophy: II. Traumatic brain injury. Journal of the International Neuropsychological Society, 17(2), 308316. doi:10.1017/S1355617710001670CrossRefGoogle ScholarPubMed
Teasdale, G., Jennett, B. (1974). Assessment of coma and impaired consciousness. A practical scale. Lancet, 2, 8185.CrossRefGoogle ScholarPubMed
van den Heuvel, M.P., Sporns, O. (2011). Rich-club organization of the human connectome. The Journal of Neuroscience, 31(44), 1577515786. doi:10.1523/jneurosci.3539-11.2011CrossRefGoogle ScholarPubMed
van der Wee, N.J., Ramsey, N.F., Jansma, J.M., Denys, D.A., van Megen, H.J., Westenberg, H.M., Kahn, R.S. (2003). Spatial working memory deficits in obsessive compulsive disorder are associated with excessive engagement of the medial frontal cortex. Neuroimage, 20(4), 22712280.CrossRefGoogle ScholarPubMed
Vanier, M., Mazaux, J.M., Lambert, J., Dassa, C., Levin, H.S. (2000). Assessment of neuropsychologic impairments after head injury: Interrater reliability and factorial and criterion validity of the Neurobehavioral Rating Scale-Revised. Archives of Physical Medicine and Rehabilitation, 81(6), 796806. doi:S0003-9993(00)90114-XGoogle ScholarPubMed
Vogt, B.A., Finch, D.M., Olson, C.R. (1992). Functional heterogeneity in cingulate cortex: The anterior executive and posterior evaluative regions. Cerebral Cortex, 2(6), 435443. doi:10.1093/cercor/2.6.435-aGoogle ScholarPubMed
Vogt, B.A., Nimchinsky, E.A., Vogt, L.J., Hof, P.R. (1995). Human cingulate cortex: Surface features, flat maps, and cytoarchitecture. The Journal of Comparative Neurology, 359(3), 490506.CrossRefGoogle ScholarPubMed
Weible, A.P. (2013). Remembering to attend: The anterior cingulate cortex and remote memory. Behavioural Brain Research, 245, 6375. doi:10.1016/j.bbr.2013.02.010CrossRefGoogle ScholarPubMed
Wilde, E.A., Newsome, M.R., Bigler, E.D., Pertab, J., Merkley, T.L., Hanten, G., Levin, H.S. (2011). Brain imaging correlates of verbal working memory in children following traumatic brain injury. International Journal of Psychophysiology, 82(1), 8696. doi:10.1016/j.ijpsycho.2011.04.006CrossRefGoogle ScholarPubMed
Wu, T.C., Wilde, E.A., Bigler, E.D., Yallampalli, R., McCauley, S.R., Troyanskaya, M., Levin, H.S. (2010). Evaluating the relationship between memory functioning and cingulum bundles in acute mild traumatic brain injury using diffusion tensor imaging. Journal of Neurotrauma, 27(2), 303307. doi:10.1089/neu.2009.1110CrossRefGoogle ScholarPubMed
Yount, R., Raschke, K.A., Biru, M., Tate, D.F., Miller, M.J., Abildskov, T., Bigler, E.D. (2002). Traumatic brain injury and atrophy of the cingulate gyrus. The Journal of Neuropsychiatry and Clinical Neurosciences, 14(4), 416423.CrossRefGoogle ScholarPubMed
Zhou, Y., Kierans, A., Kenul, D., Ge, Y., Rath, J., Reaume, J., Lui, Y.W. (2013). Mild traumatic brain injury: Longitudinal regional brain volume changes. Radiology, 267, 880890. doi:10.1148/radiol.13122542CrossRefGoogle ScholarPubMed