Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-19T22:57:42.532Z Has data issue: false hasContentIssue false

Neuropsychological Profile of Children with Early and Continuously Treated Phenylketonuria: Systematic Review and Future Approaches

Published online by Cambridge University Press:  29 April 2019

Marie Canton*
Affiliation:
Reference Center for Inborn Errors of Metabolism, INSERM U954, Nancy University Children’s Hospital, 54000 Nancy, France Laboratory of Psychology, UBL, EA4638, University of Angers, 49000 Angers, France Reference Center for Learning Disabilities, Pediatric Neurology Department, Nancy University Children’s Hospital, 54000 Nancy, France
Didier Le Gall
Affiliation:
Laboratory of Psychology, UBL, EA4638, University of Angers, 49000 Angers, France Neuropsychology unit, Department of Neurology, Angers University Hospital, 49000 Angers, France
François Feillet
Affiliation:
Reference Center for Inborn Errors of Metabolism, INSERM U954, Nancy University Children’s Hospital, 54000 Nancy, France
Chrystele Bonnemains
Affiliation:
Reference Center for Inborn Errors of Metabolism, INSERM U954, Nancy University Children’s Hospital, 54000 Nancy, France
Arnaud Roy
Affiliation:
Laboratory of Psychology, UBL, EA4638, University of Angers, 49000 Angers, France Neurofibromatosis Clinic and Reference Center for Learning Disabilities, Nantes University Hospital, 44000 Nantes, France
*
Correspondence and reprint requests to: Marie Canton, CLAP, Hôpital d’enfants, CHRU Nancy-Brabois, Rue du Morvan, 54511 Vandoeuvre-Les-Nancy, France. E-mail: [email protected]. Phone: + 33 (0) 3 83 15 48 84

Abstract

Objective: To provide a comprehensive systematic review of the literature by examining studies published on all cognitive aspects of children with early and continuously treated phenylketonuria (ECT-PKU) included in the databases Medline, PsycINFO, and PsycARTICLE. Method: In addition to a classical approach, we summarized methodology and results of each study in order to discuss current theoretical and methodological issues. We also examined recent advances in biochemical markers and treatments of PKU, with implications for future research on metabolic control and its role as a determinant of neuropsychological outcome. Results: Consistent with previous reviews, the hypothesis of a specific and central executive impairment in children with ECT-PKU was suggested. However, findings are inconclusive regarding the nature of executive impairments as well as their specificity, impact on everyday life, persistence over time, and etiology. Conclusion: Given the current state of the science, we suggest future directions for research that utilizes a developmental and integrative approach to examine the effects of recent advances in biochemical markers and treatment of PKU. (JINS, 2019, 25, 624–643)

Type
Critical Review
Copyright
Copyright © INS. Published by Cambridge University Press, 2019. 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Acosta, P.B. & Matalon, K.M. (2010). Nutrition Management of Patients with Inherited Metabolic Disorders. Boston, MA: Jones and Bartlett Publishers (pp. 119174).Google Scholar
Anastasoaie, V., Kurzius, L., Forbes, P., & Waisbren, S. (2008). Stability of blood phenylalanine levels and IQ in children with phenylketonuria. Molecular Genetics and Metabolism, 95(1), 1720.CrossRefGoogle ScholarPubMed
Anderson, P. (2002). Assessment and development of executive function (EF) during childhood. Child Neuropsychology, 8(2), 7182.CrossRefGoogle ScholarPubMed
Anderson, P. & Leuzzi, V. (2010). White matter pathology in phenylketonuria. Molecular Genetics and Metabolism, 99, 39.CrossRefGoogle ScholarPubMed
Anderson, P., Wood, S.J., Francis, D.E., Coleman, L., Anderson, V., & Boneh, A. (2007). Are neuropsychological impairments in children with early-treated phenylketonuria (PKU) related to white matter abnormalities or elevated phenylalanine levels? Developmental Neuropsychology, 32(2), 645668.CrossRefGoogle ScholarPubMed
Anderson, P., Wood, S.J., Francis, D.E., Coleman, L., Warwick, L., Casanelia, S., Anderson, V., & Boneh, A. (2004). Neuropsychological functioning in children with early-treated phenylketonuria: impact of white matter abnormalities. Developmental Medicine and Child Neurology, 46(4), 230238.CrossRefGoogle ScholarPubMed
Anderson, V., Anderson, P., Northam, E., Jacobs, R., & Mikiewicz, O. (2002). Relationships between cognitive and behavioral measures of executive function in children with brain disease. Child Neuropsychology, 8(4), 231240.CrossRefGoogle ScholarPubMed
Antshel, K.M. & Waisbren, S.E. (2003a). Timing is everything: executive functions in children exposed to elevated levels of phenylalanine. Neuropsychology, 17(3), 458468.CrossRefGoogle ScholarPubMed
Antshel, K.M. & Waisbren, S.E. (2003b). Developmental timing of exposure to elevated levels of phenylalanine is associated with ADHD symptom expression. Journal of Abnormal Child Psychology, 31(6), 565574.CrossRefGoogle ScholarPubMed
Araujo, G.C., Christ, S.E., Grange, D.K., Steiner, R.D., Coleman, C., Timmerman, E., & White, D.A. (2013). Executive response monitoring and inhibitory control in children with phenylketonuria: effects of expectancy. Developmental Neuropsychology, 38(3), 139152.CrossRefGoogle ScholarPubMed
Araujo, G.C., Christ, S.E., Steiner, R.D., Grange, D.K., Nardos, B., McKinstry, R.C., & White, D.A. (2009). Response monitoring in children with phenylketonuria. Neuropsychology, 23(1), 130134.CrossRefGoogle ScholarPubMed
Arnold, G.L., Kramer, B.M., Kirby, R.S., Plumeau, P.B., Blakely, E.M., Cregan, L.S., & Davidson, P.W. (1998). Factors affecting cognitive, motor, behavioral and executive functioning in children with phenylketonuria. Acta Paediatrica, 87(5), 565570.CrossRefGoogle ScholarPubMed
Arnold, G.L., Vladutiu, C.J., Orlowski, C.C., Blakely, E.M., & DeLuca, J. (2004). Prevalence of stimulant use for attentional dysfunction in children with phenylketonuria. Journal of Inherited Metabolic Disease, 27(2), 137143.CrossRefGoogle ScholarPubMed
Artuch, R., Colomé, C., Sierra, C., Brandi, N., Lambruschini, N., Campistol, J., Ugarte, D., & Vilaseca, M.A. (2004). A longitudinal study of antioxidant status in phenylketonuric patients. Clinical Biochemistry, 37(3), 198203.CrossRefGoogle ScholarPubMed
Banerjee, P., Grange, D.K., Steiner, R.D., & White, D.A. (2011). Executive strategic processing during verbal fluency performance in children with phenylketonuria. Child Neuropsychology, 17(2), 105117.CrossRefGoogle ScholarPubMed
Barkley, R.A. (1997). Behavioral inhibition, sustained attention, and executive functions: constructing a unifying theory of ADHD. Psychological Bulletin, 121(1), 6594.CrossRefGoogle ScholarPubMed
Berry, H.K., Brunner, R.L., Hunt, M.M., & White, P.P. (1990). Valine, isoleucine, and leucine: a new treatment for phenylketonuria. American Journal of Diseases of Children, 144(5), 539543.CrossRefGoogle ScholarPubMed
Blau, N., van Spronsen, F.J., & Levy, H.L. (2010). Phenylketonuria. The Lancet, 376(9750), 14171427.CrossRefGoogle ScholarPubMed
Brumm, V.L. & Grant, M.L. (2010). The role of intelligence in phenylketonuria: a review of research and management. Molecular Genetics and Metabolism, 99, 1821.CrossRefGoogle ScholarPubMed
Bull, R., Espy, K.A., & Wiebe, S.A. (2008). Short-term memory, working memory, and executive functioning in preschoolers: longitudinal predictors of mathematical achievement at age 7 years. Developmental Neuropsychology, 33(3), 205228.CrossRefGoogle ScholarPubMed
Burgard, P., Rey, F., Rupp, A., Abadie, V., & Rey, J. (1997). Neuropsychologic functions of early treated patients with phenylketonuria, on and off diet: results of a cross-national and cross-sectional study. Pediatric Research, 41(3), 368374.CrossRefGoogle ScholarPubMed
Burgard, P., Schmidt, E., Rupp, A., Schneider, W., & Bremer, H.J. (1996). Intellectual development of the patients of the German Collaborative Study of children treated for phenylketonuria. European Journal of Pediatrics, 155(1), 3338.CrossRefGoogle ScholarPubMed
Burton, B.K., Bausell, H., Katz, R., LaDuca, H., & Sullivan, C. (2010). Sapropterin therapy increases stability of blood phenylalanine levels in patients with BH4-responsive phenylketonuria (PKU). Molecular Genetics and Metabolism, 101(2), 110114.CrossRefGoogle Scholar
Burton, B.K., Grange, D.K., Milanowski, A., Vockley, G., Feillet, F., Crombez, E.A., Abadie, V., Cederbaum, S., Dobbelaere, D., Smith, A., & Dorenbaum, A. (2007). The response of patients with phenylketonuria and elevated serum phenylalanine to treatment with oral sapropterin dihydrochloride (6R-tetrahydrobiopterin): a phase II, multicentre, open-label, screening study. Journal of Inherited Metabolic Disease, 30(5), 700707.CrossRefGoogle ScholarPubMed
Burton, B., Grant, M., Feigenbaum, A., Singh, R., Hendren, R., Siriwardena, K., Phillips, J., Sanchez-Valle, A., Waisbren, S., Gillis, J., Prasad, S., Merilainen, M., Lang, W., Zhang, W., Yu, S., & Stahl, S. (2015). A randomized placebo-controlled, double-blind study of sapropterin to treat ADHD symptoms and executive function impairment in children and adults with sapropterin-responsive phenylketonuria. Molecular Genetics and Metabolism, 114(3), 415424.CrossRefGoogle ScholarPubMed
Camp, K.M., Parisi, M.A., Acosta, P.B., Berry, G.T., Bilder, D.A., Blau, N., Bodamer, O.A., Brosco, J.P., Brown, C.S., Burlina, A.B., Burton, B.K., Chang, C.S., Coates, P.M., Cunningham, A.C., Dobrowolski, S.F., Ferguson, J.H., Franklin, T.D., Frazier, M., Grange, D.K., Greene, C.L., Groft, S.C., Harding, C.O., Howell, R.R., Huntington, K.L., Hyatt-Knorr, H.D., Jevaji, I.P., Levy, H.L., Lichter-Konecki, U., Lindegren, L.M., Lloyd-Puryear, M.A., Matalon, K., MacDonald, A., McPheeters, M.L., Mitchell, J.J., Mofidi, C., Moseley, K.D., Mueller, C.M., Mulberg, A.E., Nerurkar, L.S., Ogata, B.M., Pariser, A.R., Prasad, S., Pridjiann, G., Rasmussen, S.A., Reddy, U.M., Rohr, F.J., Singh, R.H., Sirrs, S.M., Stremer, S.E., Tagle, D.A., Thompson, S.M., Urv, T.K., Utz, J.R., van Spronsen, F., Vockley, J., Waisbren, S.E., Weglicki, L.S., White, D.A., Whitley, C.B., Wilfond, B.S., Yannicelli, S., & Young, J.M. (2014). Phenylketonuria Scientific Review Conference: state of the science and future research needs. Molecular Genetics and Metabolism, 112(2), 87122.CrossRefGoogle ScholarPubMed
Cappelletti, S., Cotugno, G., Goffredo, B.M., Nicolò, R., Bernabei, S.M., Caviglia, S., & Di Ciommo, V. (2013). Cognitive findings and behavior in children and adolescents with phenylketonuria. Journal of Developmental & Behavioral Pediatrics, 34(6), 392398.CrossRefGoogle ScholarPubMed
Chang, P.N., Gray, R.M., & O’Brien, L.L. (2000). Patterns of academic achievement among patients treated early with phenylketonuria. European Journal of Pediatrics, 159(14), 9699.CrossRefGoogle ScholarPubMed
Chevignard, M.P., Soo, C., Galvin, J., Catroppa, C., & Eren, S. (2012). Ecological assessment of cognitive functions in children with acquired brain injury: a systematic review. Brain Injury, 26(9), 10331057.CrossRefGoogle ScholarPubMed
Christ, S.E., Huijbregts, S.C., De Sonneville, L.M., & White, D.A. (2010a). Executive function in early-treated phenylketonuria: profile and underlying mechanisms. Molecular Genetics and Metabolism, 99, 2232.CrossRefGoogle ScholarPubMed
Christ, S.E., Moffitt, A.J., & Peck, D. (2010b). Disruption of prefrontal function and connectivity in individuals with phenylketonuria. Molecular Genetics and Metabolism, 99, 3340.CrossRefGoogle ScholarPubMed
Christ, S.E., Moffitt, A.J., Peck, D., & White, D.A. (2013). The effects of tetrahydrobiopterin (BH4) treatment on brain function in individuals with phenylketonuria. NeuroImage: Clinical, 3, 539547.CrossRefGoogle ScholarPubMed
Christ, S.E., Steiner, R.D., Grange, D.K., Abrams, R.A., & White, D.A. (2006). Inhibitory control in children with phenylketonuria. Developmental Neuropsychology, 30(3), 845864.CrossRefGoogle ScholarPubMed
Colomé, C., Artuch, R., Vilaseca, M.A., Sierra, C., Brandi, N., Lambruschini, N., Cambra, F.J., & Campistol, J. (2003). Lipophilic antioxidants in patients with phenylketonuria. The American Journal of Clinical Nutrition, 77(1), 185188.CrossRefGoogle ScholarPubMed
Da Silva, G.K. & Lamônica, D.A. (2010). Performance of children with phenylketonuria in the Developmental Screening Test-Denver II. Prò-fono, 22(3), 345351.Google Scholar
de Groot, M.J., Hoeksma, M., Reijngoud, D.J., de Valk, H.W., Paans, A.M., Sauer, P.J., & van Spronsen, F.J. (2013). Phenylketonuria: reduced tyrosine brain influx relates to reduced cerebral protein synthesis. Orphanet Journal of Rare Diseases, 8(1), 133141.CrossRefGoogle ScholarPubMed
Dennis, M. (2006). Prefrontal cortex: typical and atypical development, In Risberg, J. &Grafman, J. (Eds.), The frontal lobes: development, function and pathology (pp. 128162). New York: Cambridge University Press.CrossRefGoogle Scholar
Dennis, M., Francis, D.J., Cirino, P.T., Schachar, R., Barnes, M.A., & Fletcher, J.M. (2009). Why IQ is not a covariate in cognitive studies of neurodevelopmental disorders. Journal of the International Neuropsychological Society, 15(3), 331343.CrossRefGoogle Scholar
DeRoche, K. & Welsh, M. (2008). Twenty-five years of research on neurocognitive outcomes in early-treated phenylketonuria: intelligence and executive function. Developmental Neuropsychology, 33(4), 474504.CrossRefGoogle ScholarPubMed
De Sonneville, L.M., Schmidt, E., Michel, U., & Batzler, U. (1990). Preliminary neuropsychological test results. European Journal of Pediatrics, 149(1), 3944.CrossRefGoogle ScholarPubMed
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168.CrossRefGoogle ScholarPubMed
Diamond, A. & Herzberg, C. (1996). Impaired sensitivity to visual contrast in children treated early and continuously for phenylketonuria. Brain, 119(2), 523538.CrossRefGoogle ScholarPubMed
Diamond, A., Prevor, M.B., Callender, G., & Druin, D.P. (1997). Prefrontal cortex cognitive deficits in children treated early and continuously for PKU. Monographs of the Society for Research in Child Development, 62(4), 1206.CrossRefGoogle ScholarPubMed
dos Santos, L.L., de Castro Magalhães, M., Januário, J.N., de Aguiar, M.J.B., & Carvalho, M.R.S. (2006). The time has come: a new scene for PKU treatment. Genetics and Molecular Research, 5(1), 3344.Google Scholar
Dyer, C.A. (1999). Pathophysiology of phenylketonuria. Developmental Disabilities Research Reviews, 5(2), 104112.3.0.CO;2-7>CrossRefGoogle Scholar
Erlandsen, H. & Stevens, R.C. (2001). A structural hypothesis for BH4 responsiveness in patients with mild forms of hyperphenylalaninaemia and phenylketonuria. Journal of Inherited Metabolic Disease, 24(2), 213230.CrossRefGoogle ScholarPubMed
Feldmann, R., Denecke, J., Grenzebach, M., & Weglage, J. (2005). Frontal lobe-dependent functions in treated phenylketonuria: blood phenylalanine concentrations and long-term deficits in adolescents young adults. Journal of Inherited Metabolic Disease, 28(4), 445455.CrossRefGoogle Scholar
Feldmann, R., Denecke, J., Pietsch, M., Grenzebach, M., & Weglage, J. (2002). Phenylketonuria: no specific frontal lobe-dependent neuropsychological deficits of early-treated patients in comparison with diabetics. Pediatric Research, 51(6), 761765.CrossRefGoogle ScholarPubMed
Fiege, B. & Blau, N. (2007). Assessment of tetrahydrobiopterin (BH4) responsiveness in phenylketonuria. The Journal of Pediatrics, 150(6), 627630.CrossRefGoogle ScholarPubMed
Fonnesbeck, C.J., McPheeters, M.L., Krishnaswami, S., Lindegren, M.L., & Reimschisel, T. (2013). Estimating the probability of IQ impairment from blood phenylalanine for phenylketonuria patients: a hierarchical meta-analysis. Journal of Inherited Metabolic Disease, 36(5), 757766.CrossRefGoogle ScholarPubMed
Gassió, R., Artuch, R., Vilaseca, M.A., Fusté, E., Boix, C., Sans, A., & Campistol, J. (2005). Cognitive functions in classic phenylketonuria and mild hyperphenyl-alaninaemia: experience in a paediatric population. Developmental Medicine and Child Neurology, 47(7), 443448.CrossRefGoogle Scholar
Gassió, R., Artuch, R., Vilaseca, M.A., Fusté, E., Colome, R., & Campistol, J. (2008). Cognitive functions and the antioxidant system in phenylketonuric patients. Neuropsychology, 22(4), 426431.CrossRefGoogle ScholarPubMed
Gassió, R., Vilaseca, M.A., Lambruschini, N., Boix, C., Fusté, M.E., & Campistol, J. (2010). Cognitive functions in patients with phenylketonuria in long-term treatment with tetrahydrobiopterin. Molecular Genetics and Metabolism, 99, 7578.CrossRefGoogle ScholarPubMed
Gioia, G.A., Kenworthy, L., & Isquith, P.K. (2010). Executive function in the real world: BRIEF lessons from Mark Ylvisaker. The Journal of Head Trauma Rehabilitation, 25(6), 433439.CrossRefGoogle ScholarPubMed
Griffiths, P., Campbell, R., & Robinson, P. (1998). Executive function in treated phenylketonuria as measured by the one-back and two-back versions of the continuous performance test. Journal of Inherited Metabolic Disease, 21(2), 125135.CrossRefGoogle ScholarPubMed
Griffiths, P., Demellweek, C., Fay, N., Robinson, P., & Davidson, D.C. (2000). Wechsler subscale IQ and subtest profile in early treated phenylketonuria. Archives of Disease in Childhood, 82(3), 209215.CrossRefGoogle ScholarPubMed
Griffiths, P., Robinson, P., Davies, R., Hayward, K., Lewis, K., Livingstone, K., & Plews, S. (2005). Speed of decision-making and set-switching: subtle executive deficits in children with treated phenylketonuria. Educational and Child Psychology, 22(2), 8189.Google Scholar
Griffiths, P., Tarrini, M., & Robinson, P. (1997). Executive function and psychosocial adjustment in children with early treated phenylketonuria: correlation with historical and concurrent phenylalanine levels. Journal of Intellectual Disability Research, 41(4), 317323.CrossRefGoogle ScholarPubMed
Griffiths, P., Ward, N., Harvie, A., & Cockburn, F. (1998). Neuropsychological outcome of experimental manipulation of phenylalanine intake in treated phenylketonuria. Journal of Inherited Metabolic Disease, 21(1), 2938.CrossRefGoogle ScholarPubMed
Heintz, C., Cotton, R.G., & Blau, N. (2013). Tetrahydrobiopterin, its mode of action on phenylalanine hydroxylase, and importance of genotypes for pharmacological therapy of phenylketonuria. Human Mutation, 34(7), 927936.CrossRefGoogle ScholarPubMed
Holtzman, N.A., Kronmal, R.A., Doorninck, W.V., Azen, C., Koch, R., & Writing Committee for the Collaborative Study of Children Treated for Phenylketonuria. (1986). Effect of age at loss of dietary control on intellectual performance and behavior of children with phenylketonuria. New England Journal of Medicine, 314(10), 593598.CrossRefGoogle ScholarPubMed
Hood, A., Grange, D.K., Christ, S.E., Steiner, R., & White, D.A. (2014). Variability in phenylalanine control predicts IQ and executive abilities in children with phenylketonuria. Molecular Genetics and Metabolism, 111(4), 445451.CrossRefGoogle ScholarPubMed
Huijbregts, S.C., De Sonneville, L.M., Licht, R., Sergeant, J., & van Spronsen, F.J. (2002a). Inhibition of prepotent responding and attentional flexibility in treated phenylketonuria. Developmental Neuropsychology, 22(2), 481499.CrossRefGoogle ScholarPubMed
Huijbregts, S.C., De Sonneville, L.M., Licht, R., van Spronsen, F.J., & Sergeant, J.A. (2002b). Short-term dietary interventions in children and adolescents with treated phenylketonuria: effects on neuropsychological outcome of a well-controlled population. Journal of Inherited Metabolic Disease, 25(6), 419430.CrossRefGoogle ScholarPubMed
Huijbregts, S.C., De Sonneville, L.M., Licht, R., van Spronsen, F.J., Verkerk, P.H., & Sergeant, J.A. (2002c). Sustained attention and inhibition of cognitive interference in treated phenylketonuria: associations with concurrent and lifetime phenylalanine concentrations. Neuropsychologia, 40(1), 715.CrossRefGoogle ScholarPubMed
Huijbregts, S.C., De Sonneville, L.M., van Spronsen, F.J., Berends, I.E., Licht, R., Verkerk, P.H., & Sergeant, J.A. (2003). Motor function under lower and higher controlled processing demands in early and continuously treated phenylketonuria. Neuropsychology, 17(3), 369379.CrossRefGoogle ScholarPubMed
Huijbregts, S.C., De Sonneville, L.M., van Spronsen, F.J., Licht, R., & Sergeant, J.A. (2002d). The neuropsychological profile of early and continuously treated phenylketonuria: orienting, vigilance, and maintenance versus manipulation-functions of working memory. Neuroscience & Biobehavioral Reviews, 26(6), 697712.CrossRefGoogle ScholarPubMed
Huijbregts, S.C., Gassió, R., & Campistol, J. (2013). Executive functioning in context: relevance for treatment and monitoring of phenylketonuria. Molecular Genetics and Metabolism, 110, 2530.CrossRefGoogle ScholarPubMed
Jahja, R., Huijbregts, S.C., De Sonneville, L.M., van Der Meere, J.J., & van Spronsen, F.J. (2014). Neurocognitive evidence for revision of treatment targets and guidelines for phenylketonuria. The Journal of Pediatrics, 164(4), 895899.CrossRefGoogle ScholarPubMed
Jahja, R., van Spronsen, F.J., De Sonneville, L.M., van der Meere, J.J., Bosch, A.M., Hollak, C.E., Rubio-Gozalbo, M.E., Brouwers, M.C., Hofstede, F.C., de Vries, M.C., Janssen, M.C., van der Ploeg, A.T., Langendonk, J.G., & Huijbregts, S.C. (2016). Social-cognitive functioning and social skills in patients with early treated phenylketonuria: a PKU-COBESO study. Journal of Inherited Metabolic Disease, 39(3), 355362.CrossRefGoogle ScholarPubMed
Janos, A.L., Grange, D.K., Steiner, R.D., & White, D.A. (2012). Processing speed and executive abilities in children with phenylketonuria. Neuropsychology, 26(6), 735743.CrossRefGoogle ScholarPubMed
Janzen, D. & Nguyen, M. (2010). Beyond executive function: non-executive cognitive abilities in individuals with PKU. Molecular Genetics and Metabolism, 99, 4751.CrossRefGoogle ScholarPubMed
Jurado, M.B. & Rosselli, M. (2007). The elusive nature of executive functions: a review of our current understanding. Neuropsychology Review, 17(3), 213233.CrossRefGoogle ScholarPubMed
Karačić, I., Meili, D., Sarnavka, V., Heintz, C., Thöny, B., Ramadža, D.P., Fumić, K., Mardeşić, D., Barié, I., & Blau, N. (2009). Genotype-predicted tetrahydrobiopterin (BH4)-responsiveness and molecular genetics in Croatian patients with phenylalanine hydroxylase (PAH) deficiency. Molecular Genetics and Metabolism, 97(3), 165171.CrossRefGoogle ScholarPubMed
Koch, R., Azen, C., Friedman, E.G., & Williamson, M.L. (1984). Paired comparisons between early treated PKU children and their matched sibling controls on intelligence and school achievement test results at eight years of age. Journal of Inherited Metabolic Disease, 7(2), 8690.CrossRefGoogle ScholarPubMed
Koch, R., Burton, B., Hoganson, G., Peterson, R., Rhead, W., Rouse, B., Scott, R., Wolff, J., Stern, A.M., Guttler, F., Nelson, M. , de la Cruz, F., Coldwell, J., Erbe, R., Geraghty, M.T., Shear, C., Thomas, J., & Azen, C (2002). Phenylketonuria in adulthood: a collaborative study. Journal of Inherited Metabolic Disease, 25(5), 333346.CrossRefGoogle ScholarPubMed
Lehto, J.E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: evidence from children. British Journal of Developmental Psychology, 21(1), 5980.CrossRefGoogle Scholar
Leuret, O., Barth, M., Kuster, A., Eyer, D., De Parscau, L., Odent, S., Gilbert-Dussardier, B., Feillet, F., & Labarthe, F. (2012). Efficacy and safety of BH4 before the age of 4 years in patients with mild phenylketonuria. Journal of Inherited Metabolic Disease, 35(6), 975981.CrossRefGoogle ScholarPubMed
Leuzzi, V., Mannarelli, D., Manti, F., Pauletti, C., Locuratolo, N., Carducci, C., Carducci, C., Vanacore, N., & Fattapposta, F. (2014a). Age-related psychophysiological vulnerability to phenylalanine in phenylketonuria. Frontiers in pediatrics, 57(2), 111.Google Scholar
Leuzzi, V., Pansini, M., Sechi, E., Chiarotti, F., Carducci, C., Levi, G., & Antonozzi, I. (2004b). Executive function impairment in early-treated PKU subjects with normal mental development. Journal of Inherited Metabolic Disease, 27(2), 115125.CrossRefGoogle ScholarPubMed
Levin, H.S., Culhane, K.A., Hartmann, J., Evankovich, K., Mattson, A.J., Harward, H., Ringholz, G., Ewing-Cobbs, L., & Fletcher, J.M. (1991). Developmental changes in performance on tests of purported frontal lobe functioning. Developmental Neuropsychology, 7(3), 377395.CrossRefGoogle Scholar
Levy, H.L., Milanowski, A., Chakrapani, A., Cleary, M., Lee, P., Trefz, F.K., Whitley, C.B., Feillet, F., Feigenbaum, A.S., Bebchuk, J.D., Christ-Schmidt, H., & Dorenbaum, A. (2007). Efficacy of sapropterin dihydrochloride (tetrahydrobiopterin, 6R-BH4) for reduction of phenylalanine concentration in patients with phenylketonuria: a phase III randomised placebo-controlled study. The Lancet, 370(9586), 504510.CrossRefGoogle ScholarPubMed
Lombeck, I., Jochum, F., & Terwolbeck, K. (1996). Selenium status in infants and children with phenylketonuria and in maternal phenylketonuria. European Journal of Pediatrics, 155, 140144.CrossRefGoogle ScholarPubMed
Longo, N., Siriwardena, K., Feigenbaum, A., Dimmock, D., Burton, B.K., Stockler, S., Waisbren, S., Lang, W., Jurecki, E., Zhang, C. , & Prasad, S. (2015). Long-term developmental progression in infants and young children taking sapropterin for phenylketonuria: a two-year analysis of safety and efficacy. Genetics in Medicine, 17(5), 365373.CrossRefGoogle ScholarPubMed
Luciana, M., Sullivan, J., & Nelson, C.A. (2001). Associations between phenylalanine-to-tyrosine ratios and performance on tests of neuropsychological function in adolescents treated early and continuously for phenylketonuria. Child Development, 72(6), 16371652.CrossRefGoogle ScholarPubMed
MacDonald, A. (2000). Diet and compliance in phenylketonuria. European Journal of Pediatrics, 159(14), 136141.CrossRefGoogle ScholarPubMed
Manti, F., Nardecchia, F., Paci, S., Chiarotti, F., Carducci, C., Carducci, C., Dalmazzone, S., Cefalo, G., Salvatici, E., Banderali, G., & Leuzzi, V. (2017). Predictability and inconsistencies in the cognitive outcome of early treated PKU patients. Journal of inherited metabolic disease, 40(6), 793799.CrossRefGoogle ScholarPubMed
Matalon, R., Michals-Matalon, K., Bhatia, G., Burlina, A.B., Burlina, A.P., Braga, C., Fiori, L., Giovannini, M., Grechanina, E., Novikov, P., Grady, J., Tyring, S.K., & Guttler, F. (2007). Double blind placebo control trial of large neutral amino acids in treatment of PKU: effect on blood phenylalanine. Journal of Inherited Metabolic Disease, 30(2), 153158.CrossRefGoogle ScholarPubMed
Matalon, R., Michals-Matalon, K., Bhatia, G., Grechanina, E., Novikov, P., McDonald, J.D., Grady, J., Tyring, S.K., & Guttler, F. (2006). Large neutral amino acids in the treatment of phenylketonuria (PKU). Journal of Inherited Metabolic Disease, 29(6), 732738.CrossRefGoogle Scholar
Mazzocco, M.M., Nord, A.M., van Doorninck, W., Greene, C.L., Kovar, C.G., & Pennington, B.F. (1994). Cognitive development among children with early-treated phenylketonuria. Developmental Neuropsychology, 10(2), 133151.CrossRefGoogle Scholar
McCandless, S. & O’Laughlin, L. (2007). The clinical utility of the Behavior Rating Inventory of Executive Function (BRIEF) in the diagnosis of ADHD. Journal of Attention Disorders, 10(4), 381389.CrossRefGoogle ScholarPubMed
Michel, U., Schmidt, E., & Batzler, U. (1990). Results of psychological testing of patients aged 3–6 years. European Journal of Pediatrics, 149, 3438.CrossRefGoogle ScholarPubMed
Mitchell, J.J., Trakadis, Y.J., & Scriver, C.R. (2011). Phenylalanine hydroxylase deficiency. Genetics in Medicine, 13(8), 697707.CrossRefGoogle ScholarPubMed
Moher, D., Shamseer, L., Clarke, M., Ghersi, D., Liberati, A., Petticrew, M., Shekelle, P., Stewart, L.A., & PRISMA-P Group. (2015). Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Systematic Reviews, 4(1), 1. doi: 10.1186/2046-4053-4-1 CrossRefGoogle ScholarPubMed
Moyle, J.J., Fox, A.M., Arthur, M., Bynevelt, M., & Burnett, J.R. (2007). Meta-analysis of neuropsychological symptoms of adolescents and adults with PKU. Neuropsychology Review, 17(2), 91101.CrossRefGoogle ScholarPubMed
Nardecchia, F., Manti, F., Chiarotti, F., Carducci, C., Carducci, C., & Leuzzi, V. (2015). Neurocognitive and neuroimaging outcome of early treated young adult PKU patients: a longitudinal study. Molecular Genetics and Metabolism, 115(2), 8490.CrossRefGoogle ScholarPubMed
Ozanne, A.E., Krimmer, H., & Murdoch, B.E. (1990). Speech and language skills in children with early treated phenylketonuria. American Journal on Mental Retardation, 94(6), 625632.Google ScholarPubMed
Pardridge, W.M. (1998). Blood-brain barrier carrier-mediated transport and brain metabolism of amino acids. Neurochemical Research, 23(5), 635644.CrossRefGoogle ScholarPubMed
Pietz, J., Kreis, R., Rupp, A., Mayatepek, E., Rating, D., Boesch, C., & Bremer, H.J. (1999). Large neutral amino acids block phenylalanine transport into brain tissue in patients with phenylketonuria. Journal of Clinical Investigation, 103(8), 11691178.CrossRefGoogle ScholarPubMed
Przyrembel, H. & Bremer, H.J. (2000). Nutrition, physical growth, and bone density in treated phenylketonuria. European Journal of Pediatrics, 159(14), 129135.CrossRefGoogle ScholarPubMed
Roy, A., Le Gall, D., Roulin, J.L., & Fournet, N. (2012). Les fonctions exécutives chez l’enfant: approche épistémologique et sémiologie clinique. Revue de Neuropsychologie, 4(4), 287297.CrossRefGoogle Scholar
Roy, A., Roulin, J.L., Charbonnier, V., Allain, P., Fasotti, L., Barbarot, S., Stadler, J.F., Terrien, A., & Le Gall, D. (2010). Executive dysfunction in children with neurofibromatosis type 1: a study of action planning. Journal of the International Neuropsychological Society, 16(6), 10561063.CrossRefGoogle ScholarPubMed
Schindeler, S., Ghosh-Jerath, S., Thompson, S., Rocca, A., Joy, P., Kemp, A., Rae, C., Green, K., Wilcken, B., & Christodoulou, J. (2007). The effects of large neutral amino acid supplements in PKU: an MRS and neuropsychological study. Molecular Genetics and Metabolism, 91(1), 4854.CrossRefGoogle ScholarPubMed
Scriver, C.R. & Kaufman, S. (2001). Hyperphenylalaninemia: phenylalanine hydroxylase deficiency, In Scriver, C.R., Baudet, A.L., Sly, W.S., &Valle, D. (Eds.), The metabolic and molecular bases of inherited disease (pp. 16671724). New York: McGraw Hill.Google Scholar
Sharman, R., Sullivan, K., Young, R., & McGill, J. (2009a). Biochemical markers associated with executive function in adolescents with early and continuously treated phenylketonuria. Clinical Genetics, 75(2), 169174.CrossRefGoogle ScholarPubMed
Sharman, R., Sullivan, K., Young, R., & McGill, J. (2009b). A preliminary investigation of the role of the phenylalynine: tyrosine ratio in children with early and continuously treated phenylketonuria: toward identification of “safe” levels. Developmental Neuropsychology, 35(1), 5765.CrossRefGoogle Scholar
Sharman, R., Sullivan, K., Young, R., & McGill, J. (2015). Executive function in adolescents with PKU and their siblings: associations with biochemistry. Molecular Genetics and Metabolism Reports, 4, 8788.CrossRefGoogle ScholarPubMed
Smith, M.L., Saltzman, J., Klim, P., Hanley, W.B., Feigenbaum, A., & Clarke, J.T. (2000). Neuropsychological function in mild hyperphenylalaninemia. American Journal on Mental Retardation, 105(2), 6980.2.0.CO;2>CrossRefGoogle ScholarPubMed
Smith, Q.R. (2000). Transport of glutamate and other amino acids at the blood-brain barrier. The Journal of Nutrition, 130(4), 10161022.CrossRefGoogle ScholarPubMed
Soleymani, Z., Keramati, N., Rohani, F., & Jalaei, S. (2015). Factors influencing verbal intelligence and spoken language in children with phenylketonuria. Indian Pediatrics, 52(5), 397401.CrossRefGoogle ScholarPubMed
Sonuga-Barke, E.J., Sergeant, J.A., Nigg, J., & Willcutt, E. (2008). Executive dysfunction and delay aversion in attention deficit hyperactivity disorder: nosologic and diagnostic implications. Child and Adolescent Psychiatric Clinics of North America, 17(2), 367384.CrossRefGoogle ScholarPubMed
Stemerdink, B.A., Kalverboer, A.F., van der Meere, J.J., van der Molen, M.W., Huisman, J., de Jong, L.W.A., Slijper, F.M.E., Verkerk, P.H., & van Spronsen, F.J. (2000). Behaviour and school achievement in patients with early and continuously treated phenylketonuria. Journal of Inherited Metabolic Disease, 23(6), 548562.CrossRefGoogle ScholarPubMed
Stemerdink, B.A., van der Meere, J.J., van der Molen, M.W., Kalverboer, A.F., Hendrikx, M.M.T., Huisman, J., van der Schot, L.W.A., Slijper, F.M.E., van Spronsen, F.J., & Verkerk, P.H. (1995). Information processing in patients with early and continuously-treated phenylketonuria. European Journal of Pediatrics, 154(9), 739746.CrossRefGoogle ScholarPubMed
Stemerdink, B.A., van der Molen, M.W., Kalverboer, A.F., van der Meere, J.J., Huisman, J., de Jong, L.W., Slijper, F.M.E., Verkerk, P.H., & van Spronsen, F.J. (1999). Prefrontal dysfunction in early and continuously treated phenylketonuria. Developmental Neuropsychology, 16(1), 2957.CrossRefGoogle Scholar
Stevenson, M. & McNaughton, N. (2013). A comparison of phenylketonuria with attention deficit hyperactivity disorder: Do markedly different aetiologies deliver common phenotypes?. Brain Research Bulletin, 99, 6383.CrossRefGoogle ScholarPubMed
Surtees, R. & Blau, N. (2000). The neurochemistry of phenylketonuria. European Journal of Pediatrics, 159(14), 109113.CrossRefGoogle ScholarPubMed
Toplak, M.E., Bucciarelli, S.M., Jain, U., & Tannock, R. (2008). Executive functions: performance-based measures and the behavior rating inventory of executive function (BRIEF) in adolescents with attention deficit/hyperactivity disorder (ADHD). Child Neuropsychology, 15(1), 5372.CrossRefGoogle Scholar
van Bakel, M.M., Printzen, G., Wermuth, B., & Wiesmann, U.N. (2000). Antioxidant and thyroid hormone status in selenium-deficient phenylketonuric and hyperphenylalaninemic patients. The American Journal of Clinical Nutrition, 72(4), 976981.CrossRefGoogle ScholarPubMed
van Spronsen, F.J., Huijbregts, S.C., Bosch, A.M., & Leuzzi, V. (2011). Cognitive, neurophysiological, neurological and psychosocial outcomes in early-treated PKU-patients: a start toward standardized outcome measurement across development. Molecular Genetics and Metabolism, 104, 4551.CrossRefGoogle ScholarPubMed
van Spronsen, F.J., van Wegberg, A.M., Ahring, K., Bélanger-Quintana, A., Blau, N., Bosch, A.M., Burlina, A., Campistol, J., Feillet, F., Giżewska, M., Huijbregts, S.C., Kearney, S., Leuzzi, V., Maillot, F., Muntau, A.C., Trefz, F.K., van Rijn, M., Walter, J.H., & MacDonald, A. (2017). Key European guidelines for the diagnosis and management of patients with phenylketonuria. The Lancet Diabetes & Endocrinology, 5(9), 743756.CrossRefGoogle ScholarPubMed
VanZutphen, K.H., Packman, W., Sporri, L., Needham, M.C., Morgan, C., Weisiger, K., & Packman, S. (2007). Executive functioning in children and adolescents with phenylketonuria. Clinical Genetics, 72(1), 1318.CrossRefGoogle ScholarPubMed
Viau, K.S., Wengreen, H.J., Ernst, S.L., Cantor, N.L., Furtado, L.V., & Longo, N. (2011). Correlation of age-specific phenylalanine levels with intellectual outcome in patients with phenylketonuria. Journal of Inherited Metabolic Disease, 34(4), 963971.CrossRefGoogle ScholarPubMed
Vilaseca, M.A., Lambruschini, N., Gómez-López, L., Gutiérrez, A., Fusté, E., Gassió, R., Artuch, R., & Campistol, J. (2010). Quality of dietary control in phenylketonuric patients and its relationship with general intelligence. Nutricion Hospitalaria, 25(1), 6066.Google ScholarPubMed
Vockley, J., Andersson, H.C., Antshel, K.M., Braverman, N.E., Burton, B.K., Frazier, D.M., Mitchell, J., Smith, W.E., Thompson, B.H., & Berry, S.A. (2014). Phenylalanine hydroxylase deficiency: diagnosis and management guideline. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 16(2), 188200.Google ScholarPubMed
Waisbren, S.E., Noel, K., Fahrbach, K., Cella, C., Frame, D., Dorenbaum, A., & Levy, H. (2007). Phenylalanine blood levels and clinical outcomes in phenylketonuria: a systematic literature review and meta-analysis. Molecular Genetics and Metabolism, 92(1), 6370.CrossRefGoogle ScholarPubMed
Weglage, J., Grenzebach, M., Pietsch, M., Feldmann, R., Linnenbank, R., Denecke, J., & Koch, H.G. (2000). Behavioural and emotional problems in early-treated adolescents with phenylketonuria in comparison with diabetic patients and healthy controls. Journal of Inherited Metabolic Disease, 23(5), 487496.CrossRefGoogle ScholarPubMed
Weglage, J., Pietsch, M., Denecke, J., Sprinz, A., Feldman, R., Grenzebach, M., & Ullrich, K. (1999). Regression of neuropsychological deficits in early-treated phenylketonurics during adolescence. Journal of Inherited Metabolic Disease, 22(6), 693705.CrossRefGoogle ScholarPubMed
Weglage, J., Pietsch, M., Fünders, B., Koch, H.G., & Ullrich, K. (1996). Deficits in selective and sustained attention processes in early treated children with phenylketonuria—result of impaired frontal lobe functions?. European Journal of Pediatrics, 155(3), 200204.CrossRefGoogle ScholarPubMed
Welsh, M.C., Pennington, B.F., Ozonoff, S., Rouse, B., & McCabe, E.R. (1990). Neuropsychology of early-treated phenylketonuria: specific executive function deficits. Child Development, 61(6), 16971713.CrossRefGoogle ScholarPubMed
White, D.A., Antenor-Dorsey, J.A.V., Grange, D.K., Hershey, T., Rutlin, J., Shimony, J.S., McKinstry, R.C., & Christ, S.E. (2013). White matter integrity and executive abilities following treatment with tetrahydrobiopterin (BH4) in individuals with phenylketonuria. Molecular Genetics and Metabolism, 110(3), 213217.CrossRefGoogle ScholarPubMed
White, D.A., Nortz, M.J., Mandernach, T., Huntington, K., & Steiner, R.D. (2001). Deficits in memory strategy use related to prefrontal dysfunction during early development: evidence from children with phenylketonuria. Neuropsychology, 15(2), 221229.CrossRefGoogle ScholarPubMed
White, D.A., Nortz, M.J., Mandernach, T., Huntington, K., & Steiner, R.D. (2002). Age-related working memory impairments in children with prefrontal dysfunction associated with phenylketonuria. Journal of the International Neuropsychological Society, 8(1), 111.CrossRefGoogle ScholarPubMed
Wiersema, J.R., van Der Meere, J.J., & Roeyers, H. (2005). State regulation and response inhibition in children with ADHD and children with early-and continuously treated phenylketonuria: an event-related potential comparison. Journal of Inherited Metabolic Disease, 28(6), 831843.CrossRefGoogle ScholarPubMed
Williamson, M.L., Koch, R., Azen, C., & Chang, C. (1981). Correlates of intelligence test results in treated phenylketonuric children. Pediatrics, 68(2), 161167.Google ScholarPubMed
Zelazo, P.D. & Müller, U. (2002). Executive function in typical and atypical development, In Gaswami, U. (Ed.), Handbook of childhood cognitive development (pp. 445469). Oxford: Blackwell.CrossRefGoogle Scholar
Zhang, Z.X., Ye, J., Qiu, W.J., Han, L.S., & Gu, X.F. (2005). Screening and diagnosis of tetrahydrobiopterin responsive phenylalanine hydroxylase deficiency with tetrahydrobiopterin loading test. Zhonghua er ke za zhi, 43(5), 335339.Google ScholarPubMed
Supplementary material: File

Canton et al. supplementary material

Canton et al. supplementary material 1

Download Canton et al. supplementary material(File)
File 131.1 KB