Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-03T17:43:20.329Z Has data issue: false hasContentIssue false

Neuropsychological functioning and determinants of morning alertness in patients with obstructive sleep apnea syndrome

Published online by Cambridge University Press:  26 February 2009

Edwin Verstraeten
Affiliation:
Department of Psychology, Vrije Universiteit Brussel, Brussels, Belgium
Raymond Cluydts
Affiliation:
Department of Psychology, Vrije Universiteit Brussel, Brussels, Belgium Clinical Sleep Research Center, University Hospital Antwerp, Antwerp, Belgium
Johan Verbraecken
Affiliation:
Clinical Sleep Research Center, University Hospital Antwerp, Antwerp, Belgium
Jacques De Roeck
Affiliation:
Clinical Sleep Research Center, University Hospital Antwerp, Antwerp, Belgium

Abstract

Neuropsychological functioning is reported to be impaired in patients suffering from obstructive sleep apnea syndrome (OSAS). This syndrome is characterized by nocturnal respiratory disturbances, blood oxygen desaturations, sleep fragmentation, and excessive daytime sleepiness. Opinions arc divided concerning the exact relationship between the observed cognitive deficits, nocturnal hypoxia, sleep disruption, and impaired daytime alertness. In the present study, morning neuropsychological function of 26 moderate to severe middle-aged sleep apneics is compared to that of 22 primary insomniacs. There were no performance differences on a range of neuropsychological tests among the two patient groups. In addition, the data suggest that morning alertness impairment, which is closely associated with a lack of slow wave sleep (SWS) and rapid eye movement (REM) sleep, is of major importance in inducing poorer cognitive performance in patients with moderate to severe sleep apnea. (JINS, 1996, 2,306–314.)

Type
Research Article
Copyright
Copyright © The International Neuropsychological Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adams, K.M., Brown, G.G., & Grant, I. (1985). Analysis of covariance as a remedy for demographic mismatch of research subject groups: Some sobering simulations. Journal of Clinical and Experimental Neuropsychology, 7, 445462.CrossRefGoogle ScholarPubMed
Ancoli-Israel, S. & Coy, T. (1994). Are breathing disturbances in elderly equivalent to sleep apnea syndrome? Sleep, 17, 7783.CrossRefGoogle ScholarPubMed
Bak, J.S. & Greene, R.L. (1980). Changes in neuropsychological functioning in an aging population. Journal of Consulting and Clinical Psychology, 48, 395399.CrossRefGoogle Scholar
Bédard, M.A., Montplaisir, J., Malo, J., Richer, F., & Rouleau, I. (1993). Persistent neuropsychological deficits and vigilance impairment in sleep apnea syndrome after treatment with continuous positive airway pressure (CPAP). Journal of Clinical and Experimental Neuropsychology, 15, 330341.CrossRefGoogle Scholar
Bédard, M.A., Montplaisir, J., Richer, F., Rouleau, I., & Malo, J. (1991a). Obstructive sleep apnea syndrome: Pathogenesis of neuropsychological deficits. Journal of Clinical and Experimental Neuropsychology, 13, 950964.CrossRefGoogle ScholarPubMed
Bédard, M.A., Montplaisir, J., Richer, F., & Malo, J. (1991b). Nocturnal hypoxemia as a determinant of vigilance impairment in sleep apnea syndrome. Chest, 100, 367370.CrossRefGoogle ScholarPubMed
Bliwise, D.L. (1993). Sleep apnea and cognitive function: Where do we stand now? Sleep, 16, S72–S73.CrossRefGoogle ScholarPubMed
Bliwise, D.L., Yesavage, J.A., Tinklenberg, J.R., & Dement, W.C. (1989). Sleep apnea in Alzheimer's disease. Neurobiology of Aging, 10, 343346.CrossRefGoogle ScholarPubMed
Bonnet, M.H. (1985). Effect of sleep disruption on sleep, performance, and mood. Sleep, 8, 1119.CrossRefGoogle ScholarPubMed
Bonnet, M.H. (1993). Cognitive effects of sleep and sleep fragmentation. Sleep, 16, S65–S67.CrossRefGoogle ScholarPubMed
Bors, D.A., MacLeod, C.M., & Forrin, B. (1993). Eliminating the IQ-RT correlation by eliminating an experimental confound. Intelligence, 17, 475500.CrossRefGoogle Scholar
Buchsbaum, M.S., Ingvar, D.H., Kessler, R., Walters, R.N., Capeletti, J., van Kammen, D.P., King, A.C., Johnson, J.L., Manning, R.G., Flynn, R.W., Mann, L.S., Bunney, W.E., & Sokoloff, L. (1982a). Cerebral glucography with positron tomography: Use in normal subjects and in patients with schizophrenia. Archives of General Psychiatry, 39, 251259.CrossRefGoogle ScholarPubMed
Buchsbaum, M.S., Mendelson, W.B., & Duncan, W.C. (1982b). Topographical cortical mapping of EEG sleep states during daytime naps in normal subjects. Sleep, 5, 248255.CrossRefGoogle Scholar
Carskadon, M., Dement, W.C., Mitler, M.M., Roth, T., Westbrook, P.R., & Keenan, S. (1986). Guidelines for the multiple sleep latency test (MSLT): A standard measure of sleepiness. Sleep, 9, 519524.CrossRefGoogle ScholarPubMed
Cheshire, K., Engleman, H., Deary, I., Shapiro, C., & Douglas, N.J. (1992). Factors impairing daytime performance in patients with sleep apnea/hypopnea syndrome. Arehives of Internal Medicine, 152, 538541.CrossRefGoogle ScholarPubMed
Colt, H.G., Haas, H., & Rich, G.B. (1991). Hypoxemia vs sleep fragmentation as cause of excessive daytime sleepiness in obstructive sleep apnea. Chest, 100, 15421548.CrossRefGoogle ScholarPubMed
Davis, J.N., Giron, L.T., Stanton, E., & Maury, W. (1979). The effect of hypoxia on brain neurotransmitter systems. In In Fahn, S. (Ed.), Advances in neurology (Vol. 26, pp. 219223). New York: Raven Press.Google Scholar
Derderian, S.S., Bridenbaugh, R.H., & Rajagopal, K.R. (1988). Neuropsychologic symptoms in obstructive sleep apnea improve after treatment with nasal continuous positive airway pressure. Chest, 94, 10231027.CrossRefGoogle ScholarPubMed
Findley, L.J., Barth, J.T., Powers, M.E., Wilhoit, S.C., Boyd, D.G., & Suratt, P.M. (1986). Cognitive impairment in patients with obstructive sleep apnea and associated hypoxemia. Chest, 90, 686690.CrossRefGoogle ScholarPubMed
Findley, L.J., Unverzagt, M.E., & Suratt, P.M. (1988). Automobile accidents involving patients with obstructive sleep apnea. American Review of Respiratory Diseases, 138, 337340.CrossRefGoogle ScholarPubMed
Flemons, W.W., Remmers, J.E., & Whitelaw, W.A. (1993). The correlation of a computer simulated driving program with polysomnographic indices and neuropsychological tests in consecutively referred patients for assessment of sleep apnea. Sleep, 16, S71.CrossRefGoogle ScholarPubMed
Gibson, G.E., Pulsinelli, W., Blass, J., & Duffy, T.E. (1981). Brain dysfunction in mild to moderate hypoxia. American Journal of Medicine, 70, 12471254.CrossRefGoogle ScholarPubMed
Greenberg, G.D., Watson, R.K., & Deptula, D. (1987). Neuropsychological dysfunction in sleep apnea. Sleep, 10, 254262.CrossRefGoogle ScholarPubMed
Guilleminault, C. (1989). Clinical features and evaluation of obstructive sleep apnea. In Kryger, M.H., Roth, T., & Dement, W.C. (Eds.), Principles and practice of sleep medicine (pp. 552558). Philadelphia: W.B. Saunders.Google Scholar
Guilleminault, C., Cummiskey, J., & Motta, J. (1980). Chronic obstructive airflow disease and sleep studies. American Review of Respiratory Diseases, 122, 397406.Google ScholarPubMed
Guilleminault, C., Partinen, M., Quera-Salva, M.A., Hayes, B., Dement, W.C., & Nino-Murcia, G. (1988). Determinants of daytime sleepiness in obstructive sleep apnea. Chest, 94, 3237.CrossRefGoogle ScholarPubMed
Horne, J. (1988). Why we sleep: The functions of sleep in humans and other mammals. Oxford: Oxford University Press.Google Scholar
Horne, J.A. (1991). Dimensions to sleepiness. In Monk, T.H. (Ed.), Sleep, sleepiness and performance (pp. 169196). Chichester, UK: John Wiley & Sons.Google Scholar
Horne, J.A. (1993). Human sleep, sleep loss and behaviour: Implications for the prefrontal cortex and psychiatric disorder. British Journal of Psychiatry, 162, 413419.CrossRefGoogle ScholarPubMed
Jenson, A.R. & Vernon, P.A. (1986). Jenson's reaction-time studies: A reply to Longstreth. Intelligence, 10, 153179.CrossRefGoogle Scholar
Kales, A., Caldwell, A.B., Cadieux, R.J., Vela-Bueno, A., Ruch, L.G., & Mayes, S.D. (1985). Severe obstructive sleep apnea II: Associated psychopathology and psychosocial consequences. Journal of Chronic Diseases, 38, 427434.CrossRefGoogle ScholarPubMed
Kolb, B. & Whishaw, I.Q. (1990). Fundamentals of human neuropsychology (3rd ed.). New York: W.H. Freeman.Google Scholar
Lezak, M.D. (1995). Neuropsychological assessment (3rd ed.). New York: Oxford University Press.Google Scholar
Longstreth, L.E. (1984). Jenson's reaction time investigations of intelligence: A critique. Intelligence, 8, 139160.CrossRefGoogle Scholar
Mamo, H., Meric, P., Luft, A., & Seylaz, J. (1983). Hyperfrontal pattern of human cerebral circulation: Variations with age and atherosclerotic state. Archives of Neurology, 40, 626632.CrossRefGoogle ScholarPubMed
Maquet, P., Dive, D., Salmon, E., Sadzot, B., Franco, G., Poirrier, R., von Frenckell, R., & Franck, G. (1990). Cerebral glucose utilization during sleep-wake cycle in man determined by positron emission tomography and [18F]2-fluoro-2-deoxy-D-glucose method. Brain Research, 513, 136143.CrossRefGoogle ScholarPubMed
Mathew, R.J., Wilson, W.H., & Tant, S.R. (1986). Determinants of resting regional cerebral blood flow in normal subjects. Biological Psychiatry, 21, 907914.CrossRefGoogle ScholarPubMed
Mitler, M.M. (1993). Daytime sleepiness and cognitive functioning in sleep apnea. Sleep, 16, S68–S70.CrossRefGoogle ScholarPubMed
Moldofsky, H., Goldstein, R., McNicholas, W.T., Lue, F., Zamel, N., & Phillipson, E.A. (1983). Disordered breathing during sleep and overnight intellectual deterioration in patients with pathological aging. In Guilleminault, C. & Lugaresi, E. (Eds.), Sleep/wake disorders: Natural history, epidemiology, and long-term evolution (pp. 143150). New York: Raven Press.Google Scholar
Naëgelé, B., Thouvard, V., Pépin, J.-L., Lévy, P., Bonnet, C., Perret, J.E., Pellat, J., & Feuerstein, C. (1995). Deficits of cognitive executive functions in patients with sleep apnea syndrome. Sleep, 18, 4352.Google ScholarPubMed
Partinen, M. & Telakivi, T. (1992). Epidemiology of obstructive sleep apnea syndrome. Sleep, 15, S1–S4.CrossRefGoogle ScholarPubMed
Poceta, J.S., Jeong, D., Ho, S.L., Timms, R.M., & Mitler, M.M. (1990). Hypoxemia as a determinate of daytime sleepiness in obstructive sleep apnea. Sleep Research, 19, 269 (summary).Google Scholar
Rechtschaffen, A. & Kales, A. (1968). A manual of standardized terminology, techniques and scoring system for sleep stages of human subjects. Los Angeles: Brain Information Service/Brain Research Institute.Google Scholar
Ruchalla, E., Schalt, E., & Vogel, F. (1985). Relations between mental performance and reaction time: New aspects of an old problem. Intelligence, 9, 189205.CrossRefGoogle Scholar
Satlin, A., Volicer, L., Ross, V., Herz, L., & Campbell, S. (1992). Bright light treatment of behavioral and sleep disturbances in patients with Alzheimer's disease. The American Journal of Psychiatry, 149, 10281032.Google ScholarPubMed
Seidel, W.F., Ball, S., Cohen, S., Patterson, N., Yost, D., & Dement, W.C. (1984). Daytime alertness in relation to mood, performance, and nocturnal sleep in chronic insomniacs and noncomplaining sleepers. Sleep, 7, 230238.CrossRefGoogle ScholarPubMed
Sink, J., Bliwise, D.L., & Dement, W.C. (1986). Self-reported excessive daytime somnolence and impaired respiration in sleep. Chest, 90, 177180.CrossRefGoogle ScholarPubMed
Sloan, K., Craft, S., & Walsh, J.K. (1989). Neuropsychological function in obstructive sleep apnea with and without hypoxemia. Sleep Research, 18, 304 (summary).Google Scholar
StatSoft, Inc. (1994). Statistica for Windows (Vols. I and III). Tulsa, OK: StatSoft, Inc.Google Scholar
Stepanski, E., Zorick, F., Roehrs, T., Young, D., & Roth, T. (1988). Daytime alertness in patients with chronic insomnia compared with asymptomatic control subjects. Steep, 11, 5460.Google ScholarPubMed
Stone, J., Morin, C.M., Hart, R.P., Remsberg, S., & Mercer, J. (1994). Neuropsychological functioning in older insomniacs with or without obstructive sleep apnea. Psychology and Aging, 9, 231236.CrossRefGoogle ScholarPubMed
Telakivi, T., Kajaste, S., Partinen, M., Brander, P., & Nyholm, A. (1993). Cognitive function in obstructive sleep apnea. Sleep, 16, S74–S75.Google ScholarPubMed
Telakivi, T., Kajaste, S., Partinen, M., Koskenvuo, M., Salmi, T., & Kaprio, J. (1988). Cognitive function in middle-aged snorers and controls: Role of excessive daytime somnolence and sleep-related hypoxic events. Sleep, 11, 454462.Google ScholarPubMed
van Hilten, B., Hoff, J.I., Middelkoop, H.A.M., van der Velde, E.A., Kerkhof, G.A., Wauquier, A., Kamphuisen, H.A.C., & Roos, R.A.C. (1994). Sleep disruption in Parkinson's disease. Archives of Neurology, 51, 922928.CrossRefGoogle ScholarPubMed
Vernon, P.A. (1986). The g-loading of intelligence tests and their relationship with reaction times: A comment on Ruchalla et al. Intelligence, 10, 93100.CrossRefGoogle Scholar
Wilkinson, R.T. & Houghton, D. (1975). Portable four-choice reaction time test with magnetic tape memory. Behavioral Research on Methods and Instruments, 7, 441446.CrossRefGoogle Scholar