Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-09T00:30:58.121Z Has data issue: false hasContentIssue false

Long-term skill proceduralization in schizophrenia

Published online by Cambridge University Press:  10 November 2009

SOPHIE RÉMILLARD
Affiliation:
Cognitive Science Institute, Université du Québec à Montréal, Montreal, Québec, Canada
EMMANUELLE POURCHER
Affiliation:
Quebec Memory and Motor Skills Disorders Research Center, Clinique Sainte-Anne, Québec, Canada Psychology and Cognitive Neuroscience Laboratory, Université Paris Descartes – Centre National de la Recherche Scientifique (CNRS) (UMR 8189), Boulogne-Billancourt, France
HENRI COHEN*
Affiliation:
Cognitive Science Institute, Université du Québec à Montréal, Montreal, Québec, Canada Quebec Memory and Motor Skills Disorders Research Center, Clinique Sainte-Anne, Québec, Canada Psychology and Cognitive Neuroscience Laboratory, Université Paris Descartes – Centre National de la Recherche Scientifique (CNRS) (UMR 8189), Boulogne-Billancourt, France
*
*Correspondence and reprint requests to: Henri Cohen, Ph.D., Université Paris Descartes – CNRS (UMR 8189), Boulogne-Billancourt, France. E-mail: [email protected]

Abstract

Previous studies had revealed no specific effect under haloperidol (typical) and risperidone (atypical) neuroleptic (NLP) treatments for schizophrenia (SZ) on a variety of neurocognitive functions relying on the dopaminergic meso-cortico-limbic system (Rémillard et al., 2005, 2008). Considering the different affinities of D2 dopamine receptors for typical and atypical NLPs, these drugs may differentially affect the functions of the striatum, a determinant brain structure involved in procedural learning. The influence of risperidone (2–6 mg) and haloperidol (2–40 mg) on a nonmotor procedural task involving semantically related pairs of words with inverted letters was investigated in this double-blind study. The performance of 26 patients with SZ, randomly assigned to risperidone or haloperidol, was compared to that of 18 healthy controls at baseline, 3, 6, and 12 months. Results revealed that all patients with SZ exhibited slower reading speed of the word pairs than healthy controls at all assessment periods. In addition, procedural learning – characterized as a significant decrease in the time taken to read aloud the target word pairs – was more impaired in the haloperidol- than in the risperidone-treated group at all assessment periods. Healthy controls showed steady improvement in reading speed over the 12 months of the study, in contrast to SZ patients, who reached a plateau in their capacity to improve mirror-reading skill over time. However, all SZ participants in the study showed near normal learning profiles from exposure to semantic associations embedded in the procedural memory task, providing evidence for the preservation of associative connections in the semantic network of these patients. The observed impairment in procedural learning in SZ may thus reflect, at least in part, the influence of neuroleptic medication on striatal functions. (JINS, 2010, 16, 148–156.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aleman, A., Hijman, R., de Haan, E.H.F., & Kahn, R.S. (1999). Memory impairment in schizophrenia: A meta-analysis. American Journal of Psychiatry, 154, 13581366.CrossRefGoogle Scholar
Allen, H.A., Liddle, P.F., & Frith, C.D. (1993). Negative features, retrieval processes and verbal fluency in schizophrenia. British Journal of Psychiatry, 163, 769775.CrossRefGoogle ScholarPubMed
Al-Uzri, M.M., Laws, K.R., & Mortimer, A.M. (2004). An early marker for semantic memory impairment in patients with schizophrenia. Cognitive Neuropsychiatry, 9, 267279.Google ScholarPubMed
Bédard, M.-A., Scherer, H., Stip, E., Cohen, H., Rodriguez, J.-P., & Richer, F. (2000). Procedural learning in schizophrenia: Further consideration on the deleterious effect of neuroleptics. Brain and Cognition, 43, 3139.Google ScholarPubMed
Besche-Richard, C., Passerieux, C., & Hardy-Baylé, M.C. (2005). Double-decision lexical tasks in thought-disordered schizophrenic patients: A path towards cognitive remediation? Brain and Language, 95, 395401.CrossRefGoogle ScholarPubMed
Blum, N.A., & Freides, D. (1995). Investigating thought disorder in schizophrenia with the lexical decision task. Schizophrenia Research, 16, 217224.CrossRefGoogle ScholarPubMed
Brosseau, J., & Cohen, H. (1996). The representation of semantic categories in aging. Experimental Aging Research, 22, 381391.CrossRefGoogle ScholarPubMed
Butters, N., Wolfe, J., Martine, M., Granholm, E., & Cermak, L.S. (1985). Memory disorders associated with Huntington’s disease: Verbal recall, verbal recognition, and procedural memory. Neuropsychology, 23, 729743.CrossRefGoogle ScholarPubMed
Chouinard, G., Ross-Chouinard, A., Annable, L., & Jones, B.D. (1980). Extrapyramidal symptom rating scale (ESRS). Canadian Journal of Neurological Sciences, 7, 233243.Google Scholar
Cirillo, M.A., & Seidman, L.J. (2003). Verbal declarative memory dysfunction in schizophrenia: From clinical assessment to genetics and brain mechanisms. Neuropsychology Review, 13, 4377.CrossRefGoogle ScholarPubMed
Clare, L., McKenna, P.J., Mortimer, A.M., & Baddeley, A.D. (1993). Memory in schizophrenia: What is impaired and what is preserved? Neuropsychologia, 31, 12251241.CrossRefGoogle ScholarPubMed
Cohen, H., & Pourcher, E. (2007). Intact encoding, impaired consolidation in procedural learning in Parkinson’s disease. Experimental Brain Research, 179, 703708.CrossRefGoogle ScholarPubMed
Cohen, N.J., & Squire, L.R. (1980). Preserved learning and retention of patern-analyzing skill in amnesia: Dissociation of knowing how and knowing that. Science, 210, 207210.CrossRefGoogle ScholarPubMed
Corripio, I., Catafau, A.M., Perez, V., Puigdemont, D., Mena, E., Aguilar, Y., et al. . (2005). Striatal dopaminergic D2 receptor occupancy and clinical efficacy in psychosis exacerbation: A 123I-IBZM study with ziprasidone and haloperidol. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 29, 9196.CrossRefGoogle ScholarPubMed
Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (1987). The California Verbal Learning Test–Research. New York: The Psychological Corporation.Google Scholar
Giménez, M., Junqué, C., Pérez, M., Vendrell, P., Baeza, I., Salamero, M., et al. . (2003). Basal ganglia N-acetylaspartate correlates with the performance in the procedural task “Tower of Hanoi” of neuroleptic-naive schizophrenic patients. Neuroscience Letters, 347, 97100.CrossRefGoogle ScholarPubMed
Gouzoulis-Mayfrank, E., Voss, T., Morth, D., Thelen, B., Spitzer, M., & Meincke, U. (2003). Semantic hyperpriming in thought disordered patients with schizophrenia: State or trait? A longitudinal investigation. Schizophrenia Research, 15, 6573.CrossRefGoogle Scholar
Grafton, S.T., Mazziotta, J.C., Presty, S., Friston, K.J., Frackowiak, R.S.J., & Phelps, M.E. (1992). Functional anatomy of human procedural learning as determined with regional cerebral blood flow and PET. Journal of Neuroscience, 12, 25422548.CrossRefGoogle ScholarPubMed
Harrington, D.L., Haaland, K.Y., Yeo, R.A., & Marsden, E. (1990). Procedural memory in Parkinson’s disease: Impaired motor but not visuoperceptual learning. Journal of Clinical and Experimental Neuropsychology, 12, 323339.CrossRefGoogle Scholar
Joel, D., Zohar, O., Afek, M., Hermesh, H., Lerner, L., Kuperman, R., et al. . (2005). Impaired procedural learning in obsessive-compulsive disorder and Parkinson’s disease, but not in major depressive disorder. Behavioral Brain Research, 157, 253263.CrossRefGoogle ScholarPubMed
Joyce, E.M., Collinson, S.L., & Crichton, P. (1996). Verbal fluency in schizophrenia: Relationship with executive function, semantic memory and clinical alogia. Psychological Medicine, 26, 3949.CrossRefGoogle ScholarPubMed
Kapur, S., Remington, G., Zipursky, R.B., Wilson, A.A., & Houle, S. (1995). The D2 dopamine receptor occupancy of risperidone and its relationship to extrapyramidal symptoms: A PET study. Life Sciences, 57, PL103107.CrossRefGoogle ScholarPubMed
Kapur, S., Zipursky, R., Jones, C., Remington, G., & Houle, S. (2000). Relationship between dopamine D2 occupancy, clinical response, and side effects: A double-blind PET study of first-episode schizophrenia. American Journal of Psychiatry, 157, 514520.CrossRefGoogle ScholarPubMed
Kay, S.R., Opler, L.A., & Lindenmayer, J.P. (1989). The Positive and Negative Syndrome Scale (PANSS): Rationale and standardization. British Journal of Psychiatry 155, 5967.CrossRefGoogle Scholar
Kreher, D.A., Holcomb, P.J., & Kuperberg, G.R. (2008). Neural evidence for faster automatic spreading activation in schizophrenic thought disorder. Schizophrenia Bulletin, 34, 473482.CrossRefGoogle ScholarPubMed
Kumari, V., Coor, P.J., Mulligan, O.F., Cotter, P.A., Checkley, S.A., & Gray, J.A. (1997). Effects of acute administration of d-amphetamine and haloperidol on procedural learning in man. Psychopharmacology, 129, 271276.CrossRefGoogle ScholarPubMed
Martone, M., Butters, N., Payne, M., Becker, J.T., & Sax, S. (1984). Dissociations between skill learning and verbal recognition in amnesia and dementia. Archives of Neurology, 41, 965970.CrossRefGoogle ScholarPubMed
McKay, A.P., McKenna, P.J., Bentham, P., Mortimer, A.M., Holbery, A., & Hodges, J.R. (1996). Semantic memory is impaired in schizophrenia. Biological Psychiatry, 39, 929937.CrossRefGoogle ScholarPubMed
Moritz, S., Woodward, T.S., Küppers, D., Lausen, A., & Schickel, M. (2002). Increased automatic spreading of activation in thought disordered schizophrenic patients. Schizophrenia Research, 59, 181186.CrossRefGoogle Scholar
Paquet, F., Soucy, J.P., Stip, E., Lévesque, M., Elie, A., & Bédard, M.A. (2004). Comparison between olanzapine and haloperidol on procedural learning and the relationship with striatal D2 receptor occupancy in schizophrenia. The Journal of Neuropsychiatry and Clinical Neurosciences, 16, 4756.CrossRefGoogle ScholarPubMed
Perry, W., Light, G.A., Davis, H., & Braff, D.L. (2000). Schizophrenia patients demonstrate a dissociation on declarative and non-declarative memory tests. Schizophrenia Research, 46, 167174.CrossRefGoogle ScholarPubMed
Peuskens, J. (1995). Risperidone in the treatment of patients with chronic schizophrenia: A multi-national, multi-centre, double-blind, parallel-group study versus haloperidol. Risperidone Study Group. British Journal of Psychiatry, 166, 712726.CrossRefGoogle ScholarPubMed
Poldrack, R.A., Desmond, J.E., Glover, G.H., & Gabrieli, J.D.E. (1998) The neural basis of visual skill learning: An fMRI study of mirror-reading. Cerebral Cortex, 8, 110.CrossRefGoogle ScholarPubMed
Poldrack, R.A., Prabhakaran, V., Seger, C.A., & Gabrieli, J.D.E. (1999). Striatal activation during acquisition of a cognitive skill. Neuropsychology, 13, 564574.CrossRefGoogle ScholarPubMed
Purdon, S.E., Woodward, N., & Lindborg, S.R. (2003). Procedural learning in schizophrenia after 6 months of double-blind treatment with olanzapine, risperidone, and haloperidol. Psychopharmacology, 169, 390397.CrossRefGoogle ScholarPubMed
Quelen, F., Grainger, J., & Raymondet, P. (2005). An investigation of semantic priming in schizophrenia using a new priming paradigm. Schizophrenia Research, 80, 173183.CrossRefGoogle ScholarPubMed
Rémillard, S., Pourcher, E., & Cohen, H. (2005). The effects of neuroleptic treatments on executive function and symptomatology in schizophrenia: A 1-year follow-up study. Schizophrenia Research, 80, 99106.CrossRefGoogle ScholarPubMed
Rémillard, S., Pourcher, E., & Cohen, H. (2008). The long-term effects of risperdione vs. haloperidol on verbal memory, attention and symptomatology in schizophrenia. Journal of the International Neuropsychological Society, 14, 110118.CrossRefGoogle Scholar
Rossell, S.L. & David, A.S. (2006). Are semantic deficits in schizophrenia due to problems with access or storage? Schizophrenia Research, 82, 121134.CrossRefGoogle ScholarPubMed
Schérer, H., Bédard, M.-A., Stip, E., Paquet, F., Richer, F., Bériautl, M., et al. . (2004). Procedural learning in schizophrenia can reflect the pharmacologic properties of the antipsychotic treatments. Cognitive and Behavioral Neurology, 17, 3240.CrossRefGoogle ScholarPubMed
Schwartz, B.L., Rosse, R.B., Veazey, C., & Deutsch, S.I. (1996). Impaired motor skill learning in schizophrenia: Implications for corticostriatal dysfunction. Biological Psychiatry, 39, 241248.CrossRefGoogle ScholarPubMed
Spitzer, M., Braun, U., Hermle, L., & Maier, S. (1993). Associative semantic network dysfunction in thought disordered schizophrenic patients: Direct evidence from indirect semantic priming. Biological Psychiatry, 34, 864877.CrossRefGoogle ScholarPubMed
Takano, K., Ito, M., Kobayashi, K., Sonobe, N., Kurosu, S., Mori, Y., et al. . (2002). Procedural memory in schizophrenia assessed using a mirror reading task. Psychiatry Research, 109, 303307.CrossRefGoogle ScholarPubMed
Tulving, E. (1972). Episodic and semantic memory. In Tulving, E. & Donaldson, W. (Eds.), Organization of memory. New York: Academic Press.Google Scholar
Vinogradov, S., Fisher, M., Warm, H., Holland, C., Kirshner, M.A., & Pollock, B.G. (2009). The cognitive cost of anticholinergic burden: Decreased response to cognitive training in schizophrenia. American Journal of Psychiatry, 166, 10551062.CrossRefGoogle ScholarPubMed