Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-22T04:15:19.993Z Has data issue: false hasContentIssue false

Midlife Vascular Factors and Prevalence of Mild Cognitive Impairment in Late-Life in Mexico

Published online by Cambridge University Press:  11 August 2021

Miguel Arce Rentería
Affiliation:
Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, Columbia University College of Physicians and Surgeons, New York City, NY, USA
Jennifer J. Manly
Affiliation:
Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, Columbia University College of Physicians and Surgeons, New York City, NY, USA
Jet M.J. Vonk
Affiliation:
Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, Columbia University College of Physicians and Surgeons, New York City, NY, USA Julius Center for Health Sciences and Primary Care, Department of Epidemiology, University Medical Center Utrecht and Utrecht University, Utrecht, The Netherlands
Silvia Mejia Arango
Affiliation:
Department of Population Studies, El Colegio de la Frontera Norte, Tijuana, Baja California, Mexico
Alejandra Michaels Obregon
Affiliation:
Sealy Center on Aging, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
Rafael Samper-Ternent
Affiliation:
Sealy Center on Aging, University of Texas Medical Branch at Galveston, Galveston, Texas, USA Department of Internal Medicine, University of Texas Medical Branch at Galveston, Galveston, TX, USA
Rebeca Wong
Affiliation:
Sealy Center on Aging, University of Texas Medical Branch at Galveston, Galveston, Texas, USA
Sandra Barral*
Affiliation:
Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, Columbia University College of Physicians and Surgeons, New York City, NY, USA
Giuseppe Tosto*
Affiliation:
Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Department of Neurology, Columbia University College of Physicians and Surgeons, New York City, NY, USA
*
*Correspondence and reprint requests to: Sandra Barral, Giuseppe Tosto, Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, 622 W 168th St, New York, NY, 10032, USA. E-mails: [email protected]; [email protected]
*Correspondence and reprint requests to: Sandra Barral, Giuseppe Tosto, Department of Neurology, Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Medical Center, 622 W 168th St, New York, NY, 10032, USA. E-mails: [email protected]; [email protected]

Abstract

Objective:

To estimate the prevalence of mild cognitive impairment (MCI) and its subtypes and investigate the impact of midlife cardiovascular risk factors on late-life MCI among the aging Mexican population.

Method:

Analyses included a sample of non-demented adults over the age of 55 living in both urban and rural areas of Mexico (N = 1807). MCI diagnosis was assigned based on a comprehensive cognitive assessment assessing the domains of memory, executive functioning, language, and visuospatial ability. The normative sample was selected by means of the robust norms approach. Cognitive impairment was defined by a 1.5-SD cut-off per cognitive domain using normative corrections for age, years of education, and sex. Risk factors included age, education, sex, rurality, depression, insurance status, workforce status, hypertension, diabetes, stroke, and heart disease.

Results:

The prevalence of amnestic MCI was 5.9%. Other MCI subtypes ranged from 4.2% to 7.7%. MCI with and without memory impairment was associated with older age (OR = 1.01 [1.01, 1.05]; OR = 1.03 [1.01, 1.04], respectively) and residing in rural areas (OR = 1.49 [1.08, 2.06]; OR = 1.35 [1.03, 1.77], respectively). Depression (OR = 1.07 [1.02, 1.12]), diabetes (OR = 1.37 [1.03, 1.82]), and years of education (OR = 0.94 [0.91, 0.97]) were associated with MCI without memory impairment. Midlife CVD increased the odds of MCI in late-life (OR = 1.76 [1.19, 2.59], which was driven by both midlife hypertension and diabetes (OR = 1.70 [1.18, 2.44]; OR = 1.88 [1.19, 2.97], respectively).

Conclusions:

Older age, depression, low education, rurality, and midlife hypertension and diabetes were associated with higher risk of late-life MCI among older adults in Mexico. Our findings suggest that the causes of cognitive impairment are multifactorial and vary by MCI subtype.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2021

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aguilar-Navarro, S. G., Fuentes-Cantú, A., Avila-Funes, J. A., & García-Mayo, E. J. (2007). Validity and reliability of the screening questionnaire for geriatric depression used in the Mexican Health and Age Study. Salud publica de Mexico, 49(4), 256262.CrossRefGoogle ScholarPubMed
Albert, M. S., DeKosky, S. T., Dickson, D., Dubois, B., Feldman, H. H., Fox, N. C., … Petersen, R. C. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s & Dementia, 7(3), 270279.CrossRefGoogle Scholar
Aronson, M., Ooi, W., Morgenstern, H., Hafner, A., Masur, D., Crystal, H., … Katzman, R. (1990). Women, myocardial infarction, and dementia in the very old. Neurology, 40(7), 11021102.CrossRefGoogle ScholarPubMed
Avila, J. F., Rentería, M. A., Witkiewitz, K., Verney, S. P., Vonk, J. M., & Manly, J. J. (2020). Measurement invariance of neuropsychological measures of cognitive aging across race/ethnicity by sex/gender groups. Neuropsychology, 34(1), 3.CrossRefGoogle Scholar
Bangen, K. J., Clark, A. L., Werhane, M., Edmonds, E. C., Nation, D. A., Evangelista, N., … Delano-Wood, L. (2016). Cortical amyloid burden differences across empirically-derived mild cognitive impairment subtypes and interaction with APOE ε4 genotype. Journal of Alzheimer’s Disease, 52(3), 849861.CrossRefGoogle Scholar
Bondi, M. W., Edmonds, E. C., Jak, A. J., Clark, L. R., Delano-Wood, L., McDonald, C. R., … Galasko, D. (2014). Neuropsychological criteria for mild cognitive impairment improves diagnostic precision, biomarker associations, and progression rates. Journal of Alzheimer’s Disease, 42(1), 275289.CrossRefGoogle ScholarPubMed
Breteler, M. M., Claus, J. J., Grobbee, D. E., & Hofman, A. (1994). Cardiovascular disease and distribution of cognitive function in elderly people: the Rotterdam Study. BMJ, 308(6944), 16041608.CrossRefGoogle ScholarPubMed
Bursi, F., Rocca, W. A., Killian, J. M., Weston, S. A., Knopman, D. S., Jacobsen, S. J., & Roger, V. L. (2005). Heart disease and dementia: a population-based study. American Journal of Epidemiology, 163(2), 135141.CrossRefGoogle ScholarPubMed
Busch, R. M., & Chapin, J. S. (2008). Review of normative data for common screening measures used to evaluate cognitive functioning in elderly individuals. The Clinical Neuropsychologist, 22(4), 620650.CrossRefGoogle ScholarPubMed
Clark, L. R., Delano-Wood, L., Libon, D. J., McDonald, C. R., Nation, D. A., Bangen, K. J., … Bondi, M. W. (2013). Are empirically-derived subtypes of mild cognitive impairment consistent with conventional subtypes? Journal of the International Neuropsychological Society, 19(6), 635645.CrossRefGoogle ScholarPubMed
IBM Corp. Released 2019. IBM SPSS Statistics for Macintosh, Version 26.0. Armonk, NY: IBM Corp.CrossRefGoogle Scholar
Debette, S., Seshadri, S., Beiser, A., Au, R., Himali, J., Palumbo, C., … DeCarli, C. (2011). Midlife vascular risk factor exposure accelerates structural brain aging and cognitive decline. Neurology, 77(5), 461468.CrossRefGoogle ScholarPubMed
Delano-Wood, L., Bondi, M. W., Sacco, J., Abeles, N., Jak, A. J., Libon, D. J., & Bozoki, A. (2009). Heterogeneity in mild cognitive impairment: Differences in neuropsychological profile and associated white matter lesion pathology. Journal of the International Neuropsychological Society, 15(6), 906914.CrossRefGoogle ScholarPubMed
Dewey, M. E., & Copeland, J. R. (2001). Diagnosis of dementia from the history and aetiology schedule. International journal of geriatric psychiatry, 16(9), 912917.CrossRefGoogle ScholarPubMed
Di Carlo, A., Baldereschi, M., Amaducci, L., Lepore, V., Bracco, L., Maggi, S., … Farchi, G. (2002). Incidence of dementia, Alzheimer’s disease, and vascular dementia in Italy. The ILSA Study. Journal of the American Geriatrics Society, 50(1), 4148.CrossRefGoogle ScholarPubMed
Downer, B., Kumar, A., Mehta, H., Al Snih, S., & Wong, R. (2016). The effect of undiagnosed diabetes on the association between self-reported diabetes and cognitive impairment among older Mexican adults. American Journal of Alzheimer’s Disease & Other Dementias®, 31(7), 564569.CrossRefGoogle ScholarPubMed
Edmonds, E. C., Delano-Wood, L., Clark, L. R., Jak, A. J., Nation, D. A., McDonald, C. R., … Salmon, D. P. (2015). Susceptibility of the conventional criteria for mild cognitive impairment to false-positive diagnostic errors. Alzheimer’s & Dementia, 11(4), 415424.CrossRefGoogle ScholarPubMed
Edmonds, E. C., Eppig, J., Bondi, M. W., Leyden, K. M., Goodwin, B., Delano-Wood, L., … Initiative, A. S. D. N. (2016). Heterogeneous cortical atrophy patterns in MCI not captured by conventional diagnostic criteria. Neurology, 87(20), 21082116.CrossRefGoogle Scholar
Fornazzari, L., Cumsille, F., Quevedo, F., Quiroga, P., Rioseco, P., Klaasen, G., … Rivera, E. (2001). Spanish validation of the Syndrom Kurztest (SKT). Alzheimer Disease & Associated Disorders, 15(4), 211215.CrossRefGoogle Scholar
Gottesman, R. F., Schneider, A. L., Zhou, Y., Coresh, J., Green, E., Gupta, N., … Sharrett, A. R. (2017). Association between midlife vascular risk factors and estimated brain amyloid deposition. Jama, 317(14), 14431450.CrossRefGoogle ScholarPubMed
Hall, K., Hendrie, H., Brittain, H., Norton, J., Rodgers, D., Prince, C., … Nath, A. (1993). The development of a dementia screening interview in 2 distinct languages. International Journal of Methods in Psychiatric Research, 3(1), 128.Google Scholar
Heaton, R. K., Miller, S. W., Taylor, M. J., & Grant, I. (2004). Revised comprehensive norms for an expanded Halstead-Reitan Battery: demographically adjusted neuropsychological norms for African American and Caucasian adults. Lutz, FL: Psychological Assessment Resources.Google Scholar
Horn, J. L., & McArdle, J. J. (1992). A practical and theoretical guide to measurement invariance in aging research. Experimental Aging Research, 18(3), 117144.CrossRefGoogle ScholarPubMed
Jak, A. J., Bondi, M. W., Delano-Wood, L., Wierenga, C., Corey-Bloom, J., Salmon, D. P., & Delis, D. C. (2009). Quantification of five neuropsychological approaches to defining mild cognitive impairment. The American Journal of Geriatric Psychiatry, 17(5), 368375.CrossRefGoogle ScholarPubMed
Jonaitis, E. M., Koscik, R. L., Clark, L. R., Ma, Y., Betthauser, T. J., Berman, S. E., … Van Hulle, C. A. (2019). Measuring longitudinal cognition: Individual tests versus composites. Alzheimer’s & Dementia: Diagnosis, Assessment & Disease Monitoring, 11, 7484.Google ScholarPubMed
Juarez-Cedillo, T., Sanchez-Arenas, R., Sanchez-Garcia, S., Garcia-Pena, C., Hsiung, G.-Y. R., Sepehry, A. A., … Jacova, C. (2012). Prevalence of mild cognitive impairment and its subtypes in the Mexican population. Dementia and Geriatric Cognitive Disorders, 34(5–6), 271281.CrossRefGoogle ScholarPubMed
Kivipelto, M., Helkala, E.-L., Hänninen, T., Laakso, M. P., Hallikainen, M., Alhainen, K., … Nissinen, A. (2001). Midlife vascular risk factors and late-life mild cognitive impairment: a population-based study. Neurology, 56(12), 16831689.CrossRefGoogle ScholarPubMed
Langa, K. M., Ryan, L. H., McCammon, R. J., Jones, R. N., Manly, J. J., Levine, D. A., … Weir, D. R. (2020). The health and retirement study harmonized cognitive assessment protocol project: Study design and methods. Neuroepidemiology, 54, 111.CrossRefGoogle ScholarPubMed
Launer, L. J., Ross, G. W., Petrovitch, H., Masaki, K., Foley, D., White, L. R., & Havlik, R. J. (2000). Midlife blood pressure and dementia: the Honolulu–Asia aging study☆. Neurobiology of Aging, 21(1), 4955.CrossRefGoogle ScholarPubMed
Manly, J. J., Bell-McGinty, S., Tang, M.-X., Schupf, N., Stern, Y., & Mayeux, R. (2005). Implementing diagnostic criteria and estimating frequency of mild cognitive impairment in an urban community. Archives of neurology, 62(11), 17391746.CrossRefGoogle Scholar
Matallana, D., De Santacruz, C., Cano, C., Reyes, P., Samper-Ternent, R., Markides, K. S., … Reyes-Ortiz, C. A. (2011). The relationship between education level and mini-mental state examination domains among older Mexican Americans. Journal of Geriatric Psychiatry and Neurology, 24(1), 918.CrossRefGoogle ScholarPubMed
Mathers, C. D., & Loncar, D. (2006). Projections of global mortality and burden of disease from 2002 to 2030. PLoS Medicine, 3(11), e442.CrossRefGoogle ScholarPubMed
Mejia-Arango, S., & Gutierrez, L. M. (2011). Prevalence and incidence rates of dementia and cognitive impairment no dementia in the Mexican population: data from the Mexican Health and Aging Study. Journal of Aging and Health, 23(7), 10501074.CrossRefGoogle ScholarPubMed
Mejía-Arango, S., Miguel-Jaimes, A., Villa, A., Ruiz-Arregui, L., & Gutiérrez-Robledo, L. M. (2007). Cognitive impairment and associated factors in older adults in Mexico. Salud publica de Mexico, 49(S4), 475481.CrossRefGoogle ScholarPubMed
Mejia-Arango, S., Nevarez, R., Michaels-Obregon, A., Trejo, B., Mendoza-Alvarado, L., Sosa-Ortiz, A. L., … Wong, R. (2020). The Mexican Cognitive Aging Ancillary Study (Mex-Cog): study design and methods. Archives of Gerontology and Geriatrics, 104210.CrossRefGoogle ScholarPubMed
Mejía-Arango, S., & Zúñiga-Gil, C. (2011). Diabetes mellitus as a risk factor for dementia in the Mexican elder population. Revista de neurologia, 53(7), 397405.CrossRefGoogle ScholarPubMed
Mex-Cog. (2018). Study on Cognitive Aging Linked to MHAS: Methodological Document, Version 1, November 2018. Retrieved 09/25/2019Google Scholar
Murray, C. J., & Lopez, A. D. (1997). Alternative projections of mortality and disability by cause 1990–2020: Global Burden of Disease Study. The Lancet, 349(9064), 14981504.CrossRefGoogle ScholarPubMed
Patterson, C. (2018). World Alzheimer Report 2018. The state of the art of dementia research: New frontiers. London: Alzheimer’s Dis Int. Google Scholar
Petersen, R. C., & Morris, J. C. (2005). Mild cognitive impairment as a clinical entity and treatment target. Archives of Neurology, 62(7), 11601163.CrossRefGoogle ScholarPubMed
Petersen, R. C., Roberts, R. O., Knopman, D. S., Geda, Y. E., Cha, R. H., Pankratz, V., … Rocca, W. A. (2010). Prevalence of mild cognitive impairment is higher in men: The Mayo Clinic Study of Aging. Neurology, 75(10), 889897.CrossRefGoogle ScholarPubMed
Prince, M., Ferri, C. P., Acosta, D., Albanese, E., Arizaga, R., Dewey, M., … Jacob, K. (2007). The protocols for the 10/66 dementia research group population-based research programme. BMC Public Health, 7(1), 165.CrossRefGoogle Scholar
Ranson, J. M., Kuźma, E., Hamilton, W., Muniz-Terrera, G., Langa, K. M., & Llewellyn, D. J. (2019). Predictors of dementia misclassification when using brief cognitive assessments. Neurology: Clinical Practice, 9(2), 109117.Google ScholarPubMed
Roberts, R. O., Knopman, D. S., Geda, Y. E., Cha, R. H., Roger, V. L., & Petersen, R. C. (2010). Coronary heart disease is associated with non-amnestic mild cognitive impairment. Neurobiology of Aging, 31(11), 18941902.CrossRefGoogle ScholarPubMed
Sachdev, P. S., Lipnicki, D. M., Kochan, N. A., Crawford, J. D., Thalamuthu, A., Andrews, G., … Lipton, R. B. (2015). The prevalence of mild cognitive impairment in diverse geographical and ethnocultural regions: the COSMIC collaboration. PloS one, 10(11), e0142388.CrossRefGoogle ScholarPubMed
Saxton, J., Snitz, B. E., Lopez, O. L., Ives, D. G., Dunn, L. O., Fitzpatrick, A., … Investigators, G. S. (2009). Functional and cognitive criteria produce different rates of mild cognitive impairment and conversion to dementia. Journal of Neurology, Neurosurgery & Psychiatry, 80(7), 737743.CrossRefGoogle ScholarPubMed
Sliwinski, M., Lipton, R. B., Buschke, H., & Stewart, W. (1996). The effects of preclinical dementia on estimates of normal cognitive functioning in aging. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 51(4), P217P225.CrossRefGoogle Scholar
Sonnega, A., Faul, J. D., Ofstedal, M. B., Langa, K. M., Phillips, J. W., & Weir, D. R. (2014). Cohort profile: the health and retirement study (HRS). International Journal of Epidemiology, 43(2), 576585.CrossRefGoogle Scholar
Sosa, A. L., Albanese, E., Stephan, B. C., Dewey, M., Acosta, D., Ferri, C. P., … Jimenez-Velazquez, I. Z. (2012). Prevalence, distribution, and impact of mild cognitive impairment in Latin America, China, and India: a 10/66 population-based study. PLoS medicine, 9(2), e1001170.CrossRefGoogle ScholarPubMed
Stephan, B. C. M., Minett, T., Pagett, E., Siervo, M., Brayne, C., & McKeith, I. G. (2013). Diagnosing Mild Cognitive Impairment (MCI) in clinical trials: a systematic review. BMJ Open, 3(2), e001909.CrossRefGoogle Scholar
Team, R. (2018). RStudio: Integrated Development for R.. Boston, MA Retrieved from http://www.rstudio.com/.Google Scholar
Thomas, K. R., Cook, S. E., Bondi, M. W., Unverzagt, F. W., Gross, A. L., Willis, S. L., & Marsiske, M. (2020). Application of neuropsychological criteria to classify mild cognitive impairment in the active study. Neuropsychology, 34(8), 862.CrossRefGoogle ScholarPubMed
Ton, T. G., DeLeire, T., May, S. G., Hou, N., Tebeka, M. G., Chen, E., & Chodosh, J. (2017). The financial burden and health care utilization patterns associated with amnestic mild cognitive impairment. Alzheimer’s & Dementia, 13(3), 217224.CrossRefGoogle ScholarPubMed
Ward, A., Arrighi, H. M., Michels, S., & Cedarbaum, J. M. (2012). Mild cognitive impairment: disparity of incidence and prevalence estimates. Alzheimer’s & Dementia, 8(1), 1421.CrossRefGoogle ScholarPubMed
Whitmer, R. A., Sidney, S., Selby, J., Johnston, S. C., & Yaffe, K. (2005). Midlife cardiovascular risk factors and risk of dementia in late life. Neurology, 64(2), 277281.CrossRefGoogle ScholarPubMed
Wong, R., Michaels-Obregon, A., & Palloni, A. (2015). Cohort profile: the Mexican health and aging study (MHAS). International Journal of Epidemiology, 46(2), e2e2.CrossRefGoogle Scholar
Supplementary material: File

Arce Rentería et al. supplementary material

Table S1

Download Arce Rentería et al. supplementary material(File)
File 19.5 KB