Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-11T09:16:15.101Z Has data issue: false hasContentIssue false

Multi-Session Anodal Prefrontal Transcranial Direct Current Stimulation does not Improve Executive Functions among Older Adults

Published online by Cambridge University Press:  29 October 2019

Junhong Yu
Affiliation:
The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong
Charlene L.M. Lam
Affiliation:
The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong
Idy S.C. Man
Affiliation:
The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong
Robin Shao
Affiliation:
The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong
Tatia M.C. Lee*
Affiliation:
The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong Laboratory of Neuropsychology, The University of Hong Kong, Hong Kong Institute of Clinical Neuropsychology, The University of Hong Kong, Hong Kong Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence, Guangzhou, China
*
*Correspondence and reprint requests to: Tatia M.C. Lee, Ph.D., R. Psych., Rm 656, Jockey Club Tower, The University of Hong Kong, Pokfulam Road, Hong Kong. E-mail: [email protected]

Abstract

Objective:

Findings from single-session online studies highlighted the potential of using anodal prefrontal transcranial direct current stimulation (tDCS) to enhance executive functions (EF) in the context of aging. However, tDCS must be executed as a multi-session offline intervention to ascertain its viability in this context. Relatedly, findings from multi-session studies remained inconclusive. To this end, we examined the effects of multi-session anodal prefrontal tDCS on EF in an intervention.

Method:

The intervention consisted of 15 sessions; in each, healthy older participants (Agemean = 66.7) received either 15 min of 1.5 mA tDCS (Ncompleted = 35) or sham stimulation (Ncompleted = 33) while performing EF training tasks. EF measures were assessed at baseline, post-intervention, and 1-month follow-up. Hierarchical linear models were used to examine the effect of tDCS on EF outcomes.

Results:

Both groups of participants did not differ significantly in side effect ratings and attendance. There were no significant tDCS-associated gains in any EF outcomes in the intervention.

Conclusions:

Multi-session prefrontal tDCS did not lead to any significant gains in EF in the current intervention. More research is needed to optimize the use of tDCS before it can be effectively used to enhance EF among older adults.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Boey, K.W., & Chiu, H.F.K. (1998). Assessing psychological weil-being of the old-old: A comparative study of GDS-15 md GHQ-12. Clinical Gerontologist, 19(1), 6575. doi: 10.1300/J018v19n01_06CrossRefGoogle Scholar
Cappon, D., Jahanshahi, M., & Bisiacchi, P. (2016). Value and efficacy of transcranial direct current stimulation in the cognitive rehabilitation: A critical review since 2000. Frontiers in Neuroscience, 10, 157. Retrieved from https://www.frontiersin.org/article/10.3389/fnins.2016.00157CrossRefGoogle ScholarPubMed
Cieslik, E.C., Mueller, V.I., Eickhoff, C.R., Langner, R., & Eickhoff, S.B. (2015). Three key regions for supervisory attentional control: Evidence from neuroimaging meta-analyses. Neuroscience & Biobehavioral Reviews, 48, 2234. doi: 10.1016/j.neubiorev.2014.11.003CrossRefGoogle ScholarPubMed
Cotelli, M., Manenti, R., Petesi, M., Brambilla, M., Rosini, S., Ferrari, C., Zanetti, O., & Miniussi, C. (2014). Anodal tDCS during face-name associations memory training in Alzheimer’s patients. Frontiers in Aging Neuroscience, 6, 19. doi: 10.3389/fnagi.2014.00038CrossRefGoogle ScholarPubMed
Culbertson, W.C. & Zillmer, E.A. (2005). Tower of London Drexel University, second edition (TOLDX), Toronto, Canada: Multi-Health Systems.Google Scholar
Das, N., Spence, J.S., Aslan, S., Vanneste, S., Mudar, R., Rackley, A., Quiceno, M., & Chapman, S.B. (2019). Cognitive training and transcranial direct current stimulation in mild cognitive impairment: A randomized pilot trial. Frontiers in Neuroscience, 13, 307. Retrieved from https://www.frontiersin.org/article/10.3389/fnins.2019.00307CrossRefGoogle ScholarPubMed
Dedoncker, J., Brunoni, A.R., Baeken, C., & Vanderhasselt, M.-A. (2016). A systematic review and meta-analysis of the effects of Transcranial Direct Current Stimulation (tDCS) over the dorsolateral prefrontal cortex in healthy and neuropsychiatric samples: Influence of stimulation parameters. Brain Stimulation, 9(4), 501517. doi: 10.1016/j.brs.2016.04.006CrossRefGoogle ScholarPubMed
D’Elia, L. & Satz, P. (1996). Color trails test. Odessa, FL: Psychological Assessment Resources.Google Scholar
De Luca, C.R., Wood, S.J., Anderson, V., Buchanan, J.-A., Proffitt, T.M., Mahony, K., & Pantelis, C. (2003). Normative data from the Cantab. I: Development of executive function over the lifespan. Journal of Clinical and Experimental Neuropsychology, 25(2), 242254. doi: 10.1076/jcen.25.2.242.13639CrossRefGoogle ScholarPubMed
Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64, 135168. doi: 10.1146/annurev-psych-113011-143750CrossRefGoogle ScholarPubMed
Fazeli, P.L., Woods, A.J., Pope, C.N., Vance, D.E., & Ball, K.K. (2019). Effect of transcranial direct current stimulation combined with cognitive training on cognitive functioning in older adults with HIV: A pilot study. Applied Neuropsychology: Adult, 26(1), 3647. doi: 10.1080/23279095.2017.1357037CrossRefGoogle ScholarPubMed
Fileccia, E., Di Stasi, V., Poda, R., Rizzo, G., Stanzani-Maserati, M., Oppi, F., Avoni, P., Capellari, S., & Liguori, R. (2019). Effects on cognition of 20-day anodal transcranial direct current stimulation over the left dorsolateral prefrontal cortex in patients affected by mild cognitive impairment: A case-control study. Neurological Sciences, 40(9), 18651872. doi: 10.1007/s10072-019-03903-6CrossRefGoogle ScholarPubMed
Fonteneau, C., Mondino, M., Arns, M., Baeken, C., Bikson, M., Brunoni, A.R., Burke, M.J., Neuvonen, T., Padberg, F., Pascual-Leone, A., Poulet, E., Ruffini, G., Santarnecchi, E., Sauvaget, A., Schellhorn, K., Suaud-Chagny, M.F., Palm, U., & Brunelin, J. (2019). Sham tDCS: A hidden source of variability? Reflections for further blinded, controlled trials. Brain Stimulation, 12, 668673. doi: 10.1016/j.brs.2018.12.977CrossRefGoogle ScholarPubMed
Groot, C., Hooghiemstra, A.M., Raijmakers, P.G.H.M., van Berckel, B.N.M., Scheltens, P., Scherder, E.J.A., van der Flier, W.M., & Ossenkoppele, R. (2016). The effect of physical activity on cognitive function in patients with dementia: A meta-analysis of randomized control trials. Ageing Research Reviews, 25, 1323. doi: 10.1016/j.arr.2015.11.005CrossRefGoogle ScholarPubMed
Hanley, C.J. & Tales, A. (2019). Anodal tDCS improves attentional control in older adults. Experimental Gerontology, 115, 8895. doi: 10.1016/j.exger.2018.11.019CrossRefGoogle ScholarPubMed
Herwig, U., Satrapi, P., & Schönfeldt-Lecuona, C. (2003). Using the International 10-20 EEG system for positioning of transcranial magnetic stimulation. Brain Topography, 16(2), 9599. doi: 10.1023/B:BRAT.0000006333.93597.9dCrossRefGoogle ScholarPubMed
Hill, N.T.M., Mowszowski, L., Naismith, S.L., Chadwick, V.L., Valenzuela, M., & Lampit, A. (2016). Computerized cognitive training in older adults with mild cognitive impairment or dementia: A systematic review and meta-analysis. American Journal of Psychiatry, 174(4), 329340. doi: 10.1176/appi.ajp.2016.16030360CrossRefGoogle ScholarPubMed
Hom, J. (2010). Halstead category test – Adult computer version. Dallas, TX: The Neuropsychology Center.Google Scholar
Horvath, J.C., Forte, J.D., & Carter, O. (2015). Quantitative review finds no evidence of cognitive effects in healthy populations from single-session Transcranial Direct Current Stimulation (tDCS). Brain Stimulation, 8(3), 535550. doi: 10.1016/j.brs.2015.01.400CrossRefGoogle Scholar
Hsu, W.Y., Ku, Y., Zanto, T.P., & Gazzaley, A. (2015). Effects of noninvasive brain stimulation on cognitive function in healthy aging and Alzheimer’s disease: A systematic review and meta-analysis. Neurobiology of Aging, 36(8), 23482359. doi: 10.1016/j.neurobiolaging.2015.04.016CrossRefGoogle ScholarPubMed
Huo, L., Zheng, Z., Li, J., Wan, W., Cui, X., Chen, S., Wang, W., & Li, J. (2018). Long-term transcranial direct current stimulation does not improve executive function in healthy older adults. Frontiers in Aging Neuroscience, 10, 298. doi: 10.3389/fnagi.2018.00298CrossRefGoogle Scholar
Hurley, R. & Machado, L. (2017). Using tDCS priming to improve brain function: Can metaplasticity provide the key to boosting outcomes? Neuroscience & Biobehavioral Reviews, 83, 155159. doi: 10.1016/j.neubiorev.2017.09.029CrossRefGoogle ScholarPubMed
Imburgio, M.J. & Orr, J.M. (2018). Effects of prefrontal tDCS on executive function: Methodological considerations revealed by meta-analysis. Neuropsychologia, 117, 156166. doi: 10.1016/j.neuropsychologia.2018.04.022CrossRefGoogle ScholarPubMed
Jacobson, S.C., Blanchard, M., Connolly, C.C., Cannon, M., & Garavan, H. (2011). An fMRI investigation of a novel analogue to the Trail-Making Test. Brain and Cognition, 77(1), 6070. doi: 10.1016/j.bandc.2011.06.001CrossRefGoogle ScholarPubMed
Jones, K.T., Stephens, J.A., Alam, M., Bikson, M., & Berryhill, M.E. (2015). Longitudinal neurostimulation in older adults improves working memory. PLoS One, 10(4), e0121904. doi: 10.1371%2Fjournal.pone.0121904CrossRefGoogle ScholarPubMed
Kelly, M.E., Loughrey, D., Lawlor, B.A., Robertson, I.H., Walsh, C., & Brennan, S. (2014). The impact of cognitive training and mental stimulation on cognitive and everyday functioning of healthy older adults: A systematic review and meta-analysis. Ageing Research Reviews, 15, 2843. doi: 10.1016/j.arr.2014.02.004CrossRefGoogle ScholarPubMed
Khedr, E.M., El Gamal, N.F., El-Fetoh, N.A., Khalifa, H., Ahmed, E.M., Ali, A.M., Noaman, M., El-Baki, A.A., & Karim, A.A. (2014). A double-blind randomized clinical trial on the efficacy of cortical direct current stimulation for the treatment of Alzheimer’s disease. Frontiers in Aging Neuroscience, 6, 275. doi: 10.3389/fnagi.2014.00275CrossRefGoogle ScholarPubMed
Kuiper, J.S., Oude Voshaar, R.C., Verhoeven, F.E.A., Zuidema, S.U., & Smidt, N. (2017). Comparison of cognitive functioning as measured by the Ruff Figural Fluency Test and the CogState computerized battery within the LifeLines Cohort Study. BMC Psychology, 5(1), 15. doi: 10.1186/s40359-017-0185-0CrossRefGoogle ScholarPubMed
Kuznetsova, A., Brockhoff, P.B., & Christensen, R.H.B. (2017). {lmerTest} Package: Tests in linear mixed effects models. Journal of Statistical Software, 82(13), 126. doi: 10.18637/jss.v082.i13CrossRefGoogle Scholar
Lawrence, B.J., Gasson, N., Johnson, A.R., Booth, L., & Loftus, A.M. (2018). Cognitive training and transcranial direct current stimulation for mild cognitive impairment in Parkinson’s Disease: A randomized controlled trial. Parkinsons Disease, 2018, 4318475. doi: 10.1155/2018/4318475Google ScholarPubMed
Lee, T.M.C. & Chan, C.C.H. (2000a). Are trail making and color trails tests of equivalent constructs? Journal of Clinical and Experimental Neuropsychology, 22(4), 529534. doi: 10.1076/1380-3395(200008)22:4;1-0;FT529CrossRefGoogle ScholarPubMed
Lee, T.M.C. & Chan, C.C.H. (2000b). Stroop interference in Chinese and English. Journal of Clinical and Experimental Neuropsychology, 22(4), 465471. doi: 10.1076/1380-3395(200008)22:4;1-0;FT465CrossRefGoogle ScholarPubMed
Lefaucheur, J.-P., Antal, A., Ayache, S.S., Benninger, D.H., Brunelin, J., Cogiamanian, F., Cotelli, M., De Ridder, D., Ferrucci, R., Langguth, B., Marangolo, P., Mylius, V., Nitsche, M.A., Padberg, F., Palm, U., Poulet, E., Priori, A., Rossi, S., Schecklmann, M., Vanneste, S., Ziemann, U., Garcia-Larrea, L., & Paulus, W. (2017). Evidence-based guidelines on the therapeutic use of transcranial direct current stimulation (tDCS). Clinical Neurophysiology, 128(1), 5692. doi: 10.1016/j.clinph.2016.10.087CrossRefGoogle Scholar
Loring, D.W., & Larrabee, G.J. (2006). Sensitivity of the halstead and wechsler test batteries to brain damage: Evidence from Reitan’s Original Validation sample. The Clinical Neuropsychologist, 20(2), 221229. doi: 10.1080/13854040590947443CrossRefGoogle ScholarPubMed
Manenti, R., Brambilla, M., Benussi, A., Rosini, S., Cobelli, C., Ferrari, C., Petesi, M., Orizio, I., Padovani, A., Borroni, B., & Cotelli, M. (2016). Mild cognitive impairment in Parkinson’s disease is improved by transcranial direct current stimulation combined with physical therapy. Movement Disorders, 31(5), 715724. doi: 10.1002/mds.26561CrossRefGoogle ScholarPubMed
Manor, B., Zhou, J., Harrison, R., Lo, O.-Y., Travison, T.G., Hausdorff, J.M., Pascual-Leone, A., & Lipsitz, L. (2018). Transcranial direct current stimulation may improve cognitive-motor function in functionally limited older adults. Neurorehabilitation and Neural Repair, 32(9), 788798. doi: 10.1177/1545968318792616CrossRefGoogle ScholarPubMed
Monte-Silva, K., Kuo, M.F., Hessenthaler, S., Fresnoza, S., Liebetanz, D., Paulus, W., & Nitsche, M.A. (2013). Induction of late LTP-like plasticity in the human motor cortex by repeated non-invasive brain stimulation. Brain Stimulation, 6(3), 424432. doi: 10.1016/j.brs.2012.04.011CrossRefGoogle ScholarPubMed
Nilsson, J., Lebedev, A.V., Rydström, A., & Lövdén, M. (2017). Direct-current stimulation does little to improve the outcome of working memory training in older adults. Psychological Science, 28(7), 907920. doi: 10.1177/0956797617698139CrossRefGoogle ScholarPubMed
Ownby, R.L. & Acevedo, A. (2016). Apilot study of cognitive training with and without transcranial direct current stimulation to improve cognition in older persons with HIV-related cognitive impairment. Neuropsychiatric Disease and Treatment, 12, 27452754. doi: 10.2147/NDT.S120282CrossRefGoogle Scholar
Park, S.-H., Seo, J.-H., Kim, Y.-H., & Ko, M.-H. (2014). Long-term effects of transcranial direct current stimulation combined with computer-assisted cognitive training in healthy older adults. NeuroReport, 25(2), 122126. Retrieved from http://journals.lww.com/neuroreport/Fulltext/2014/01220/Long_term_effects_of_transcranial_direct_current.10.aspxCrossRefGoogle ScholarPubMed
Ramaraju, S., Roula, M.A., & McCarthy, P.W. (2018). Modelling the effect of electrode displacement on transcranial direct current stimulation (tDCS). Journal of Neural Engineering, 15(1), 16019. doi: 10.1088/1741-2552/aa8d8aCrossRefGoogle Scholar
Ruff, R.M., Light, R.H., & Evans, R.W. (1987). The ruff figural fluency test: A normative study with adults. Developmental Neuropsychology, 3(1), 3751. doi: 10.1080/87565648709540362CrossRefGoogle Scholar
Sánchez-Benavides, G., Gómez-Ansón, B., Quintana, M., Vives, Y., Manero, R.M., Sainz, A., Blesa, R., Molinuevo, J.L., & Peña-Casanova, J. (2010). Problem-solving abilities and frontal lobe cortical thickness in healthy aging and mild cognitive impairment. Journal of the International Neuropsychological Society, 16(5), 836845. doi: 10.1017/S135561771000069XCrossRefGoogle ScholarPubMed
Spreen, O. & Strauss, E.A. (1998). A compendium of neuropsychological tests: Administration, norms, and commentary (2nd ed.). New York, NY: Oxford University Press.Google Scholar
Stephens, J.A. & Berryhill, M.E. (2016). Older adults improve on everyday tasks after working memory training and neurostimulation. Brain Stimulation, 9(4), 553559. doi: 10.1016/j.brs.2016.04.001CrossRefGoogle ScholarPubMed
Summers, J.J., Kang, N., & Cauraugh, J.H. (2016). Does transcranial direct current stimulation enhance cognitive and motor functions in the ageing brain? A systematic review and meta-analysis. Ageing Research Reviews, 25, 4254. doi: 10.1016/j.arr.2015.11.004CrossRefGoogle Scholar
Wong, A., Xiong, Y.Y., Kwan, P.W.L., Chan, A.Y.Y., Lam, W.W.M., Wang, K., Chu, W.C., Nyenhuis, D.L., Nasreddine, Z., Wong, L.K., & Mok, V.C.T. (2009). The validity, reliability and clinical utility of the Hong Kong Montreal Cognitive Assessment (HK-MoCA) in patients with Cerebral Small Vessel disease. Dementia and Geriatric Cognitive Disorders, 28(1), 8187. Retrieved from http://www.karger.com/DOI/10.1159/000232589CrossRefGoogle Scholar
Yaffe, K., Falvey, C.M., & Hoang, T. (2014). Connections between sleep and cognition in older adults. The Lancet Neurology, 13(10), 10171028. doi: 10.1016/S1474-4422(14)70172-3CrossRefGoogle ScholarPubMed
Yochim, B.P., Mueller, A.E., & Segal, D.L. (2013). Late life anxiety is associated with decreased memory and executive functioning in community dwelling older adults. Journal of Anxiety Disorders, 27(6), 567575. doi: 10.1016/j.janxdis.2012.10.010CrossRefGoogle ScholarPubMed
Supplementary material: File

Yu et al. supplementary material

Yu et al. supplementary material

Download Yu et al. supplementary material(File)
File 41.1 KB