Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T13:05:17.703Z Has data issue: false hasContentIssue false

Simple and Complex Rule Induction Performance in Young and Older Adults: Contribution of Episodic Memory and Working Memory

Published online by Cambridge University Press:  24 February 2014

Joukje M. Oosterman*
Affiliation:
Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
Merle S. Boeschoten
Affiliation:
Trudy Bron Institute, Bilthoven, The Netherlands
Paul A.T. Eling
Affiliation:
Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
Roy P.C. Kessels
Affiliation:
Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands Radboud University Medical Center, Department of Medical Psychology, Nijmegen, The Netherlands
Joseph H.R. Maes
Affiliation:
Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands
*
Correspondence and reprint requests to: Joukje M. Oosterman, Radboud University Nijmegen, Donders Institute for Brain, Cognition and Behaviour, Montessorilaan 3, 6500 HE Nijmegen, The Netherlands. E-mail: [email protected]

Abstract

This study tested the hypothesis that part of the age-related decline in performance on executive function tasks is due to a decline in episodic memory. For this, we developed a rule induction task in which we manipulated the involvement of episodic memory and executive control processes; age effects and neuropsychological predictors of task performance were investigated. Twenty-six younger (mean age, 24.0; range, 19–35 years) and 27 community-dwelling older adults (mean age, 67.5; range, 50–91 years) participated. The neuropsychological predictors consisted of the performance on tests of episodic memory, working memory, switching, inhibition and flexibility. Performance of the older adults was worse for the learning and memorization of simple rules, as well as for the more demanding executive control condition requiring the manipulation of informational content. Episodic memory was the only predictor of performance on the simple learning and memorization task condition whereas an increase in rule induction complexity additionally engaged working memory processes. Together, these findings indicate that part of the age-related decline on rule induction tests may be the result of a decline in episodic memory. Further studies are needed that examine the role of episodic memory in other executive function tasks in aging. (JINS, 2014, 20, 1–9)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altmann, E.M., Gray, W.D. (2008). An integrated model of cognitive control in task switching. Psychological Review, 115, 602639. doi:10.1037/0033-295X.115.3.602 CrossRefGoogle ScholarPubMed
Bastos-Leite, A.J., van der Flier, W.M., van Straaten, E.C., Staekenborg, S.S., Scheltens, P., Barkhof, F. (2007). The contribution of medial temporal lobe atrophy and vascular pathology to cognitive impairment in vascular dementia. Stroke, 38, 31823185. doi:10.1161/STROKEAHA.107.490102 CrossRefGoogle ScholarPubMed
Baudic, S., Barba, G.D., Thibaudet, M.C., Smagghe, A., Remy, P., Traykov, L. (2006). Executive function deficits in early Alzheimer's disease and their relations with episodic memory. Archives of Clinical Neuropsychology, 21, 1521. doi:10.1016/j.acn.2005.07.002 CrossRefGoogle ScholarPubMed
Bouma, A., Mulder, J., Lindeboom, J., Schmand, B. (2012). Handboek Neuropsychologische Diagnostiek (2nd ed.). Amsterdam: Pearson.Google Scholar
Bowie, C.R., Harvey, P.D. (2006). Administration and interpretation of the Trail Making Test. Nature Protocols, 1, 22772281. doi:10.1038/nprot.2006.390 CrossRefGoogle ScholarPubMed
Cahn-Weiner, D.A., Farias, S.T., Julian, L., Harvey, D.J., Kramer, J.H., Reed, B.R., Chui, H. (2007). Cognitive and neuroimaging predictors of instrumental activities of daily living. Journal of the International Neuropsychological Society, 13, 747757. doi:10.1017/S1355617707070853 CrossRefGoogle ScholarPubMed
Chen, T.F., Chen, Y.F., Cheng, T.W., Hua, M.S., Liu, H.M., Chiu, M.J. (2009). Executive dysfunction and periventricular diffusion tensor changes in amnesic mild cognitive impairment and early Alzheimer's disease. Human Brain Mapping , 30, 38263836. doi:10.1002/hbm.20810 CrossRefGoogle ScholarPubMed
Collette, F., Van der Linden, M., Delrue, G., Salmon, E. (2002). Frontal hypometabolism does not explain inhibitory dysfunction in Alzheimer disease. Alzheimer Disease & Associated Disorders, 16, 228238. doi:10.1097/00002093-200210000-00004 CrossRefGoogle Scholar
Fjell, A.M., Walhovd, K.B., Reinvang, I., Lundervold, A., Dale, A.M., Quinn, B.T., Fischl, B. (2005). Age does not increase rate of forgetting over weeks--neuroanatomical volumes and visual memory across the adult life-span. Journal of the International Neuropsychological Society , 11, 215. doi:10.1017/S1355617705050046 CrossRefGoogle Scholar
Folstein, M.F., Folstein, S.E., McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle ScholarPubMed
Giovagnoli, A.R. (2001). Relation of sorting impairment to hippocampal damage in temporal lobe epilepsy. Neuropsychologia, 39, 140150. doi:10.1016/S0028-3932(00)00104-4 CrossRefGoogle ScholarPubMed
Haddon, J.E., Killcross, S. (2006). Prefrontal cortex lesions disrupt the contextual control of response conflict. The Journal of Neuroscience, 26, 29332940. doi:10.1523/JNEUROSCI.3243-05.2006 CrossRefGoogle ScholarPubMed
Head, D., Kennedy, K.M., Rodrigue, K.M., Raz, N. (2009). Age differences in perseveration: Cognitive and neuroanatomical mediators of performance on the Wisconsin Card Sorting Test. Neuropsychologia, 47, 12001203. doi:10.1016/j.neuropsychologia.2009.01.003 CrossRefGoogle ScholarPubMed
Head, D., Rodrigue, K.M., Kennedy, K.M., Raz, N. (2008). Neuroanatomical and cognitive mediators of age-related differences in episodic memory. Neuropsychology, 22, 491507. doi:10.1037/0894-4105.22.4.491 CrossRefGoogle ScholarPubMed
Johnson, J.K., Lui, L.Y., Yaffe, K. (2007). Executive function, more than global cognition, predicts functional decline and mortality in elderly women. Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 62, 11341141. doi:10.1093/gerona/62.10.1134 CrossRefGoogle ScholarPubMed
Keys, B.A., White, D.A. (2000). Exploring the relationship between age, executive abilities, and psychomotor speed. Journal of the International Neuropsychological Society, 6, 7682. doi:10.1017/S1355617700611098 CrossRefGoogle ScholarPubMed
Koehler, M., Kliegel, M., Wiese, B., Bickel, H., Kaduszkiewicz, H., van den Bussche, H., Pentzek, M. (2011). Malperformance in verbal fluency and delayed recall as cognitive risk factors for impairment in instrumental activities of daily living. Dementia & Geriatric Cognitive Disorders, 31, 8188. doi:10.1159/000323315 CrossRefGoogle ScholarPubMed
Konishi, S., Kawazu, M., Uchida, I., Kikyo, H., Asakura, I., Miyashita, Y. (1999). Contribution of working memory to transient activation in human inferior prefrontal cortex during performance of the Wisconsin Card Sorting Test. Cerebral Cortex, 9, 745753. doi:10.1093/cercor/9.7.745 CrossRefGoogle ScholarPubMed
Maes, J.H.R., Eling, P.A.T.M. (2007). Discrimination learning in humans: Role of number and complexity of rules. Learning and Behavior, 35, 225232. doi:10.3758/BF03206428 CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “Frontal Lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49100. doi:10.1006/cogp.1999.0734 CrossRefGoogle ScholarPubMed
Nagata, T., Shinagawa, S., Ochiai, Y., Aoki, R., Kasahara, H., Nukariya, K., Nakayama, K. (2011). Association between executive dysfunction and hippocampal volume in Alzheimer's disease. International Psychogeriatrics, 23, 764771. doi:10.1017/S1041610210002164 CrossRefGoogle ScholarPubMed
Naveh-Benjamin, M., Craik, F.I.M. (1995). Memory for context and its use in item memory: Comparisons of younger and older persons. Psychology and Aging, 10, 284293.CrossRefGoogle ScholarPubMed
Naveh-Benjamin, M., Hussain, Z., Guez, J., Bar-On, M. (2003). Adult age differences in episodic memory: Further support for an associative deficit hypothesis. Journal of Experimental Psychology: Learning, Memory, and Cognition, 29, 826837. doi:10.1037/0278-7393.29.5.826 Google ScholarPubMed
Nelson, H.E. (1976). A modified card sorting test sensitive to frontal lobe damage. Cortex, 12, 313324.CrossRefGoogle Scholar
Neuner, I., Stöcker, T., Kellermann, T., Kircher, T., Zilles, K., Schneider, F., Shah, N.J. (2007). Wechsler Memory Scale Revised Edition: Neural correlates of the visual paired associates subtest adapted for fMRI. Brain Research, 1177, 6678. doi:10.1016/j.brainres.2007.07.096 CrossRefGoogle ScholarPubMed
Oosterman, J.M., Oosterveld, S., Olde-Rikkert, M.G., Claassen, J.A., Kessels, R.P.C. (2012). Medial temporal lobe atrophy relates to executive dysfunction in Alzheimer's disease. International Psychogeriatrics, 24, 14741482. doi:10.1017/S1041610212000506 CrossRefGoogle ScholarPubMed
Oosterman, J.M., Vogels, R.L.C., van Harten, B., Gouw, A.A., Poggesi, A., Scheltens, P., Scherder, E.J.A. (2010). Assessing mental flexibility: Neuroanatomical and neuropsychological correlates of the Trail Making Test in elderly people. The Clinical Neuropsychologist, 24, 203219. doi:10.1080/13854040903482848 CrossRefGoogle ScholarPubMed
Oosterman, J.M., Vogels, R.L.C., van Harten, B., Gouw, A.A., Scheltens, P., Weinstein, H.C., Scherder, E.J.A. (2008). The role of white matter hyperintensities and medial temporal lobe atrophy in age-related executive dysfunctioning. Brain and Cognition, 68, 128133. doi:10.1016/j.bandc.2008.03.006 CrossRefGoogle ScholarPubMed
Osborne, J. (2002). Notes on the use of data transformations. Practical Assessment, Research & Evaluation, 8, Retrieved from http://ericae.net/pare/getvn.asp?v=8&n=6 Google Scholar
Paolo, A.M., Axelrod, B.N., Tröster, A.I., Blackwell, K.T., Koller, W.C. (1996). Utility of a Wisconsin Card Sorting Test short form in persons with Alzheimer's and Parkinson's disease. Journal of Clinical and Experimental Neuropsychology , 18, 892897. doi:10.1080/01688639608408310 CrossRefGoogle ScholarPubMed
Salthouse, T.A. (2009). When does age-related cognitive decline begin? Neurobiology of Aging, 30, 507514. doi:10.1016/j.neurobiolaging.2008.09.023 CrossRefGoogle ScholarPubMed
Salthouse, T.A. (2011). Neuroanatomical substrates of age-related cognitive decline. Psychological Bulletin, 137, 753784. doi:10.1037/a0023262 CrossRefGoogle ScholarPubMed
Sekuler, R., Kahana, M.J., McLaughlin, C., Golomb, J., Wingfield, A. (2005). Preservation of episodic visual recognition memory in aging. Experimental Aging Research , 31, 113. doi:10.1080/03610730590882800 CrossRefGoogle ScholarPubMed
Stuss, D.T., Bisschop, S.M., Alexander, M.P., Levine, B., Katz, D., Izukawa, D. (2001). The Trail Making Test: A study in focal lesion patients. Psychological Assessment, 13, 230239. doi:10.1037/1040-3590.13.2.230 CrossRefGoogle ScholarPubMed
Stuss, D.T., Floden, D., Alexander, M.P., Levine, B., Katz, D. (2001). Stroop performance in focal lesion patients: Dissociation of processes and frontal lobe lesion location. Neuropsychologia, 39, 771786. doi:10.1016/S0028-3932(01)00013-6 CrossRefGoogle ScholarPubMed
Takahashi, H., Kato, M., Hayashi, M., Okubo, Y., Takano, A., Ito, H., Suhara, T. (2007). Memory and frontal lobe functions; possible relations with dopamine D2 receptors in the hippocampus. Neuroimage, 34, 16431649. doi:10.1016/j.neuroimage.2006.11.008 CrossRefGoogle ScholarPubMed
Takahashi, H., Kato, M., Takano, H., Arakawa, R., Okumura, M., Otsuka, T., Suhara, T. (2008). Differential contributions of prefrontal and hippocampal dopamine D(1) and D(2) receptors in human cognitive functions. Journal of Neuroscience, 28, 12032120328. doi:0.1523/JNEUROSCI.3446-08.2008 CrossRefGoogle Scholar
Van der Elst, W., van Boxtel, M.P., van Breukelen, G.J., Jolles, J. (2005). Rey's verbal learning test: Normative data for 1855 healthy participants aged 24–81 years and the influence of age, sex, education, and mode of presentation. Journal of the International Neuropsychological Society, 11, 290302. doi:10.1017/S1355617705050344 CrossRefGoogle ScholarPubMed
Van der Elst, W., Van Boxtel, M.P., Van Breukelen, G.J., Jolles, J. (2006). The Stroop color-word test: Influence of age, sex, and education; and normative data for a large sample across the adult age range. Assessment, 13, 6279. doi:10.1177/1073191105283427 CrossRefGoogle ScholarPubMed
Vaughan, L., Giovanello, K. (2010). Executive function in daily life: Age-related influences of executive processes on instrumental activities of daily living. Psychology and Aging, 25, 343355. doi:10.1037/a0017729 CrossRefGoogle ScholarPubMed
Wechsler, D. (1987). Wechsler Memory Scale-Revised. New York: Psychological Corporation.Google Scholar
Wechsler, D. (2000). WAIS-III Nederlandstalige Bewerking. Technische Handleiding. Lisse: Swets & Zeitlinger.Google Scholar