Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T12:26:32.193Z Has data issue: false hasContentIssue false

Rule violation errors are associated with right lateral prefrontal cortex atrophy in neurodegenerative disease

Published online by Cambridge University Press:  01 May 2009

KATHERINE L. POSSIN*
Affiliation:
Department of Neurology, University of California San Francisco, San Francisco, California
SIMONA M. BRAMBATI
Affiliation:
Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal, Montréal, Canada
HOWARD J. ROSEN
Affiliation:
Department of Neurology, University of California San Francisco, San Francisco, California
JULENE K. JOHNSON
Affiliation:
Department of Neurology, University of California San Francisco, San Francisco, California
JUDY PA
Affiliation:
Department of Neurology, University of California San Francisco, San Francisco, California
MICHAEL W. WEINER
Affiliation:
Department of Neurology, University of California San Francisco, San Francisco, California
BRUCE L. MILLER
Affiliation:
Department of Neurology, University of California San Francisco, San Francisco, California
JOEL H. KRAMER
Affiliation:
Department of Neurology, University of California San Francisco, San Francisco, California
*
*Correspondence and reprint requests to: Katherine L. Possin, 350 Parnassus Ste. 905, San Francisco, California 94143-1207. E-mail: [email protected]

Abstract

Good cognitive performance requires adherence to rules specific to the task at hand. Patients with neurological disease often make rule violation (RV) errors, but the anatomical basis for RV during cognitive testing remains debated. The present study examined the neuroanatomical correlates of RV errors made on tests of executive functioning in 166 subjects diagnosed with neurodegenerative disease or as neurologically healthy. Specifically, RV errors were voxel-wisely correlated with gray matter volume derived from high-definition magnetic resonance images using voxel-based morphometry implemented in SPM2. Latent variable analysis showed that RV errors tapped a unitary construct separate from repetition errors. This analysis was used to generate factor scores to represent what is common among RV errors across tests. The extracted RV factor scores correlated with tissue loss in the lateral middle and inferior frontal gyri and the caudate nucleus bilaterally. When a more stringent control for global cognitive functioning was applied using Mini Mental State Exam scores, only the correlations with the right lateral prefrontal cortex (PFC) remained significant. These data underscore the importance of right lateral PFC in behavioral monitoring and highlight the potential of RV error assessment for identifying patients with damage to this region. (JINS, 2009, 15, 354–364.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, M.P., Stuss, D.T., Picton, T., Shallice, T., & Gillingham, S. (2007). Regional frontal injuries cause distinct impairments in cognitive control. Neurology, 68(18), 15151523.CrossRefGoogle ScholarPubMed
American Psychiatric Association. (1994). Diagnostic and Statistical Manual of Mental Disorders—(DSM-IV). Washington, D.C.Google Scholar
Amici, S., Brambati, S.M., Wilkins, D.P., Ogar, J., Dronkers, N.L., Miller, B.L., & Gorno-Tempini, M.L. (2007). Anatomical correlates of sentence comprehension and verbal working memory in neurodegenerative disease. Journal of Neuroscience, 27(23), 62826290.CrossRefGoogle ScholarPubMed
Aron, A.R., Robbins, T.W., & Poldrack, R.A. (2004). Inhibition and the right inferior frontal cortex. Trends in Cognitive Sciences, 8(4), 170177.CrossRefGoogle ScholarPubMed
Ashburner, J. & Friston, K.J. (2000). Voxel-based morphometry—The methods. NeuroImage, 11(6 Pt 1), 805821.CrossRefGoogle ScholarPubMed
Binetti, G., Magni, E., Padovani, A., Cappa, S.F., Bianchetti, A., & Trabucchi, M. (1996). Executive dysfunction in early Alzheimer’s disease. Journal of Neurology, Neurosurgery, and Psychiatry 60(1), 9193.CrossRefGoogle ScholarPubMed
Bonelli, R.M. & Cummings, J.L. (2007). Frontal-subcortical circuitry and behavior. Dialogues in Clinical Neuroscience, 9(2), 141151.CrossRefGoogle ScholarPubMed
Boxer, A.L., Geschwind, M.D., Belfor, N., Gorno-Tempini, M.L., Schauer, G.F., Miller, B.L., Weiner, M.W., & Rosen, H.J. (2006). Patterns of brain atrophy that differentiate corticobasal degeneration syndrome from progressive supranuclear palsy. Archives of Neurology, 63(1), 8186.CrossRefGoogle ScholarPubMed
Brooks, B.R., Miller, R.G., Swash, M., & Munsat, T.L. (2000). El Escorial revisited: Revised criteria for the diagnosis of amyotrophic lateral sclerosis. Amyotrophic Lateral Sclerosis and Other Motor Neuron Disorders, 1(5), 293299.CrossRefGoogle Scholar
Buchsbaum, B.R., Greer, S., Chang, W.L., & Berman, K.F. (2005). Meta-analysis of neuroimaging studies of the Wisconsin card-sorting task and component processes. Human Brain Mapping, 25(1), 3545.CrossRefGoogle ScholarPubMed
Bunge, S.A., Ochsner, K.N., Desmond, J.E., Glover, G.H., & Gabrieli, J.D. (2001). Prefrontal regions involved in keeping information in and out of mind. Brain, 124(Pt 10), 20742086.CrossRefGoogle Scholar
Cahn-Weiner, D.A., Boyle, P.A., & Malloy, P.F. (2002). Tests of executive function predict instrumental activities of daily living in community-dwelling older individuals. Applied Neuropsychology, 9(3), 187191.CrossRefGoogle ScholarPubMed
Carey, C.L., Woods, S.P., Damon, J., Halabi, C., Dean, D., Delis, D.C., Miller, B.L., & Kramer, J.H. (2008). Discriminant validity and neuroanatomical correlates of rule monitoring in frontotemporal dementia and Alzheimer’s disease. Neuropsychologia, 46(4), 10811087.CrossRefGoogle ScholarPubMed
Cato, M.A., Delis, D.C., Abildskov, T.J., & Bigler, E. (2004). Assessing the elusive cognitive deficits associated with ventromedial prefrontal damage: A case of a modern-day Phineas Gage. Journal of the International Neuropsychological Society, 10(3), 453465.CrossRefGoogle Scholar
Chan, F., Armstrong, I.T., Pari, G., Riopelle, R.J., & Munoz, D.P. (2005). Deficits in saccadic eye-movement control in Parkinson’s disease. Neuropsychologia, 43(5), 784796.CrossRefGoogle ScholarPubMed
Chang, J.L., Lomen-Hoerth, C., Murphy, J., Henry, R.G., Kramer, J.H., Miller, B.L., & Gorno-Tempini, M.L. (2005). A voxel-based morphometry study of patterns of brain atrophy in ALS and ALS/FTLD. Neurology, 65(1), 7580.CrossRefGoogle ScholarPubMed
Chikazoe, J., Konishi, S., Asari, T., Jimura, K., & Miyashita, Y. (2007). Activation of right inferior frontal gyrus during response inhibition across response modalities. Journal of Cognitive Neuroscience, 19(1), 6980.CrossRefGoogle ScholarPubMed
Clark, L., Blackwell, A.D., Aron, A.R., Turner, D.C., Dowson, J., Robbins, T.W., & Sahakian, B.J. (2007). Association between response inhibition and working memory in adult ADHD: A link to right frontal cortex pathology? Biological Psychiatry, 61(12), 13951401.CrossRefGoogle ScholarPubMed
Comrey, A.L. & Lee, H.B. (1992). A first course in factor analysis. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Courtney, S.M. (2004). Attention and cognitive control as emergent properties of information representation in working memory. Cognitive, Affective & Behavioral Neuroscience, 4(4), 501516.CrossRefGoogle ScholarPubMed
Culbertson, W.C., Moberg, P.J., Duda, J.E., Stern, M.B., & Weintraub, D. (2004). Assessing the executive function deficits of patients with Parkinson’s disease: Utility of the Tower of London-Drexel. Assessment, 11(1), 2739.CrossRefGoogle ScholarPubMed
Dao-Castellana, M.H., Samson, Y., Legault, F., Martinot, J.L., Aubin, H.J., Crouzel, C., Feldman, L., Barraucand, D., Rancurel, G., Feline, A., & Syrota, A. (1998). Frontal dysfunction in neurologically normal chronic alcoholic subjects: Metabolic and neuropsychological findings. Psychological Medicine, 28(5), 10391048.CrossRefGoogle ScholarPubMed
de Fockert, J.W., Rees, G., Frith, C.D., & Lavie, N. (2001). The role of working memory in visual selective attention. Science, 291(5509), 18031806.CrossRefGoogle ScholarPubMed
Delis, D.C, Jacobson, M., Bondi, M.W., Hamilton, J.M., & Salmon, D.P. (2003). The myth of testing construct validity using factor analysis or correlations with normal or mixed clinical populations: Lessons from memory assessment. Journal of the International Neuropsychological Society, 9(6) 936946.CrossRefGoogle ScholarPubMed
Delis, D., Kaplan, E.B., & Kramer, J. (2001). The Delis-Kaplan Executive Function System. San Antonio, TX: The Psychological Corporation.Google Scholar
Donohue, S.E., Wendelken, C., & Bunge, S.A. (2008). Neural correlates of preparation for action selection as a function of specific task demands. Journal of Cognitive Neuroscience, 20(4), 694706.CrossRefGoogle ScholarPubMed
Fielding, J., Georgiou-Karistianis, N., & White, O. (2006). The role of the basal ganglia in the control of automatic visuospatial attention. Journal of the International Neuropsychological Society, 12(5), 657667.CrossRefGoogle ScholarPubMed
Filoteo, J.V., Delis, D.C., Salmon, D.P., Demadura, T., Roman, M.J., & Shults, C.W.(1997). An examination of the nature of attentional deficits in patients with Parkinson’s disease: Evidence from a spatial orienting task. Journal of the International Neuropsychological Society 3(4) 337347CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). “Mini-mental state”. A practical method for grading the mental state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle ScholarPubMed
Funahashi, S., Bruce, C.J., & Goldman-Rakic, P.S. (1993). Dorsolateral prefrontal lesions and oculomotor delayed-response performance: Evidence for mnemonic “scotomas”. Journal of Neuroscience, 13(4), 14791497.CrossRefGoogle ScholarPubMed
Gazzaley, A., Cooney, J.W., Rissman, J., & D’Esposito, M. (2005). Top-down suppression deficit underlies working memory impairment in normal aging. Nature Neuroscience, 8(10), 12981300.CrossRefGoogle ScholarPubMed
Gazzaley, A., Rissman, J., Cooney, J., Rutman, A., Seibert, T., Clapp, W., & D’Esposito, M. (2007). Functional interactions between prefrontal and visual association cortex contribute to top-down modulation of visual processing. Cerebral Cortex, 17(Suppl 1), i125i135.CrossRefGoogle ScholarPubMed
Good, C.D., Johnsrude, I., Ashburner, J., Henson, R.N., Friston, K.J., & Frackowiak, R.S. (2001a). Cerebral asymmetry and the effects of sex and handedness on brain structure: A voxel-based morphometric analysis of 465 normal adult human brains. NeuroImage, 14(3), 685700.CrossRefGoogle ScholarPubMed
Good, C.D., Johnsrude, I.S., Ashburner, J., Henson, R.N., Friston, K.J., & Frackowiak, R.S. (2001b). A voxel-based morphometric study of ageing in 465 normal adult human brains. NeuroImage, 14(1 Pt 1), 2136.CrossRefGoogle ScholarPubMed
Henik, A., Singh, J., Beckley, D.J., & Rafal, R.D. (1993). Disinhibition of automatic word reading in Parkinson’s disease. Cortex, 29(4), 589599.CrossRefGoogle ScholarPubMed
Hester, R., Murphy, K., & Garavan, H. (2004). Beyond common resources: The cortical basis for resolving task interference. NeuroImage, 23(1), 202212.CrossRefGoogle ScholarPubMed
Jurado, M.B. & Rosselli, M. (2007). The elusive nature of executive functions: A review of our current understanding. Neuropsychology Review, 17(3), 213233.CrossRefGoogle ScholarPubMed
Kaplan, E. (1988). A process approach to neuropsychological assessment. In Boll, T. & Bryant, B. (Eds.), Clinical neuropsychology and brain function: Research, measurement, and practice (pp. 129167). Washington, DC: American Psychological Association.Google Scholar
Kramer, J.H., Jurik, J., Sha, S.J., Rankin, K.P., Rosen, H.J., Johnson, J.K., & Miller, B.L. (2003). Distinctive neuropsychological patterns in frontotemporal dementia, semantic dementia, and Alzheimer disease. Cognitive and Behavioral Neurology, 16(4), 211218.CrossRefGoogle ScholarPubMed
Kramer, J.H., Nelson, A., Johnson, J.K., Yaffe, K., Glenn, S., Rosen, H.J., & Miller, B.L. (2006). Multiple cognitive deficits in amnestic mild cognitive impairment. Dementia and Geriatric Cognitive Disorders, 22(4), 306311.CrossRefGoogle ScholarPubMed
Lawrence, V., Houghton, S., Douglas, G., Durkin, K., Whiting, K., & Tannock, R. (2004). Executive function and ADHD: A comparison of children’s performance during neuropsychological testing and real-world activities. Journal of Attention Disorders, 7(3), 137149.CrossRefGoogle ScholarPubMed
Lezak, M.D., Howieson, D.B., Loring, D.W., Loring, D.W., Hannay, H.J., & Fischer, J.S. (2004). Neuropsychological assessment (4th ed.). Oxford: Oxford University Press.Google Scholar
Litvan, I., Agid, Y., Calne, D., Campbell, G., Dubois, B., Duvoisin, R.C., Goetz, C.G., Golbe, L.I., Grafman, J., Growdon, J.H., Hallett, M., Jankovic, J., Quinn, N.P., Tolosa, E., & Zee, D.S. (1996). Clinical research criteria for the diagnosis of progressive supranuclear palsy (Steele-Richardson-Olszewski syndrome): Report of the NINDS-SPSP international workshop. Neurology, 47(1), 19.CrossRefGoogle ScholarPubMed
Litvan, I., Bhatia, K.P., Burn, D.J., Goetz, C.G., Lang, A.E., McKeith, I., Quinn, N., Sethi, K.D., Shults, C., Wenning, G.K., & Movement Disorders Society Scientific Issues Committee. (2003). Movement Disorders Society Scientific Issues Committee report: SIC Task Force appraisal of clinical diagnostic criteria for Parkinsonian disorders. Movement Disorders, 18(5), 467486.CrossRefGoogle ScholarPubMed
MacDonald, A.W. 3rd, Cohen, J.D., Stenger, V.A., & Carter, C.S. (2000). Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science, 288(5472), 18351838.CrossRefGoogle ScholarPubMed
McKeith, I.G. (2006). Consensus guidelines for the clinical and pathologic diagnosis of dementia with Lewy bodies (DLB): Report of the Consortium on DLB International Workshop. Journal of Alzheimer’s Disease, 9(3 Suppl), 417423.CrossRefGoogle Scholar
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., & Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer’s disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology, 34(7), 939944.CrossRefGoogle ScholarPubMed
Miller, E.K. (2000). The prefrontal cortex and cognitive control. Nature Reviews. Neuroscience, 1(1), 5965.CrossRefGoogle ScholarPubMed
Mitchell, J.P., Macrae, C.N., & Gilchrist, I.D. (2002). Working memory and the suppression of reflexive saccades. Journal of Cognitive Neuroscience, 14(1), 95103.CrossRefGoogle ScholarPubMed
Morris, J.C. (1993). The Clinical Dementia Rating (CDR): Current version and scoring rules. Neurology, 43(11), 24122414.CrossRefGoogle ScholarPubMed
Mychack, P., Kramer, J.H., Boone, K.B., & Miller, B.L. (2001). The influence of right frontotemporal dysfunction on social behavior in frontotemporal dementia. Neurology, 56(11 Suppl 4), S11S15.CrossRefGoogle ScholarPubMed
Neary, D., Snowden, J.S., Gustafson, L., Passant, U., Stuss, D., Black, S., Freedman, M., Kertesz, A., Robert, P.H., Albert, M., Boone, K., Miller, B.L., Cummings, J., & Benson, D.F. (1998). Frontotemporal lobar degeneration: A consensus on clinical diagnostic criteria. Neurology, 51(6), 15461554.CrossRefGoogle ScholarPubMed
Osher, J.E., Wicklund, A.H., Rademaker, A., Johnson, N., & Weintraub, S. (2007). The mini-mental state examination in behavioral variant frontotemporal dementia and primary progressive aphasia. American Journal of Alzheimer’s Disease and Other Dementia’s 22(6) 468-473.CrossRefGoogle ScholarPubMed
Pa, J., Boxer, A.L., Freeman, K., Kramer, J.H., Miller, B.L., Chao, L.L., Gazzaley, A., Weiner, M.W., Neuhaus, J., & Johnson, J.K. (in press). Clinical-neuroimaging characteristics of dysexecutive mild cognitive impairment. Annals of Neurology.Google Scholar
Petersen, R.C., Smith, G.E., Waring, S.C., Ivnik, R.J., Tangalos, E.G., & Kokmen, E. (1999). Mild cognitive impairment: Clinical characterization and outcome. Archives of Neurology, 56(3), 303308.CrossRefGoogle ScholarPubMed
Phukan, J., Pender, N.P., & Hardiman, O. (2007). Cognitive impairment in amyotrophic lateral sclerosis. Lancet Neurology, 6(11), 9941003.CrossRefGoogle ScholarPubMed
Pierrot-Deseilligny, C., Muri, R.M., Ploner, C.J., Gaymard, B., Demeret, S., & Rivaud-Pechoux, S. (2003). Decisional role of the dorsolateral prefrontal cortex in ocular motor behaviour. Brain, 126(Pt 6), 14601473.CrossRefGoogle ScholarPubMed
Pillon, B., Blin, J., Vidailhet, M., Deweer, B., Sirigu, A., Dubois, B., & Agid, Y. (1995). The neuropsychological pattern of corticobasal degeneration: Comparison with progressive supranuclear palsy and Alzheimer’s disease. Neurology, 45(8), 14771483.CrossRefGoogle ScholarPubMed
Possin, K.L., Filoteo, J.V., Roesch, S.C., Zizak, V., Rilling, L.M., & Davis, J.D. (2005). Is a perseveration a perseveration? An evaluation of cognitive error types in patients with subcortical pathology. Journal of Clinical and Experimental Neuropsychology, 27(8), 953966.CrossRefGoogle ScholarPubMed
Possin, K.L., Filoteo, J.V., Song, D.D., & Salmon, D.P. (2008). Spatial and object working memory deficits in Parkinson’s disease are due to impairment in different underlying processes. Neuropsychology, 22(5), 585595.CrossRefGoogle ScholarPubMed
Possin, K.L., Filoteo, J.V., Song, D.D., & Salmon, D.P. (in press). Space-based but not object-based inhibition of return is impaired in Parkinson’s disease. Neuropsychologia.Google Scholar
Rabinovici, G.D., Seeley, W.W., Kim, E.J., Gorno-Tempini, M.L., Rascovsky, K., Pagliaro, T., Allison, S.C., Halabi, C., Kramer, J.H., Johnson, J.K., Weiner, M.W., Forman, M.S., Trojanowski, J.Q., Dearmond, S.J., Miller, B.L., & Rosen, H.J. (2007). Distinct MRI atrophy patterns in autopsy-proven Alzheimer’s disease and frontotemporal lobar degeneration. American Journal of Alzheimer’s Disease and Other Dementias, 22(6), 474488.CrossRefGoogle ScholarPubMed
Rankin, K.P., Gorno-Tempini, M.L., Allison, S.C., Stanley, C.M., Glenn, S., Weiner, M.W., & Miller, B.L. (2006). Structural anatomy of empathy in neurodegenerative disease. Brain, 129(Pt 11), 29452956.CrossRefGoogle ScholarPubMed
Rascovsky, K., Salmon, D.P., Lipton, A.M., Leverenz, J.B., DeCarli, C., Jagust, W.J., et al. (2005). Rate of progression differs in frontotemporal dementia and Alzheimer disease. Neurology, 65(3), 397403.CrossRefGoogle ScholarPubMed
Reitan, R. (1993). The Halstead-Reitan Neuropsychological Test Battery: Theory and clinical interpretation. Tucson, AZ: Neuropsychology Press.Google Scholar
Rosen, H.J., Allison, S.C., Schauer, G.F., Gorno-Tempini, M.L., Weiner, M.W., & Miller, B.L. (2005). Neuroanatomical correlates of behavioural disorders in dementia. Brain, 128(Pt 11), 26122625.CrossRefGoogle ScholarPubMed
Rosen, H.J., Gorno-Tempini, M.L., Goldman, W.P., Perry, R.J., Schuff, N., Weiner, M., Feiwell, R., Kramer, J.H., & Miller, B.L. (2002). Patterns of brain atrophy in frontotemporal dementia and semantic dementia. Neurology, 58(2), 198208.CrossRefGoogle ScholarPubMed
Simmonds, D.J., Pekar, J.J., & Mostofsky, S.H. (2008). Meta-analysis of Go/No-go tasks demonstrating that fMRI activation associated with response inhibition is task-dependent. Neuropsychologia, 46(1), 224232.CrossRefGoogle ScholarPubMed
Stokholm, J., Vogel, A., Gade, A., & Waldemar, G. (2006). Heterogeneity in executive impairment in patients with very mild Alzheimer’s disease. Dementia and Geriatric Cognitive Disorders, 22(1), 5459.CrossRefGoogle ScholarPubMed
Stuss, D.T., Bisschop, S.M., Alexander, M.P., Levine, B., Katz, D., & Izukawa, D. (2001). The Trail Making Test: A study in focal lesion patients. Psychological Assessment, 13(2), 230239.CrossRefGoogle ScholarPubMed
Sullivan, E.V. & Sagar, H.J. (1991). Double dissociation of short-term and long-term memory for nonverbal material in Parkinson’s disease and global amnesia. A further analysis. Brain, 114(Pt 2), 893906.CrossRefGoogle ScholarPubMed
Tabachnick, B.G. & Fidell, L.S. (2001). Using multivariate statistics (4th ed.). Needham Heights, MA: Allyn and Bacon.Google Scholar
Teri, L., Hughes, J.P., & Larson, E.B. (1990). Cognitive deterioration in Alzheimer’s disease: Behavioral and health factors. Journal of Gerontology, 45(2), P58P63.CrossRefGoogle ScholarPubMed
Testa, C., Laakso, M.P., Sabattoli, F., Rossi, R., Beltramello, A., Soininen, H., & Frisoni, G.B. (2004). A comparison between the accuracy of voxel-based morphometry and hippocampal volumetry in Alzheimer’s disease. Journal of Magnetic Resonance Imaging, 19(3), 274282.CrossRefGoogle ScholarPubMed
Tranel, D., Bechara, A., & Denburg, N.L. (2002). Asymmetric functional roles of right and left ventromedial prefrontal cortices in social conduct, decision-making, and emotional processing. Cortex, 38(4), 589612.CrossRefGoogle ScholarPubMed
Viskontas, I.V., Possin, K.L., & Miller, B.L. (2007). Symptoms of frontotemporal dementia provide insights into orbitofrontal cortex function and social behavior. Annals of the New York Academy of Sciences, 1121, 528545.CrossRefGoogle ScholarPubMed
Wallis, J.D., Anderson, K.C., & Miller, E.K. (2001). Single neurons in prefrontal cortex encode abstract rules. Nature, 411(6840), 953956.CrossRefGoogle ScholarPubMed
Wittenberg, D., Possin, K.L., Rascovsky, K., Rankin, K.P., Miller, B.L., & Kramer, J.H. (2008). The early neuropsychological and behavioral characteristics of frontotemporal dementia. Neuropsychology Review, 18(1), 91102.CrossRefGoogle ScholarPubMed