Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-23T12:47:49.842Z Has data issue: false hasContentIssue false

Long-Term Intellectual and Fine Motor Outcomes in Spina Bifida Are Related to Myelomeningocele Repair and Shunt Intervention History

Published online by Cambridge University Press:  15 November 2019

Ashley L. Ware*
Affiliation:
Department of Psychology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada
Paulina A. Kulesz
Affiliation:
Department of Psychology and the Texas Institute for Measurement, Evaluation, and Statistics (TIMES), University of Houston, 4811 Cullen Blvd, Houston, TX 77204-6022, USA
Julian S. Orkisz
Affiliation:
Department of Psychology and the Texas Institute for Measurement, Evaluation, and Statistics (TIMES), University of Houston, 4811 Cullen Blvd, Houston, TX 77204-6022, USA
C. N. Arrington
Affiliation:
Department of Psychology, Georgia State University, 140 Decatur St. SE, Atlanta, GA30303, USA
Robin M. Bowman
Affiliation:
Division of Pediatric Neurosurgery, Children’s Memorial Hospital, Northwestern University Medical School, Chicago, IL60614, USA
Jack M. Fletcher
Affiliation:
Department of Psychology and the Texas Institute for Measurement, Evaluation, and Statistics (TIMES), University of Houston, 4811 Cullen Blvd, Houston, TX 77204-6022, USA
*
*Correspondence and reprint requests to: Ashley L. Ware, PhD, Department of Psychology, University of Calgary, 2500 University Dr. NW, Calgary, AB T2N 1N4, Canada. E-mail: [email protected]

Abstract

Objective:

Lifespan outcomes of simultaneous versus sequential myelomeningocele repair and shunt placement or effects of repeated shunt revisions on specific domains of IQ or fine motor dexterity are largely unknown. The current study addressed these gaps in a large cohort of children and adults with spina bifida myelomeningocele (SBM).

Methods:

Participants between 7 and 44 years of age with SBM and shunted hydrocephalus were recruited from international clinics at two time points. Each participant completed a standardized neuropsychological evaluation that included estimates of IQ and fine motor dexterity. Simultaneous versus sequential surgical repair and number of shunt revisions were examined in relation to long-term IQ and fine motor scores.

Results:

Simultaneous myelomeningocele repair and shunting were associated with more frequent shunt revisions, as well as to lower Full Scale and verbal IQ scores, controlling for number of shunt revisions. More shunt revisions across study time points were associated with higher nonverbal IQ (NVIQ) scores. No effects were observed on fine motor dexterity.

Conclusions:

Findings indicate generally greater influence of surgery type over shunt revision history on outcomes in well-managed hydrocephalus. Findings supported apparent, domain-specific benefits of sequential compared to simultaneous surgery across the lifespan in SBM. Higher NVIQ scores with greater number of additional shunt revisions across surgery type supported positive outcomes with effective surgical management for hydrocephalus.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Adzick, N.S., Thom, E.A., Spong, C.Y., Brock, J.W., Burrows, P.K., Johnson, M.P., Howell, L.J., Farrell, J.A., Dabrowiak, M.E., Sutton, L.N., Gupta, N., Tulipan, N.B., D’Alton, M.E., Farmer, D.L., & MOMS Investigators (2011). A randomized trial of prenatal versus postnatal repair of myelomeningocele. The New England Journal of Medicine, 364(11), 9931004. https://doi.org/10.1056/NEJMoa1014379.CrossRefGoogle ScholarPubMed
Air, E.L., Yuan, W., Holland, S.K., Jones, B.V., Bierbrauer, K., Altaye, M., & Mangano, F.T. (2010). Longitudinal comparison of pre- and postoperative diffusion tensor imaging parameters in young children with hydrocephalus. Journal of Neurosurgery. Pediatrics, 5(4), 385391. https://doi.org/10.3171/2009.11.PEDS09343.CrossRefGoogle ScholarPubMed
Aoyama, Y., Kinoshita, Y., Yokota, A., & Hamada, T. (2006). Neuronal damage in hydrocephalus and its restoration by shunt insertion in experimental hydrocephalus: a study involving the neurofilament-immunostaining method. Journal of Neurosurgery, 104(5 Suppl.), 332339. https://doi.org/10.3171/jns.2006.104.2.332.Google ScholarPubMed
Arrington, C.N., Ware, A.L., Ahmed, Y., Kulesz, P.A., Dennis, M., & Fletcher, J.M. (2016). Are shunt revisions associated with IQ in congenital hydrocephalus? A meta-analysis. Neuropsychology Review, 26(4), 329339. https://doi.org/10.1007/s11065-016-9335-z.CrossRefGoogle ScholarPubMed
Bowman, R.M., & McLone, D.G. (2010). Neurosurgical management of spina bifida: research issues. Developmental Disabilities Research Reviews, 16(1), 8287. https://doi.org/10.1002/ddrr.100.CrossRefGoogle ScholarPubMed
Brookshire, B.L., Fletcher, J.M., Bohan, T.P., Landry, S.H., Davidson, K.C., & Francis, D.J. (1995). Verbal and nonverbal skill discrepancies in children with hydrocephalus: a five-year longitudinal follow-up. Journal of Pediatric Psychology, 20(6), 785800. https://doi.org/10.1093/jpepsy/20.6.785.CrossRefGoogle ScholarPubMed
Caldarelli, M., Di Rocco, C., & La Marca, F. (1996). Shunt complications in the first postoperative year in children with meningomyelocele. Child’s Nervous System: ChNS: Official Journal of the International Society for Pediatric Neurosurgery, 12(12), 748754.CrossRefGoogle ScholarPubMed
Cinalli, G., Salazar, C., Mallucci, C., Yada, J.Z., Zerah, M., & Sainte-Rose, C. (1998). The role of endoscopic third ventriculostomy in the management of shunt malfunction. Neurosurgery, 43(6), 13231327; discussion 1327–1329.Google ScholarPubMed
Del Bigio, M.R. (2010). Neuropathology and structural changes in hydrocephalus. Developmental Disabilities Research Reviews, 16(1), 1622. https://doi.org/10.1002/ddrr.94.CrossRefGoogle ScholarPubMed
Dennis, M., & Barnes, M.A. (2010). The cognitive phenotype of spina bifida meningomyelocele. Developmental Disabilities Research Reviews, 16(1), 3139. https://doi.org/10.1002/ddrr.89.CrossRefGoogle ScholarPubMed
Dennis, M., Fitz, C.R., Netley, C.T., Sugar, J., Harwood-Nash, D.C., Hendrick, E.B., Hoffman, H.J., & Humphreys, R.P. (1981). The intelligence of hydrocephalic children. Archives of Neurology, 38(10), 607615.CrossRefGoogle ScholarPubMed
Dennis, M., Salman, M.S., Juranek, J., & Fletcher, J.M. (2010). Cerebellar motor function in spina bifida meningomyelocele. Cerebellum (London, England), 9(4), 484498. https://doi.org/10.1007/s12311-010-0191-8.CrossRefGoogle ScholarPubMed
Eskandari, R., Mcallister, J.P., Miller, J.M., Ding, Y., Ham, S.D., Shearer, D.M., & Way, J.S. (2004). Effects of hydrocephalus and ventriculoperitoneal shunt therapy on afferent and efferent connections in the feline sensorimotor cortex. Journal of Neurosurgery, 101(2 Suppl.), 196210. https://doi.org/10.3171/ped.2004.101.2.0196.Google ScholarPubMed
Fletcher, J.M., Copeland, K., Frederick, J.A., Blaser, S.E., Kramer, L.A., Northrup, H., Hannay, H.J., Brandt, M.E., Francis, D.J., Villarreal, G., Drake, J.M., Laurent, J.P., Townsend, I., Inwood, S., Boudousquie, A., & Dennis, M. (2005). Spinal lesion level in spina bifida: a source of neural and cognitive heterogeneity. Journal of Neurosurgery, 102(3 Suppl.), 268279. https://doi.org/10.3171/ped.2005.102.3.0268.Google ScholarPubMed
Foltz, E.L., & Shurtleff, D.B. (1963). Five-year comparative study of hydrocephalus in children with and without operation (113 cases). Journal of Neurosurgery, 20, 10641079. https://doi.org/10.3171/jns.1963.20.12.1064.CrossRefGoogle Scholar
Hampton, L.E., Fletcher, J.M., Cirino, P., Blaser, S., Kramer, L.A., & Dennis, M. (2013). Neuropsychological profiles of children with aqueductal stenosis and spina bifida myelomeningocele. Journal of the International Neuropsychological Society, 19(02), 127136. https://doi.org/10.1017/S1355617712001117.CrossRefGoogle ScholarPubMed
Holler, K.A., Fennell, E.B., Crosson, B., Boggs, S.R., & Mickle, J.P. (1995). Neuropsychological and adaptive functioning in younger versus older children shunted for early hydrocephalus. Child Neuropsychology, 1(1), 6373. https://doi.org/10.1080/09297049508401343.CrossRefGoogle Scholar
Hoppe-Hirsch, E., Laroussinie, F., Brunet, L., Sainte-Rose, C., Renier, D., Cinalli, G., Zerah, M., & Pierre-Kahn, A. (1998). Late outcome of the surgical treatment of hydrocephalus. Child’s Nervous System, 14(3), 9799. https://doi.org/10.1007/s003810050186.CrossRefGoogle ScholarPubMed
Hunt, G.M., & Holmes, A.E. (1976). Factors relating to intelligence in treated cases of spina bifida cystica. American Journal of Diseases of Children (1960), 130(8), 823827.Google ScholarPubMed
Jernigan, S.C., Berry, J.G., Graham, D.A., & Goumnerova, L. (2014). The comparative effectiveness of ventricular shunt placement versus endoscopic third ventriculostomy for initial treatment of hydrocephalus in infants. Journal of Neurosurgery. Pediatrics, 13(3), 295300. https://doi.org/10.3171/2013.11.PEDS13138.CrossRefGoogle ScholarPubMed
Juranek, J., & Salman, M.S. (2010). Anomalous development of brain structure and function in spina bifida myelomeningocele. Developmental Disabilities Research Reviews, 16(1), 2330. https://doi.org/10.1002/ddrr.88.CrossRefGoogle ScholarPubMed
Lomax-Bream, L.E., Barnes, M., Copeland, K., Taylor, H.B., & Landry, S.H. (2007). The impact of spina bifida on development across the first 3 years. Developmental Neuropsychology, 31(1), 120. https://doi.org/10.1207/s15326942dn3101_1.CrossRefGoogle ScholarPubMed
Miller, J.M., & McAllister, J.P. (2007). Reduction of astrogliosis and microgliosis by cerebrospinal fluid shunting in experimental hydrocephalus. Cerebrospinal Fluid Research, 4, 5. https://doi.org/10.1186/1743-8454-4-5.CrossRefGoogle ScholarPubMed
Norkett, W., McLone, D.G., & Bowman, R. (2016). Current management strategies of hydrocephalus in the child with open spina bifida. Topics in Spinal Cord Injury Rehabilitation, 22(4), 241246. https://doi.org/10.1310/sci2204-241.CrossRefGoogle ScholarPubMed
Oktem, I.S., Menkü, A., & Ozdemir, A. (2008). When should ventriculoperitoneal shunt placement be performed in cases with myelomeningocele and hydrocephalus? Turkish Neurosurgery, 18(4), 387391.Google ScholarPubMed
Raimondi, A.J., & Soare, P. (1974). Intellectual development in shunted hydrocephalic children. American Journal of Diseases of Children (1960), 127(5), 664671.Google ScholarPubMed
Ralph, K., Moylan, P., Canady, A., & Simmons, S. (2000). The effects of multiple shunt revisions on neuropsychological functioning and memory. Neurological Research, 22(1), 131136.CrossRefGoogle ScholarPubMed
Sellin, J.N., Cherian, J., Barry, J.M., Ryan, S.L., Luerssen, T.G., & Jea, A. (2014). Utility of computed tomography or magnetic resonance imaging evaluation of ventricular morphology in suspected cerebrospinal fluid shunt malfunction. Journal of Neurosurgery. Pediatrics, 14(2), 160166. https://doi.org/10.3171/2014.4.PEDS13451.CrossRefGoogle ScholarPubMed
Tew, B., & Laurence, K.M. (1975). Some sources of stress found in mothers of spina bifida children. British Journal of Preventive & Social Medicine, 29(1), 2730.Google ScholarPubMed
Thompson, N.M., Chapieski, L., Miner, M.E., Fletcher, J.M., Landry, S.H., & Bixby, J. (1991). Cognitive and motor abilities in preschool hydrocephalics. Journal of Clinical and Experimental Neuropsychology, 13(2), 245258. https://doi.org/10.1080/01688639108401041.CrossRefGoogle ScholarPubMed
Thorndike, R., Hagen, E., & Sattler, J. (1986). The Stanford-Binet Intelligence Scale. Itasca, IL: Riverside.Google Scholar
Tiffin, J. (1968). Purdue Pegboard Examiner’s Manual. Rosemont, IL: London House.Google Scholar
Treble-Barna, A., Juranek, J., Stuebing, K.K., Cirino, P.T., Dennis, M., & Fletcher, J.M. (2015). Prospective and episodic memory in relation to hippocampal volume in adults with spina bifida myelomeningocele. Neuropsychology, 29(1), 92101. https://doi.org/10.1037/neu0000111.CrossRefGoogle ScholarPubMed
Van Roost, D., Solymosi, L., & Funke, K. (1995). A characteristic ventricular shape in myelomeningocele-associated hydrocephalus? A CT stereology study. Neuroradiology, 37(5), 412417.CrossRefGoogle Scholar
Williams, V.J., Juranek, J., Stuebing, K.K., Cirino, P.T., Dennis, M., Bowman, R.M., Blaser, S., Kramer, L.A., & Fletcher, J.M. (2015). Postshunt lateral ventricular volume, white matter integrity, and intellectual outcomes in spina bifida and hydrocephalus. Journal of Neurosurgery. Pediatrics, 15(4), 410419. https://doi.org/10.3171/2014.10.PEDS13644.CrossRefGoogle ScholarPubMed