Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-13T08:16:04.269Z Has data issue: false hasContentIssue false

Integrating Three Characteristics of Executive Function in Non-Demented Aging: Trajectories, Classification, and Biomarker Predictors

Published online by Cambridge University Press:  10 August 2020

H. Sebastian Caballero
Affiliation:
Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada
G. Peggy McFall
Affiliation:
Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada Department of Psychology, University of Alberta, Edmonton, Canada
Sandra A. Wiebe
Affiliation:
Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada Department of Psychology, University of Alberta, Edmonton, Canada
Roger A. Dixon*
Affiliation:
Neuroscience and Mental Health Institute, University of Alberta, Edmonton, Canada Department of Psychology, University of Alberta, Edmonton, Canada
*
*Correspondence and reprint requests to: Roger A. Dixon, Department of Psychology, P-217 Biological Science Building, University of Alberta, Edmonton, ABT6G 2E9, Canada. Tel: +1 780 492 7602; Fax: +1 780-492-2917. E-mail: [email protected]

Abstract

Objective:

With longitudinal executive function (EF) data from the Victoria Longitudinal Study, we investigated three research goals pertaining to key characteristics of EF in non-demented aging: (a) examining variability in EF longitudinal trajectories, (b) establishing trajectory classes, and (c) identifying biomarker predictors discriminating these classes.

Method:

We used a trajectory analyses sample (n = 781; M age = 71.42) for the first and second goals and a prediction analyses sample (n = 570; M age = 70.10) for the third goal. Eight neuropsychological EF measures were used as indicators of three EF dimensions: inhibition, updating, and shifting. Data-driven classification analyses were applied to the full trajectory distribution. Machine learning prediction analyses tested 15 predictors from genetic, functional, lifestyle, mobility, and demographic risk domains.

Results:

First, we observed: (a) significant variability in EF trajectories over a 40-year band of aging and (b) significantly variable patterns of EF decline. Second, a four-class EF trajectory model was observed, characterized with classes differentiated by an algorithm of level and slope information. Third, the highest group class was discriminated from lowest by several prediction factors: more education, more novel cognitive activity, lower pulse pressure, younger age, faster gait, lower body mass index, and better balance.

Conclusion:

First, with longitudinal variability in EF aging, the data-driven approach showed that long-term trajectories can be differentiated into separable classes. Second, prediction analyses discriminated class membership by a combination of multiple biomarkers from demographic, lifestyle, functional, and mobility domains of risk for brain and cognitive aging decline.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adrover-Roig, D., Sesé, A., Barceló, F., & Palmer, A. (2012). A latent variable approach to executive control in healthy ageing. Brain and Cognition, 78(3), 284299.CrossRefGoogle ScholarPubMed
Andruff, H., Carraro, N., Thompson, A., Gaudreau, P., & Louvet, B. (2009). Latent class growth modelling: a tutorial. Tutorials in Quantitative Methods for Psychology, 5(1), 1124. doi: 10.20982/tqmp.05.1.p011 CrossRefGoogle Scholar
Anstey, K.J., Cherbuin, N., Budge, M., & Young, J. (2011). Body mass index in midlife and late-life as a risk factor for dementia: a meta-analysis of prospective studies. Obesity Reviews, 12(5), e426e437. doi: 10.1111/j.1467-789X.2010.00825.x CrossRefGoogle ScholarPubMed
Barulli, D., & Stern, Y. (2013). Efficiency, capacity, compensation, maintenance, plasticity: emerging concepts in cognitive reserve. Trends in Cognitive Sciences, 17(10), 502509. doi: 10.1016/j.tics.2013.08.012 CrossRefGoogle ScholarPubMed
Bento-Torres, N.V.O., Bento-Torres, J., Tomás, A.M., Costa, V.O., Corrêa, P.G.R., Costa, C.N.M., … Picanço-Diniz, C.W. (2017). Influence of schooling and age on cognitive performance in healthy older adults. Brazilian Journal of Medical and Biological Research, 50(4), e5892. doi: 10.1590/1414-431x20165892 CrossRefGoogle ScholarPubMed
Berlin, K.S., Parra, G.R., & Williams, N.A. (2013). An introduction to latent variable mixture modeling (part 2): longitudinal latent class growth analysis and growth mixture models. Journal of Pediatric Psychology, 39(2), 188203. doi: 10.1093/jpepsy/jst085 CrossRefGoogle ScholarPubMed
Bielak, A.A.M., Mansueti, L., Strauss, E., & Dixon, R.A. (2006). Performance on the Hayling and Brixton tests in older adults: norms and correlates. Archives of Clinical Neuropsychology, 21(2), 141149. doi: 10.1016/j.acn.2005.08.006 CrossRefGoogle ScholarPubMed
Blasko, I., Jungwirth, S., Kemmler, G., Weissgram, S., Tragl, K.H., & Fischer, P. (2014). Leisure time activities and cognitive functioning in middle European population-based study. European Geriatric Medicine, 5(3), 200207. doi: 10.1016/j.eurger.2013.09.003 CrossRefGoogle Scholar
Bopp, K.L., & Verhaeghen, P. (2005). Aging and verbal memory span: a meta-analysis. The Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 60(5), P223P233. doi: 10.1093/geronb/60.5.P223 CrossRefGoogle ScholarPubMed
Chen, F.F. (2007). Sensitivity of goodness of fit indexes to lack of measurement invariance. Structural Equation Modeling, 14(3), 464504. doi: 10.1080/10705510701301834 CrossRefGoogle Scholar
Cotman, C.W., & Engesser-Cesar, C. (2002). Exercise enhances and protects brain function. Exercise and Sport Sciences Reviews, 30(2), 7579. doi: 10.1097/00003677-200204000-00006 CrossRefGoogle ScholarPubMed
Couronné, R., Probst, P., & Boulesteix, A.L. (2018). Random forest versus logistic regression: a large-scale benchmark experiment. BMC Bioinformatics, 19(1), 270. doi: 10.1186/s12859-018-2264-5 CrossRefGoogle ScholarPubMed
de Frias, C.M., & Dixon, R.A. (2014). Lifestyle engagement affects cognitive status differences and trajectories on executive functions in older adults. Archives of Clinical Neuropsychology, 29(1), 1625. doi: 10.1093/arclin/act089 CrossRefGoogle ScholarPubMed
de Frias, C.M., Dixon, R.A., & Strauss, E. (2009). Characterizing executive functioning in older special populations: from cognitively elite to cognitively impaired. Neuropsychology, 23(6), 778791. doi: 10.1037/a0016743 CrossRefGoogle ScholarPubMed
Dixon, R.A., & de Frias, C.M. (2004). The Victoria Longitudinal Study: from characterizing cognitive aging to illustrating changes in memory compensation. Aging Neuropsychology and Cognition, 11(2–3), 346376. doi: 10.1080/13825580490511161 CrossRefGoogle Scholar
Dixon, R.A., Small, B.J., MacDonald, S.W.S., & McArdle, J.J. (2012). Yes, memory declines with aging—but when, how, and why? In Naveh-Benjamin, M. & Ohta, N. (Eds.), Memory and aging (pp. 325347). New York: Psychology Press.Google Scholar
Egan, M.F., Kojima, M., Callicott, J.H., Goldberg, T.E., Kolachana, B.S., Bertolino, A., … Lu, B. (2003). The BDNF val66met polymorphism affects activity-dependent secretion of BDNF and human memory and hippocampal function. Cell, 112(2), 257269. doi: 10.1016/S0092-8674(03)00035-7 CrossRefGoogle ScholarPubMed
Erickson, K.I., Prakash, R.S., Voss, M.W., Chaddock, L., Heo, S., McLaren, M., … McAuley, E. (2010). Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. Journal of Neuroscience, 30(15), 53685375. doi: 10.1523/jneurosci.6251-09.2010 CrossRefGoogle ScholarPubMed
Erickson, K.I., Leckie, R.L., & Weinstein, A.M. (2014). Physical activity, fitness, and gray matter volume. Neurobiology of Aging, 35, S20S28. doi: 10.1016/j.neurobiolaging.2014.03.034 CrossRefGoogle ScholarPubMed
Esiri, M.M., & Chance, S.A. (2012). Cognitive reserve, cortical plasticity and resistance to Alzheimer’s disease. Alzheimer’s Research & Therapy, 4(2), 7. doi: 10.1186/alzrt105 CrossRefGoogle ScholarPubMed
Fisk, J.E., & Sharp, C.A. (2004). Age-related impairment in executive functioning: updating, inhibition, shifting, and access. Journal of Clinical and Experimental Neuropsychology, 26(7), 874890. doi: 10.1080/13803390490510680 CrossRefGoogle Scholar
Friedman, N.P., & Miyake, A. (2017). Unity and diversity of executive functions: individual differences as a window on cognitive structure. Cortex, 86, 186204. doi: 10.1016/j.cortex.2016.04.023 CrossRefGoogle ScholarPubMed
Galbraith, S., Bowden, J., & Mander, A. (2017). Accelerated longitudinal designs: an overview of modelling, power, costs and handling missing data. Statistical Methods in Medical Research, 26(1), 374398. doi: 10.1177/0962280214547150 CrossRefGoogle ScholarPubMed
Genuer, R., Poggi, J.M., & Tuleau-Malot, C. (2010). Variable selection using random forests. Pattern Recognition Letters, 31(14), 22252236. doi: 10.1016/j.patrec.2010.03.014 CrossRefGoogle Scholar
Goh, J.O., An, Y., & Resnick, S.M. (2012). Differential trajectories of age-related changes in components of executive and memory processes. Psychology and Aging, 27(3), 707719. doi: 10.1037/a0026715 CrossRefGoogle ScholarPubMed
Gunstad, J., Paul, R.H., Cohen, R.A., Tate, D.F., Spitznagel, M.B., & Gordon, E. (2007). Elevated body mass index is associated with executive dysfunction in otherwise healthy adults. Comprehensive Psychiatry, 48(1), 5761. doi: 10.1016/j.comppsych.2006.05.001 CrossRefGoogle ScholarPubMed
Hajian-Tilaki, K. (2013). Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation. Caspian Journal of Internal Medicine, 4(2), 627635.Google ScholarPubMed
Han, L., Allore, H., Murphy, T., Gill, T., Peduzzi, P., & Lin, H. (2013). Dynamics of functional aging based on latent-class trajectories of activities of daily living. Annals of Epidemiology, 23(2), 8792.CrossRefGoogle ScholarPubMed
Harada, C.N., Natelson Love, M.C., & Triebel, K. (2013). Normal cognitive aging. Clinics in Geriatric Medicine, 29(4), 737752. doi: 10.1016/j.cger.2013.07.002 CrossRefGoogle ScholarPubMed
Hedden, T., & Yoon, C. (2006). Individual differences in executive processing predict susceptibility to interference in verbal working memory. Neuropsychology, 20(5), 511528. doi: 10.1037/0894-4105.20.5.511 CrossRefGoogle ScholarPubMed
Hothorn, T., Bühlmann, P., Dudoit, S., Molinaro, A., & van der Laan, M.J. (2006). Survival ensembles. Biostatistics, 7(3), 355373. doi: 10.1093/biostatistics/kxj011 CrossRefGoogle ScholarPubMed
Hull, R., Martin, R.C., Beier, M.E., Lane, D., & Hamilton, A.C. (2008). Executive function in older adults: a structural equation modeling approach. Neuropsychology, 22(4), 508522. doi: 10.1037/0894-4105.22.4.508 CrossRefGoogle ScholarPubMed
Jung, T., & Wickrama, K.A.S. (2008). An introduction to latent class growth analysis and growth mixture modeling. Social and Personality Psychology Compass, 2(1), 302317. doi: 10.1111/j.1751-9004.2007.00054.x CrossRefGoogle Scholar
Kearney, F.C., Harwood, R.H., Gladman, J.R., Lincoln, N., & Masud, T. (2013). The relationship between executive function and falls and gait abnormalities in older adults: a systematic review. Dementia and Geriatric Cognitive Disorders, 36(1–2), 2035. doi: 10.1159/000350031 CrossRefGoogle ScholarPubMed
Kelley, K., & Preacher, K.J. (2012). On effect size. American Psychological Association, 17(2), 137152. doi: 10.1037/a0028086 Google ScholarPubMed
Kievit, R.A., Davis, S.W., Mitchell, D.J., Taylor, J.R., Duncan, J., Tyler, L.K., … Dalgleish, T. (2014). Distinct aspects of frontal lobe structure mediate age-related differences in fluid intelligence and multitasking. Nature Communications, 5, 5658. doi: 10.1038/ncomms6658 CrossRefGoogle ScholarPubMed
Komulainen, P., Pedersen, M., Hänninen, T., Bruunsgaard, H., Lakka, T.A., Kivipelto, M., … Rauramaa, R. (2008). BDNF is a novel marker of cognitive function in ageing women: the DR’s EXTRA Study. Neurobiology of Learning and Memory, 90(4), 596603. doi: 10.1016/j.nlm.2008.07.014Get CrossRefGoogle ScholarPubMed
Kuhn, M., & Johnson, K. (2013). Applied Predictive Modeling. New York, NY: Springer-Verlag.CrossRefGoogle Scholar
Lachman, M.E., Agrigoroaei, S., Murphy, C., & Tun, P.A. (2010). Frequent cognitive activity compensates for education differences in episodic memory. The American Journal of Geriatric Psychiatry, 18(1), 410. doi: 10.1097/JGP.0b013e3181ab8b62 CrossRefGoogle ScholarPubMed
Li, K.Z.H., Vadaga, K.K., Bruce, H., & Lai, L. (2017). Executive function development in aging. In Wiebe, S.A. & Karbach, J. (Eds.). Executive Function: Development Across the Life Span (pp. 5972). New York, NY: Routledge.CrossRefGoogle Scholar
Lin, F.V., Wang, X., Wu, R., Rebok, G.W., Chapman, B.P., & Alzheimer’s Disease Neuroimaging Initiative (2017). Identification of successful cognitive aging in the Alzheimer’s disease neuroimaging initiative study. Journal of Alzheimer’s Disease, 59(1), 101111. doi: 10.3233/jad-161278 CrossRefGoogle ScholarPubMed
Little, T.D. (2013). Longitudinal Structural Equation Modeling. New York, NY: Guilford Press.Google Scholar
Liu, M.E., Huang, C.C., Chen, M.H., Yang, A.C., Tu, P.C., Yeh, H.L., … Tsai, S.J. (2014). Effect of the BDNF Val66Met polymorphism on regional gray matter volumes and cognitive function in the Chinese population. Neuromolecular Medicine, 16(1), 127136.CrossRefGoogle ScholarPubMed
Luszcz, M. (2011). Executive function and cognitive aging. In Schaie, K.W. & Willis, S.L. (Eds.), Handbook of the psychology of aging, 7th ed. (pp. 5972). San Diego, CA: Academic Press.CrossRefGoogle Scholar
McDermott, K.L., McFall, G.P., Andrews, S.J., Anstey, K.J., & Dixon, R.A. (2017). Memory resilience to Alzheimer’s genetic risk: sex effects in predictor profiles. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 72(6), 937946. doi: 10.1093/geronb/gbw161 Google ScholarPubMed
McFall, G.P., McDermott, K.L., & Dixon, R.A. (2019). Modifiable risk factors discriminate memory trajectories in non-demented aging: precision factors and targets for promoting healthier brain aging and preventing dementia? Journal of Alzheimer’s Disease, 1–18. doi: 10.3233/jad-180571 CrossRefGoogle ScholarPubMed
McFall, G.P., Sapkota, S., McDermott, K.L., & Dixon, R.A. (2016). Risk-reducing Apolipoprotein E and Clusterin genotypes protect against the consequences of poor vascular health on executive function performance and change in nondemented older adults. Neurobiology of Aging, 42, 91100. doi: 10.1016/j.neurobiolaging.2016.02.032 CrossRefGoogle ScholarPubMed
McFall, G.P., Wiebe, S.A., Vergote, D., Jhamandas, J., Westaway, D., & Dixon, R.A. (2014). IDE (rs6583817) polymorphism and pulse pressure are independently and interactively associated with level and change in executive function in older adults. Psychology and Aging, 29(2), 418430. doi: 10.1037/a0034656 CrossRefGoogle ScholarPubMed
McFall, G.P., Wiebe, S.A., Vergote, D., Westaway, D., Jhamandas, J., & Dixon, R.A. (2013). IDE (rs6583817) polymorphism and type 2 diabetes differentially modify executive function in older adults. Neurobiology of Aging, 34(9), 22082216. doi: 10.1016/j.neurobiolaging.2013.03.010 CrossRefGoogle ScholarPubMed
Mirelman, A., Herman, T., Brozgol, M., Dorfman, M., Sprecher, E., Schweiger, A., … Hausdorff, J.M. (2012). Executive function and falls in older adults: new findings from a five-year prospective study link fall risk to cognition. PloS One, 7(6), e40297. doi: 10.1371/journal.pone.0040297 CrossRefGoogle Scholar
Mitchell, M.B., Cimino, C.R., Benitez, A., Brown, C.L., Gibbons, L.E., Kennison, R.F., … Lindwall, M. (2012). Cognitively stimulating activities: effects on cognition across four studies with up to 21 years of longitudinal data. Journal of Aging Research, 2012, 461592. doi: 10.1155/2012/461592 Google ScholarPubMed
Miyake, A., & Friedman, N.P. (2012). The nature and organization of individual differences in executive functions: four general conclusions. Current Directions in Psychological Science 21(1), 814. doi: 10.1177/0963721411429458 CrossRefGoogle ScholarPubMed
Miyake, A., Friedman, N.P., Emerson, M.J., Witzki, A.H., Howerter, A., & Wager, T.D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: a latent variable analysis. Cognitive Psychology, 41(1), 49100. doi: 10.1006/cogp.1999.0734 CrossRefGoogle ScholarPubMed
Muthén, L.K., & Muthén, B.O., (2010). Mplus User’s Guide (6th ed). Los Angeles, CA: Muthén and Muthén.Google Scholar
Nagel, I.E., Chicherio, C., Li, S.C., von Oertzen, T., Sander, T., Villringer, A., … Lindenberger, U. (2008). Human aging magnifies genetic effects on executive functioning and working memory. Frontiers in Human Neuroscience, 2, 1. doi: 10.3389/neuro.09.001.2008 CrossRefGoogle ScholarPubMed
Nation, D.A., Edland, S.D., Bondi, M.W., Salmon, D.P., Delano-Wood, L., Peskind, E.R., … Galasko, D.R. (2013). Pulse pressure is associated with Alzheimer biomarkers in cognitively normal older adults. Neurology, 81(23), 20242027. doi: 10.1212/01.wnl.0000436935.47657.78 CrossRefGoogle ScholarPubMed
Park, D.C., & Bischof, G.N. (2013). The aging mind: neuroplasticity in response to cognitive training. Dialogues in Clinical Neuroscience, 15(1), 109119.Google ScholarPubMed
Quereshi, M.Y., & Seitz, R. (1993). Gender differences in reasoning ability measured by letter series items. Current Psychology: A Journal for Diverse Perspectives on Diverse Psychological Issues, 12(3), 268272. doi: 10.1007/BF02686808 CrossRefGoogle Scholar
R Development Core Team (2015). R: A Language And Environment For Statistical Computing.Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Ram, N., & Grimm, K.J. (2009). Methods and measures: growth mixture modeling: a method for identifying differences in longitudinal change among unobserved groups. International Journal of Behavioral Development, 33(6), 565576.CrossRefGoogle Scholar
Roberts, M.H., & Mapel, D.W. (2012). Limited lung function: impact of reduced peak expiratory flow on health status, health-care utilization, and expected survival in older adults. American Journal of Epidemiology, 176(2), 127134. doi: 10.1093/aje/kwr503 CrossRefGoogle ScholarPubMed
Runge, S.K., Small, B.J., McFall, G.P., & Dixon, R.A. (2014). APOE moderates the association between lifestyle activities and cognitive performance: evidence of genetic plasticity in aging. Journal of the International Neuropsychological Society, 20(5), 478486. doi: 10.1017/S1355617714000356 CrossRefGoogle Scholar
Rutkowski, L., & Svetina, D. (2014). Assessing the hypothesis of measurement invariance in the context of large-scale international surveys. Educational and Psychological Measurement, 74(1), 3157. doi: 10.1177/0013164413498257 CrossRefGoogle Scholar
Sapkota, S., Bäckman, L., & Dixon, R.A. (2017). Executive function performance and change in aging is predicted by apolipoprotein E, intensified by catechol-O-methyltransferase and brain-derived neurotrophic factor, and moderated by age and lifestyle. Neurobiology of Aging, 52, 8189.CrossRefGoogle Scholar
Sapkota, S., & Dixon, R.A. (2018). A network of genetic effects on non-demented cognitive aging: Alzheimer’s genetic risk (CLU+ CR1+ PICALM) intensifies cognitive aging genetic risk (COMT+ BDNF) selectively for APOE ε4 carriers. Journal of Alzheimer’s Disease, 62(2), 887900. doi: 10.3233/jad-170909 CrossRefGoogle Scholar
Sapkota, S., Huan, T., Tran, T., Zheng, J., Camicioli, R., Li, L., & Dixon, R.A. (2018). Alzheimer’s biomarkers from multiple modalities selectively discriminate clinical status: relative importance of salivary metabolomics panels, genetic, lifestyle, genetic, lifestyle, cognitive, functional health and demographic risk markers. Frontiers in Aging Neuroscience, 10, 296. doi: 10.3389/fnagi.2018.00296 CrossRefGoogle ScholarPubMed
Sapkota, S., Vergote, D., Westaway, D., Jhamandas, J., & Dixon, R.A. (2015). Synergistic associations of COMT and BDNF with executive function in aging are selective and modified by APOE. Neurobiology of Aging, 36(1), 249256. doi: 10.1016/j.neurobiolaging.2014.06.020 CrossRefGoogle Scholar
Singer, J.D., & Willett, J.B. (2003). Applied Longitudinal Data Analysis: Modeling Change And Event Occurrence. New York, NY: Oxford University Press.CrossRefGoogle Scholar
Stekhoven, D.J. (2011). Using The MissForest Package. R Package, 111.Google Scholar
Stern, Y. (2003). The concept of cognitive reserve: a catalyst for research. Journal of Clinical and Experimental Neuropsychology, 25(5), 589593. doi: 10.1076/jcen.25.5.589.14571 CrossRefGoogle ScholarPubMed
Sternäng, O., Reynolds, C.A., Finkel, D., Ernsth-Bravell, M., Pedersen, N.L., & Dahl Aslan, A.K. (2015). Grip strength and cognitive abilities: associations in old age. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 71(5), 841848. doi: 10.1093/geronb/gbv017 CrossRefGoogle ScholarPubMed
Strobl, C., Malley, J., & Tutz, G. (2009). An introduction to recursive partitioning: rationale, application, and characteristics of classification and regression trees, bagging, and random forests. Psychological Methods, 14(4), 323348. doi: 10.1037/a0016973 CrossRefGoogle ScholarPubMed
Taki, Y., Kinomura, S., Sato, K., Inoue, K., Goto, R., Okada, K., … Fukuda, H. (2008). Relationship between body mass index and gray matter volume in 1,428 healthy individuals. Obesity, 16(1), 119124. doi: 10.1038/oby.2007.4 CrossRefGoogle ScholarPubMed
Thibeau, S., McFall, G.P., Camicioli, R., & Dixon, R.A. (2017). Alzheimer’s disease biomarkers interactively influence physical activity, mobility, and cognition associations in a non-demented aging population. Journal of Alzheimer’s Disease, 60(1), 6986. doi: 10.3233/jad-170130 CrossRefGoogle Scholar
Valenzuela, M., & Sachdev, P. (2009). Can cognitive exercise prevent the onset of dementia? Systematic review of randomized clinical trials with longitudinal follow-up. The American Journal of Geriatric Psychiatry, 17(3), 179187. doi: 10.1097/jgp.0b013e3181953b57 CrossRefGoogle ScholarPubMed
Vaughan, L., & Giovanello, K. (2010). Executive function in daily life: age-related influences of executive processes on instrumental activities of daily living. Psychology and Aging, 25(2), 343355. doi: 10.1037/a0017729 CrossRefGoogle ScholarPubMed
Wang, H.X., Karp, A., Winblad, B., & Fratiglioni, L. (2002). Late-life engagement in social and leisure activities is associated with a decreased risk of dementia: a longitudinal study from the Kungsholmen project. American Journal of Epidemiology, 155(12), 10811087. doi: 10.1093/aje/155.12.1081 CrossRefGoogle ScholarPubMed
Warsch, J.R., & Wright, C.B. (2010). The aging mind: vascular health in normal cognitive aging. Journal of the American Geriatrics Society, 58(Suppl. 2), S319S324. doi: 10.1111/j.15325415.2010.02983.x CrossRefGoogle ScholarPubMed
Wasylyshyn, C., Verhaeghen, P., & Sliwinski, M.J. (2011). Aging and task switching: a meta-analysis. Psychology and Aging, 26(1), 1520. doi: 10.1037/a0020912 CrossRefGoogle ScholarPubMed
Watson, N.L., Rosano, C., Boudreau, R.M., Simonsick, E.M., Ferrucci, L., Sutton-Tyrrell, K., … Harris, T.B. (2010). Executive function, memory, and gait speed decline in well-functioning older adults. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 65(10), 10931100. doi: 10.1093/gerona/glq111 CrossRefGoogle ScholarPubMed
Whalley, L.J., Deary, I.J., Appleton, C.L., & Starr, J.M. (2004). Cognitive reserve and the neurobiology of cognitive aging. Ageing Research Reviews, 3(4), 369382. doi: 10.1016/j.arr.2004.05.001 CrossRefGoogle ScholarPubMed
Wiebe, S.A., & Karbach, J. (Eds.). (2017). Executive Function: Development Across The Life Span. New York, NY: Routledge.CrossRefGoogle Scholar
Wilson, R.S., Scherr, P.A., Schneider, J.A., Tang, Y., & Bennett, D.A. (2007). Relation of cognitive activity to risk of developing Alzheimer disease. Neurology, 69(20), 19111920. doi: 10.1212/01.wnl.0000271087.67782.cb CrossRefGoogle ScholarPubMed
Wisdom, N.M., Callahan, J.L., & Hawkins, K.A. (2011). The effects of apolipoprotein E on non-impaired cognitive functioning: a meta-analysis. Neurobiology of Aging, 32(1), 6374. doi: 10.1016/j.neurobiolaging.2009.02.003 CrossRefGoogle ScholarPubMed
Yuan, P., & Raz, N. (2014). Prefrontal cortex and executive functions in healthy adults: a meta-analysis of structural neuroimaging studies. Neuroscience & Biobehavioral Reviews, 42, 180192. doi: 10.1016/j.neubiorev.2014.02.005 CrossRefGoogle ScholarPubMed
Zahodne, L.B., Stern, Y., & Manly, J.J. (2015). Differing effects of education on cognitive decline in diverse elders with low versus high educational attainment. Neuropsychology, 29(4), 649657. doi: 10.1037/neu0000141 CrossRefGoogle ScholarPubMed
Zaninotto, P., Batty, G.D., Allerhand, M., & Deary, I.J. (2018). Cognitive function trajectories and their determinants in older people: 8 years of follow-up in the English Longitudinal Study of Ageing. Journal of Epidemiology & Community Health, 72(8), 685694. doi: 10.1136/jech-2017-210116 CrossRefGoogle ScholarPubMed
Supplementary material: File

Caballero et al. supplementary material

Caballero et al. supplementary material

Download Caballero et al. supplementary material(File)
File 34.6 KB