Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-25T16:36:22.979Z Has data issue: false hasContentIssue false

Resilience in Extremely Preterm/Extremely Low Birth Weight Kindergarten Children

Published online by Cambridge University Press:  03 May 2019

H. Gerry Taylor*
Affiliation:
The Research Institute at Nationwide Children’s Hospital, Center for Biobehavioral Health, and Department of Pediatrics, The Ohio State University, Columbus, Ohio Department of Pediatrics, Case Western Reserve University, and Rainbow Babies & Children’s Hospital, University Hospitals Cleveland Medical Center, Cleveland, Ohio
Nori Minich
Affiliation:
Department of Pediatrics, Case Western Reserve University, and Rainbow Babies & Children’s Hospital, University Hospitals Cleveland Medical Center, Cleveland, Ohio
Mark Schluchter
Affiliation:
Department of Population and Quantitative Health Sciences, Case Western Reserve University, Cleveland, Ohio
Kimberly Andrews Espy
Affiliation:
University of Texas at San Antonio, San Antonio, Texas
Nancy Klein
Affiliation:
Department of Teacher Education, Cleveland State University, Cleveland, Ohio
*
Correspondence and reprint requests to: H. Gerry Taylor, Nationwide Children’s Hospital, 700 Children’s Drive FB3355, Columbus, OH 43205-2696. E-mail: [email protected]

Abstract

Objectives: Research on developmental outcomes of preterm birth has traditionally focused on adverse effects. This study investigated the prevalence and correlates of resilience in 146 extremely preterm/extremely low birth weight (EPT/ELBW) children (gestational age <28 weeks and/or birth weight <1000 g) attending kindergarten and 111 term-born normal birth weight (NBW) controls. Methods: Adaptive competence (i.e., “resilience” in the EPT/ELBW group) was defined by scores within grade expectations on achievement tests and the absence of clinically elevated parent ratings of child behavior problems. The “adaptive” children who met these criteria were compared to the “maladaptive” children who did not on child and family characteristics. Additional analyses were conducted to assess the conjoint effects of group (ELBW vs. NBW) and family factors on adaptive competence. Results: A substantial minority of the EPT/ELBW group (45%) were competent compared to a majority of NBW controls (73%), odds ratio (95% confidence interval)=0.26 (0.15, 0.45), p<.001. Adaptive competence was associated with higher cognitive skills, more favorable ratings of behavior and learning not used to define adaptive competence, and more advantaged family environments in both groups, as well as with a lower rate of earlier neurodevelopmental impairment in the EPT/ELBW group. Higher socioeconomic status and more favorable proximal home environments were associated with competence independent of group, and group differences in competence persisted across the next two school years. Conclusions: The findings document resilience in kindergarten children with extreme prematurity and highlight the role of environmental factors as potential influences on outcome. (JINS, 2019, 25, 362–374)

Type
Regular Research
Copyright
Copyright © The International Neuropsychological Society, 2019. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aarnousde-Moens, C. S. H., Weisglas-Kuperus, N., van Goudoever, J. B., & Oosterlaan, J. (2009). Meta-analysis of neurobehavioral outcomes in very preterm and/or very low birth weight children. Pediatrics, 124, 7177128.CrossRefGoogle Scholar
Achenbach, T. M., & Rescorla, L. A. Manual for the ASEBA school-age forms and profiles. Burlington, VT: University of Vermont, Research Center for Children, Youth, & Families; 2001.Google Scholar
Andreias, L., Borawski, E., Schluchter, M., Taylor, H. G., Klein, N., & Hack, M. (2010). Neighborhood influences on the academic achievement of extremely low birth weight children. Journal of Pediatric Psychology, 35(3), 275283.CrossRefGoogle ScholarPubMed
Aylward, G. P. (2005). Neurodevelopmental outcomes of infants born prematurely. Journal of Developmental and Behavioral Pediatrics, 26, 427440.CrossRefGoogle ScholarPubMed
Barnett, M., Tusor, N., Ball, G., Chew, A., Falconer, S., Aljabar, P., … Counsell, S. J. (2018). Exploring the multiple-hit theory of preterm white matter damage using diffusion MRI. NeuroImage: Clinical, 17, 596606.CrossRefGoogle Scholar
Baron, I. S., Erickson, K., Ahronovich, M. D., Baker, R., & Litman, F. R. (2011). Neuropsychological and behavioral outcomes of extremely low birth weight at age three. Developmental Neuropsychology, 36, 521.CrossRefGoogle ScholarPubMed
Bayley, N. (1993). Bayley Scales of Infant Development, 2nd ed. San Antonio, TX: Psychological Corporation.Google Scholar
Beery, K. E., & Beery, N. A. (2004). The Beery-Buktenica Development Test of Visual-Motor Integration: Beery VMI, administration, scoring, and teaching manual (5th Ed.). Minneapolis, MN: NCS Pearson.Google Scholar
Bradley, R. H., Caldwell, B. M., Rock, S. L., Hamrick, H. M., & Harris, P. (1988). Home observations for measurement of the environment: Development of home inventory for use with families having children 6 to 10 years old. Contemporary Educational Psychology, 13, 5871.CrossRefGoogle Scholar
Bradley, R. H., & Corwyn, R. F. (2002). Socioeconomic status and child development. Annual Review of Psychology, 53, 371399.CrossRefGoogle ScholarPubMed
Bradley, R. H., Whiteside, L., Mundfrom, D. J., Casey, P. H., Kelleher, K. J., & Pope, S. K. (1994). Contribution to early intervention and early caregiving experiences to resilience in low- birthweight, premature children living in poverty. Journal of Clinical Psychology, 23, 425434.Google Scholar
Bruininks, R. H., & Bruininks, B. D. (2005). BOT-2: Bruininks-Oseretsky Test of Motor Proficiency (2nd ed.). Circle Pines, MN: American Guidance Service.Google Scholar
Bryck, R. L., & Fisher, P. A. (2012). Training the brain: Practical applications of neural plasticity from the intersection of cognitive neuroscience, developmental psychology, and prevention science. American Psychologist, 67(2), 87100.CrossRefGoogle ScholarPubMed
Brydges, C. R., Landes, J. K., Reid, C. L., Campbell, C., French, N., & Anderson, M. (2018). Cognitive outcomes in children and adolescents born very preterm: A meta-analysis. Developmental Medicine and Child Neurology, 60(15), 452468.CrossRefGoogle ScholarPubMed
Burchinal, M., Roberts, J. E., Zeisel, S. A., Hennon, E. A., & Hooper, S. (2006). Social risk and protective child, parenting, and child care factors in early elementary school years. Parenting: Science and Practice, 6(1), 79113.CrossRefGoogle Scholar
Cicchetti, D. (2013). Annual research review: Resilient functioning in maltreated children – past, present, and future perspectives. Journal of Child Psychology and Psychiatry, 54(4), 402422.CrossRefGoogle ScholarPubMed
Clark, C. A. C., & Woodward, L. J. (2015). Relation of perinatal risk and early parenting to executive control at the transition to school. Developmental Science, 18(4), 525542.CrossRefGoogle Scholar
Clark, C. A. C., Woodward, L. J., Horwood, L. J., & Moor, S. (2008). Development of emotional and behavioral regulation in children born extremely preterm and very preterm: Biological and social influences. Child Development, 79(5), 14441462.CrossRefGoogle ScholarPubMed
Cohen, J. (1992). A power primer. Psychological Bulletin, 112, 155159.CrossRefGoogle ScholarPubMed
Derogatis, L., & Melisaratos, N. (1983). The brief symptom inventory: An introductory report. Psychological Medicine, 13, 595605.CrossRefGoogle Scholar
Diggle, P. J., Liang, K-Y., & Zeger, S. L. (1994). Analysis of longitudinal data. New York: Oxford University Press.Google Scholar
Ebesutani, C., Bernstein, A., Nakamura, B. J., Chorpita, B. F., Higa-McMillan, C. K., & Weisz, J. R. (2010). Concurrent validity of the Child Behavior Checklist DSM-Oriented scales: Correspondence with SDM diagnoses and comparison to syndrome scales. Journal of Psychopathology and Behavioral Assessment, 32, 373384.CrossRefGoogle Scholar
Farah, M. J. (2017). The neuroscience of socioeconomic status: Correlates, causes, and consequences. Neuron, 96, 5671.CrossRefGoogle ScholarPubMed
Garfield, C. F., Karbownik, K., Murthy, K., Falciglia, G., Guryan, J., Figlio, D. N., Roth, J. (2017). Educational performance of children born prematurely. JAMA Pediatrics, 171(8), 764770.CrossRefGoogle ScholarPubMed
Gargus, R. A., Vohr, B. R., Tyson, J. E., High, P., Higgins, R. D., Wrage, L. A., & Poole, K. (2009). Unimpaired outcomes for extremely low birth weight infants at 18 to 22 months. Pediatrics, 124, 112121.CrossRefGoogle ScholarPubMed
Gerard, A. B. (1994). Parent-Child Relationship Inventory (PCRI): Manual. Los Angeles, CA: Western Psychological Services.Google Scholar
Gioia, G., Isquith, P. K., Guy, S. C., & Kenworthy, L. (2000). BRIEF – Behavior Rating Inventory of Executive Function, Professional manual. Odessa, FL: Psychological Assessment Resources; 2000.Google Scholar
Gonzalez, L. M., Anderson, V. A., Wood, S. J., Mitchell, A., & Harvey, A. S. (2007). The localization and lateralization of memory deficits in children with temporal lobe epilepsy. Epilepsia, 48,124132.CrossRefGoogle ScholarPubMed
Greenley, R. N., Taylor, H. G., Drotar, D., & Minich, N. M. (2007). Longitudinal relationships between early adolescent family functioning and youth adjustment: An examination of the moderating role of very low birth weight. Journal of Pediatric Psychology, 32(4), 453462.CrossRefGoogle ScholarPubMed
Griffin, E. A., & Morrison, F. J. (1997). The unique contribution of home literacy environment to differences in early literacy skills. Early Child Development and Care, 127–128, 233242.CrossRefGoogle Scholar
Gross, S. J., Mettelman, B. B., Dye, T. D., & Slagle, T. A. (2001). Impact of family structure and stability on academic outcome in preterm children at 10 years of age. Journal of Pediatrics, 138(2), 169175CrossRefGoogle Scholar
Hair, N. L., Hanson, J. L., Wolfe, B. L., & Pollack, S. D. (2015). Association of child poverty, brain development, and academic achievement. JAMA Pediatrics, 169(9), 822829.CrossRefGoogle ScholarPubMed
Hargrove, D. S., & O’Dell, S. (1999). Book review: Parent-Child Relationship Inventory (PCRI). Journal of Psychoeducational Assessment, 17, 167170.CrossRefGoogle Scholar
Hopp, C. A., & Baron, E. S. (2017). Birth at 22 gestational weeks: Case report of cognitive resilience. The Clinical Neuropsychologist, 31(2), 471486.CrossRefGoogle ScholarPubMed
Inder, T. E., Wells, S. J., Mogridge, N. B., Spencer, C., & Volpe, J. J. (2003). Defining the nature of the cerebral abnormalities in the premature infant: A qualitative magnetic resonance imaging study. Journal of Pediatrics, 143, 171179.CrossRefGoogle ScholarPubMed
Jacobson, J. L., & Jacobson, S. W. (1996). Methodological considerations in behavioral toxicology in infants and children. Developmental Psychology, 32(3), 390403.CrossRefGoogle Scholar
Jaekel, J., Pluess, M., Belsky, J., & Wolke, D. (2015). Effects of maternal sensitivity on low birth weight children’s academic achievement: A test of differential susceptibility versus diathesis stress. Journal of Child Psychology and Psychiatry, 56(6), 693701.CrossRefGoogle ScholarPubMed
Jaffe, S. R. (2007). Sensitive, stimulating caregiving predicts cognitive and behavioral resilience in neurodevelopmentally at-risk infants. Development and Psychopathology, 19, 631647.CrossRefGoogle Scholar
Johnson, S. (2007). Cognitive and behavioral outcomes following very preterm birth. Seminars in Fetal and Neonatal Medicine, 12, 363373.CrossRefGoogle ScholarPubMed
Johnson, S., Wolke, D., Hennessy, E., & Marlow, N. (2011). Educational outcomes in extremely preterm children: Neuropsychologic correlates and predictors of attainment. Developmental Neuropsychology, 336(1), 7495.CrossRefGoogle Scholar
Jolles, D. D., & Crone, E. A. (2012). Training the developing brain: A neurocognitive perspective. Frontiers in Human Neuroscience, 6(76), 113.CrossRefGoogle ScholarPubMed
Joseph, R. M., O’Shea, T. M., Allred, E. N., Heeren, T., & Kuban, K. K. (2017). Maternal educational status at birth, maternal educational advancement, and neurocognitive outcomes at age 10 years among children born extremely preterm. Pediatric Research, advance online publication 22 November. doi:10.1038/pr2017.267CrossRefGoogle Scholar
Lai, W. W., O’Mahony, M., & Mulligan, A. (2015). A telephone interview version of the middle childhood home observation measurement of the environment. Child: Care, Health and Development, 41(6), 11521160.Google ScholarPubMed
Landry, S. H., Smith, K. E., & Swank, P. R. (2006). Responsive parenting: Establishing early foundations for social, communication, and independent problem-solving skills. Developmental Psychology, 42(4), 627642.CrossRefGoogle ScholarPubMed
Linares, T. J., Singer, L. T., Kirchner, H. L., Short, E. J., Min, M. O., Hussey, P., & Minnes, S. (2006). Mental health outcomes of cocaine-exposed children at 6 years of age. Journal of Pediatric Psychology, 31(1), 8597.CrossRefGoogle Scholar
Litt, J., Taylor, H. G., Klein, N., & Hack, M. (2005). Learning disabilities in children with very low birthweight: Prevalence, neuropsychological correlates, and educational interventions. Journal of Learning Disabilities, 38, 130141.CrossRefGoogle ScholarPubMed
Luu, T. M., Vohr, B. R., Allan, W., Schneider, K. C., & Ment, L. R. (2011). Evidence for catch-up in cognition and receptive vocabulary among adolescents born very preterm. Pediatrics, 128(2), 313322.CrossRefGoogle ScholarPubMed
Luthar, S. S., Cicchetti, D., & Becker, B. (2000). The construct of resilience: A critical evaluation and guidelines for future work. Child Development, 71(3), 543562.CrossRefGoogle ScholarPubMed
Masten, A. S. (2001). Ordinary magic: Resilience processes in development. American Psychologist, 56(3), 227238.CrossRefGoogle ScholarPubMed
Masten, A. S. (2011). Resilience in children threatened by extreme adversity: Frameworks for research, practice, and translational synergy. Development and Psychopathology, 23, 493506.CrossRefGoogle ScholarPubMed
Masten, A. S. (2014). Ordinary magic: Resilience in development. New York: Guilford.Google Scholar
Masten, A. S., & Coatsworth, J. D. (1998). The developmental of competence in favorable and unfavorable environments: Lessons from research on successful children. American Psychologist, 53(2), 205220.CrossRefGoogle Scholar
Masten, A. S., Hubbard, J. J., Gest, S. D., Tellegen, A., Garmezy, N., & Ramirez, M. (1999). Competence in the context of adversity: Pathways to resilience and maladaptation from childhood to late adolescence. Development and Psychopathology, 11, 143169.CrossRefGoogle ScholarPubMed
Masten, A. S., Garmezy, N., Tellegen, A., Pellegrini, D. S., Larkin, K., & Larsen, A. (1988). Competence and stress in school children: The moderating effects of individual and family qualities. Journal of Child Psychology and Psychiatry, 29(6), 745764.CrossRefGoogle ScholarPubMed
Merrel, K. Preschool and Kindergarten Behavior Scales—Second edition. Austin, TX: PRO-ED; 2002.Google Scholar
Milgrom, J., Newnham, C., Anderson, P. J., Doyle, L. W., Gemmill, A. W., Lee, K., . . . Inder, T. (2010). Early sensitivity training for parents of preterm infants: Impact on the developing brain. Pediatric Research, 67, 330335.CrossRefGoogle ScholarPubMed
Miller, I., Bishop, D., Epstein, N., & Keitner, G. (1985). The McMaster Family Assessment Device: Reliability and validity. Journal of Marital and Family Therapy, 11, 345356.CrossRefGoogle Scholar
Moos, R., & Moos, B. (1994). Life Stressors and Social Resources Inventory—Adult Form: Professional manual. Odessa, FL: Psychological Assessment Resources.Google Scholar
Nakamura, B. J., Ebesutani, C., Bernstein, A., & Chorpita, B. F. (2009). A psychometric analysis of the Child Behavior Checklist DSM-Oriented Scales. Journal of Psychopathology and Behavioral Assessment, 31, 178189.CrossRefGoogle Scholar
Nelson, J. M., Choi, H-J., Clark, C. A. C., James, T. D., Fang, H., Wiebe, S. A., & Espy, K. A. (2015). Sociodemographic risk and early environmental factors that contribute to resilience in executive control: A factor mixture model of 3-years-olds. Child Neuropsychology, 21(3-4), 354378.CrossRefGoogle Scholar
Noble, K. G., Houston, S. M., Brito, N. H., Bartsch, H., Kan, E., Kuperman, J. M., . . . Sowell, E. R. (2015). Family income, parental education and brain structure in children and adolescents. Nature Neuroscience, 18(5), 773780.CrossRefGoogle ScholarPubMed
Orchinik, L. J., Taylor, H. G., Espy, K. A., Minich, N., Klein, N, Sheffield, T., & Hack, M. (2011). Cognitive abilities in extremely preterm/extremely low birth weight children in kindergarten. Journal of the International Neuropsychological Society, 17, 10671079.CrossRefGoogle ScholarPubMed
Poehlmann-Tynan, J., Gerstein, E. D., Burnson, C., Weymouth, L., Bolt, D. M., Maleck, S., & Schwichtenberg, A. J. (2015). Risk and resilience in preterm children at age 6. Development and Psychopathology, 27, 843858.CrossRefGoogle ScholarPubMed
Rogers, E. E., & Hintz, S. R. (2016). Early neurodevelopmental outcomes of extremely preterm infants. Seminars in Perinatology, 40, 497509.CrossRefGoogle ScholarPubMed
Rutter, M. (1987). Psychosocial resilience and protective mechanisms. American Journal of Orthopsychiatry, 57(3), 316331.CrossRefGoogle ScholarPubMed
Rutter, M. (2013). Annual research review: Resilience – clinical implications. Journal of Child Psychology and Psychiatry, 54(4), 474487.CrossRefGoogle ScholarPubMed
Rutter, M., & Silberg, J. (2002). Gene-environment interplay in relation to emotional and behavioral disturbance. Annual Review of Psychology, 53, 463490.CrossRefGoogle ScholarPubMed
Scott, M. N., Taylor, H. G., Fristad, M. A., Klein, N., Espy, K. A., Minich, N., & Hack, M. (2012). Behavior disorders in extremely preterm/extremely low birth weight children in kindergarten. Journal of Developmental & Behavioral Pediatrics, 33, 202213.CrossRefGoogle ScholarPubMed
Stein, R. E. K., & Jessop, D. J. (2003). The Impact on Family Scale revisited: Further psychometric data. Journal of Developmental and Behavioral Pediatrics, 24, 916.CrossRefGoogle ScholarPubMed
Stern, Y. (2009). Cognitive reserve. Neuropsychologia, 47, 20152028.CrossRefGoogle ScholarPubMed
Stiles, J., Reilly, J., Paul, B., & Moses, P. (2005). Cognitive development following early brain injury: Evidence for neural adaption. Trends in Cognitive Sciences, 9, 136143.CrossRefGoogle Scholar
Taylor, H. G., Klein, N., Anselmo, M. G., Minich, N., Espy, K. A., & Hack, M. (2011). Learning problems in kindergarten children with extremely preterm birth. Archives of Pediatrics & Adolescent Medicine, 165, 819825.CrossRefGoogle ScholarPubMed
Taylor, H. G., Klein, N., Drotar, D., Schluchter, M., & Hack, M. (2006). Consequences and risks of <1000-g birth weight for neuropsychological skills, achievement, and adaptive functioning. Developmental and Behavioral Pediatrics, 27, 459469.CrossRefGoogle ScholarPubMed
Taylor, H. G., Klein, N., Espy, K. A., Schluchter, M., Minich, N., Stilp, R., & Hack, M. (2018). Effects of extreme prematurity and kindergarten neuropsychological skills on early academic progress. Neuropsychology, 32 (7), 809821.CrossRefGoogle ScholarPubMed
Taylor, H. G., Klein, N., & Hack, M. (2001). Long-term family outcomes for children with very low birth weights. Archives of Pediatrics and Adolescent Medicine, 155, 155161.CrossRefGoogle ScholarPubMed
Taylor, H. G., Klein, N., Minich, N. M., & Hack, M. (2000). Middle-school-age outcomes in children with very low birthweight. Child Development, 71(6), 14951511.CrossRefGoogle ScholarPubMed
Taylor, H. G., Klein, N., Schatschneider, C., & Hack, M. (1998). Predictors of early school age outcomes in very low birth weight children. Journal of Developmental and Behavioral Pediatrics, 19(4), 235243.CrossRefGoogle ScholarPubMed
Taylor, H. G., Minich, N. M., Klein, N., & Hack, M. (2004). Longitudinal outcomes of very low birth weight: Neuropsychological findings. Journal of the International Neuropsychological Society, 10(2), 149163.CrossRefGoogle ScholarPubMed
Treyvaud, K., Inder, T. E., Lee, K. J., Northam, E. A., Doyle, L. W., & Anderson, P. J. (2012). Can the home environment promote resilience for children born very preterm in the context of social and medical risk? Journal of Experimental Child Psychology, 112, 326337.CrossRefGoogle ScholarPubMed
Ursache, A., Noble, K. G., for the Pediatric Imaging, Neurocognition and Genetics Study. (2016). Socioeconomic status, white matter, and executive function in children. Brain and Behavior, 6(10), e00531.CrossRefGoogle ScholarPubMed
Vanderbilt-Adriance, E., & Shaw, D. S. (2008). Protective factors and the development of resilience in the context of neighborhood disadvantage. Journal of Abnormal Child Psychology, 36, 887901.CrossRefGoogle ScholarPubMed
Wagner, R. K., Torgesen, C. A., & Rashotte, C. (1999). Comprehensive test of phonological processing. Austin, TX: Pro-Ed.Google Scholar
Williams, A. R., Piamjariyakul, U., Williams, P. D., Bruggeman, S. K., & Cabanela, R. L. (2006). Validity of the Revised Impact on Family (IOF) Scale. Journal of Pediatrics, 149, 257261.CrossRefGoogle ScholarPubMed
Woodcock, R. W, McGrew, K. S., & Mather, N. (2001a). Woodcock-Johnson III Tests of achievement. Itasca., IL: Riverside.Google Scholar
Woodcock, R. W, McGrew, K. S., & Mather, N. (2001b). Woodcock-Johnson III Tests of Cognitive Abilities. Itasca., IL: Riverside.Google Scholar
Wolke, D., Jaekel, J., Hall, J., & Baumann, N. (2013). Effects of sensitive parenting on academic resilience of very preterm and very low birth weight adolescents. Journal of Adolescent Health, 53, 642647.CrossRefGoogle ScholarPubMed
Woodward, L.J., Anderson, P.J., Austin, N.C., Howard, K., & Inder, T.E. (2006). Neonatal MRI to predict neurodevelopment outcomes in preterm infants. New England Journal of Medicine, 355, 685694.CrossRefGoogle Scholar
Yudkin, P. L., Aboualfa, M., Eyre, J. A., Redman, C. W., & Wilkinson, A. R. (1987). New birthweight and head circumference centiles for gestational ages 34 to 42 weeks. Early Human Development, 15, 4552.CrossRefGoogle ScholarPubMed
Supplementary material: File

Taylor et al. supplementary material

Taylor et al. supplementary material 1

Download Taylor et al. supplementary material(File)
File 239.5 KB