Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T00:47:16.781Z Has data issue: false hasContentIssue false

Source memory and frontal functioning in Parkinson’s disease

Published online by Cambridge University Press:  01 May 2009

LAUREN L. DRAG*
Affiliation:
Department of Psychiatry, University of Michigan, Ann Arbor, Michigan
LINAS A. BIELIAUSKAS
Affiliation:
Department of Neurology, University of Michigan, Ann Arbor, Michigan
ALFRED W. KASZNIAK
Affiliation:
Department of Psychology, University of Arizona, Tucson, Arizona
NICOLAAS I. BOHNEN
Affiliation:
Department of Neurology, University of Michigan, Ann Arbor, Michigan
ELIZABETH L. GLISKY
Affiliation:
Department of Psychology, University of Arizona, Tucson, Arizona
*
*Correspondence and reprint requests to: Lauren L. Drag, Division of Neuropsychology, Department of Psychiatry, University of Michigan, 2101 Commonwealth Boulevard, Suite C., Ann Arbor, Michigan 48105. E-mail: [email protected]

Abstract

The most extensively described pathological abnormality in Parkinson’s disease (PD) is loss of dopaminergic neurons in the substantia nigra pars compacta and the ventral tegmental area, with degeneration of their striatal terminals. Because of the intimate connections between the striatum and the frontal lobes, individuals with PD often demonstrate impairments on those tasks relying on the prefrontal cortex (e.g., tests of executive functioning). Source memory, or memory for context, is believed to rely on the prefrontal cortex and has been previously associated with executive functioning performance, although it has received little attention in the PD literature. Executive functioning and source memory were measured in a group of nondemented PD patients and healthy control participants. Within the PD group, an anti-Parkinson’s medication withdrawal manipulation was used to examine whether source memory was affected by phasic changes in dopamine levels. Compared to healthy control participants, PD patients were impaired in source memory (both on- and off-medication) and on a composite measure of executive functioning. Within the PD group, medication administration improved motor performance but did not have a significant effect on source memory. (JINS, 2009, 15, 399–406.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, G., Delong, M., & Strick, P. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357381.CrossRefGoogle ScholarPubMed
Azuma, Y., Cruz, R., Bayles, K., Tomoeda, C., & Montgomery, E. (2003). A longitudinal study of neuropsychological change in individuals with Parkinson’s disease. International Journal of Geriatric Psychiatry, 18, 11151120.CrossRefGoogle ScholarPubMed
Backman, L., Ginovart, N., Dixon, R., Wahlin, T., Wahlin, A., Halldin, C., & Farde, L. (2000). Age-related cognitive deficits mediated by changes in the striatal dopamine system. American Journal of Psychiatry, 157(4), 635637.CrossRefGoogle ScholarPubMed
Beato, R., Levy, R., Pillon, B., Vidal, C., du Montcel, S., Deweer, B., et al. (2008). Working memory in Parkinson’s disease patients: Clinical features and response to levodopa. Arquivos de Neuro-Psiquiatria, 66(2), 147151.CrossRefGoogle ScholarPubMed
Bondi, M., Kaszniak, A., Bayles, K., & Vance, K. (1993). Contributions of frontal system dysfunction to memory and perceptual abilities in Parkinson’s disease. Neuropsychology, 7(1), 89102.CrossRefGoogle Scholar
Brown, A. & Halliday, H. (1991). Cryptomnesia and source memory difficulties. The American Journal of Psychology, 104(4), 475490.CrossRefGoogle Scholar
Brück, A., Portin, R., Lindell, A., Laihinen, A., Bergman, J., Haaparanta, M., Solin, O., & Rinne, J. (2001). Positron emission tomography shows that impaired frontal lobe functioning in Parkinson’s disease is related to dopaminergic hypofunction in the caudate nucleus. Neuroscience Letters, 311, 8184.CrossRefGoogle ScholarPubMed
Brusa, L., Bassi, A., & Pierantozzi, M. (2002). Perfusion-weighted dynamic susceptibility (DSC) MRI: Basal ganglia hemodynamic changes after apomorphine in Parkinson’s disease. Neurological Sciences, 23(Suppl 2), S61S62.CrossRefGoogle ScholarPubMed
Brusa, L., Tiraboschi, P., Koch, G., Peppe, A., Pierantozzi, M., Ruggieri, S., & Stanzione, P. (2005). Pergolide effect on cognitive functions in early-mild Parkinson’s disease. Journal of Neural Transmission, 112, 231237.CrossRefGoogle ScholarPubMed
Cook, S. (2007). Are all sources equal? The roles of aging and frontal lobes on multiple types of source memory using a repeated-measures design. Dissertation Abstracts International: Section B: The Sciences and Engineering, 67(9-B), 5433.Google Scholar
Costa, A., Peppe, A., Brusa, L., Caltagirone, C., Gatto, I., & Carlesimo, G. (2008). Dopaminergic modulation of prospective memory in Parkinson’s disease. Behavioural Neurology, 19(1), 4548.CrossRefGoogle ScholarPubMed
Costa, A., Peppe, A., Dell’Agnello, G., Carlesimo, G., Murri, L., Bonuccelli, U., & Caltagirone, C. (2003). Dopaminergic modulation of visual-spatial working memory in Parkinson’s disease. Dementia and Geriatric Cognitive Disorders, 15, 5566.CrossRefGoogle ScholarPubMed
Craik, F., Morris, L., Morris, R., & Loewen, E. (1990). Relations between source amnesia and frontal lobe functioning in older adults. Psychology and Aging, 5(1), 148151.CrossRefGoogle ScholarPubMed
Cropley, V., Fujita, M., Innis, R., & Nathan, P. (2006). Molecular imaging of the dopaminergic system and its association with human cognitive function. Biological Psychiatry, 59, 898907.CrossRefGoogle ScholarPubMed
Davidson, P., Anaki, D., Saint-Cyr, J., Chow, T., & Moscovitch, M. (2006). Exploring the recognition memory deficit in Parkinson’s disease: Estimates of recollection versus familiarity. Brain, 129(7), 17321747.CrossRefGoogle ScholarPubMed
Degl’Innocenti, A. & Backman, L. (1999). Source memory in major depression. Journal of Affective Disorders, 52, 205209.CrossRefGoogle Scholar
Dirksen, C., Howard, J., Cronin-Golomb, A., & Oscar-Berman, M. (2006). Patterns of prefrontal dysfunction in alcoholics with and without Korsakoff’s syndrome, patients with Parkinson’s disease, and patients with rupture and repair of the anterior communicating artery. Neuropsychiatric Disease and Treatment, 2(3), 327339.CrossRefGoogle ScholarPubMed
Dobbins, I., Simons, J., & Schacter, D. (2004). FMRI evidence for separable and lateralized prefrontal memory monitoring processes. Journal of Cognitive Neuroscience, 16(6), 908920.CrossRefGoogle ScholarPubMed
Dodson, C., Darragh, J., & Williams, A. (2008). Stereotypes and retrieval-provoked illusory source recollections. Journal of Experimental Psychology: Learning, Memory, and Cognition, 34(3), 460477.Google ScholarPubMed
Farina, E., Gattellaro, G., Pomati, S., Magni, E., Perretti, A., Cannata, A., Nichelli, P., & Mariani, C. (2000). Researching a differential impairment of frontal functions and explicit memory in early Parkinson’s disease. European Journal of Neurology, 7, 259267.CrossRefGoogle ScholarPubMed
Forster, K.I. & Forster, J.C. (2003). DMDX: A Windows display program with millisecond accuracy. Behavior Research Methods, Instruments, & Computers, 35, 116124.CrossRefGoogle ScholarPubMed
Gabrieli, J., Singh, J., Stebbins, G., & Goetz, C. (1996). Reduced working memory span in Parkinson’s disease: Evidence for the role of a frontostriatal system in working and strategic memory. Neuropsychology, 10(3), 322332.CrossRefGoogle Scholar
Hayes, A., Davidson, M., Keele, S., & Rafal, R. (1998). Toward a functional analysis of the basal ganglia. Journal of Cognitive Neuroscience, 10(2), 178198.CrossRefGoogle Scholar
Hoehn, M. & Yahr, M. (1967). Parkinsonism: Onset, progression, and mortality. Neurology, 17, 427442.CrossRefGoogle ScholarPubMed
Jacoby, L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory and Language, 30, 513541.CrossRefGoogle Scholar
Lewis, S., Slabosz, A., Robbins, T., Barker, R., & Owen, A. (2005). Dopaminergic basis for deficits in working memory but not attentional set-shifting in Parkinson’s disease. Neuropsychologia, 43, 823832.CrossRefGoogle Scholar
Luciana, M., Collins, P., & Depue, R. (1998). Opposing roles for dopamine and serotonin in the modulation of human spatial working memory functions. Cerebral Cortex, 8, 218226.CrossRefGoogle ScholarPubMed
Marie, R., Barre, L., Dupuy, B., Viader, F., Defer, G., & Baron, J. (1999). Relationships between striatal dopamine denervation and frontal executive tests in Parkinson’s disease. Neuroscience Letters, 260(2), 7780.CrossRefGoogle ScholarPubMed
Marsh, R. & Bower, G. (1993). Eliciting cryptomnesia: Unconscious plagiarism in a puzzle task. Journal of Experimental Psychology: Learning, Memory, and Cognition, 19(3), 673688.Google Scholar
Mega, M., Cummings, S., & Jeffrey, L. (1994). Frontal-subcortical circuits and neuropsychiatric disorders. The Journal of Neuropsychiatry and Clinical Neurosciences, 6(4), 358370.Google ScholarPubMed
Nolde, S., Johnson, M., & D’Esposito, M. (1998). Left prefrontal activation during episodic remembering: An event-related fMRI study. Neuroreport, 9(15), 35093514.CrossRefGoogle ScholarPubMed
Owen, A, James, M., Leigh, P., Summers, A., Marsden, C., Quinn, N., Lange, K., & Robbins, T. (1992). Front-striatal cognitive deficits at different stages of Parkinson’s disease. Brain, 115, 17271751.CrossRefGoogle Scholar
Owen, A., Sahakian, B., Hodges, J., Summers, B., Polkey, C., & Robbins, T. (1995). Dopamine-dependent frontostriatal planning deficits in early Parkinson’s disease. Neuropsychology, 9(1), 126140.CrossRefGoogle Scholar
Piguet, O., Connally, E., Krendl, A., Huot, J., & Corkin, S. (2008). False memory in aging: Effects of emotional valence on word recognition accuracy. Psychology and Aging, 23(2), 307314.CrossRefGoogle ScholarPubMed
Postle, B., Jonides, J., Smith, E., Corkin, S., & Growdon, J. (1997). Spatial, but not object, delayed response is impaired in early Parkinson’s disease. Neuropsychology, 11(2), 171179.CrossRefGoogle Scholar
Rinne, J., Portin, R., Ruottinen, H., Nurmi, E., Bergman, J., Haaparanta, M., & Solin, O. (2000). Cognitive impairment and the brain dopaminergic system in Parkinson disease: [18F] fluorodopa positron emission tomographic study. Archives of Neurology, 57(4), 470475.CrossRefGoogle ScholarPubMed
Rogers, R., Sahakian, B., Hodges, J., Polkey, C., Kennard, C., & Robbins, T. (1998). Dissociating executive mechanisms of task control following frontal lobe damage and Parkinson’s disease. Brain, 121, 815842.CrossRefGoogle ScholarPubMed
Sawamoto, N., Piccini, P., Hotton, G., Pavese, N., Thielemans, K., & Brooks, D. (2008) Cognitive deficits and striato-frontal dopamine release in Parkinson’s disease. Brain: A Journal of Neurology, 131(5), 12941302.CrossRefGoogle ScholarPubMed
Stamenovic, J., Djuric, S., Jolic, M., Zivadinovic, B., & Djuric, V. (2004). Examinations of cognitive functions in patients with Parkinson’s disease. Medicine and Biology, 11(2), 8086.Google Scholar
Stefanova, E., Kostic, V., Ziropadja, L., Ocic, G., & Markovic, M. (2001). Declarative memory in early Parkinson’s disease: Serial position learning effects. Journal of Clinical and Experimental Neuropsychology, 23(5), 581591.CrossRefGoogle ScholarPubMed
Taylor, A., Saint-Cyr, J., & Lang, A. (1990). Memory and learning in early Parkinson’s disease: Evidence for a “Frontal Lobe Syndrome.” Brain and Cognition, 13, 211232.CrossRefGoogle ScholarPubMed
Trott, C., Friedman, D., Ritter, W., Fabiani, M., & Snodgrass, J. (1999). Episodic priming and memory for temporal source: Event-related potentials reveal age-related differences in prefrontal functioning. Psychology and Aging, 14(3), 390413.CrossRefGoogle ScholarPubMed
van Beilen, M., Portman, A., Kiers, H., Maguire, R., Kaasinen, V., Koning, M., Prium, J., & Leenders, K. (2008). Striatal FDOPA uptake and cognition in advanced non-demented Parkinson’s disease: A clinical and FDOPA-PET study. Parkinsonism & Related Disorders, 14(3), 224228.CrossRefGoogle ScholarPubMed
Volkow, N., Gur, R., Wang, G., Fowler, J., Moberg, P., Ding, Y., Hitzemann, R., Smith, G., & Logan, J. (1998). Association between decline in brain dopamine activity with age and cognitive and motor impairment in healthy individuals. The American Journal of Psychiatry, 155(3), 344349.Google ScholarPubMed