Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-23T13:33:39.611Z Has data issue: false hasContentIssue false

Incidental Learning and Memory Deficits on a Computerized Symbol-Digit Modalities Test in Adults with HIV/AIDS

Published online by Cambridge University Press:  09 November 2020

David J. Hardy*
Affiliation:
Department of Psychology, Loyola Marymount University Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine, University of California, Los Angeles
Steven A. Castellon
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine, University of California, Los Angeles Greater Los Angeles VA Healthcare System
Charles H. Hinkin*
Affiliation:
Department of Psychiatry and Biobehavioral Sciences, The David Geffen School of Medicine, University of California, Los Angeles Greater Los Angeles VA Healthcare System
*
*Correspondence and reprint requests to: David J. Hardy, 1 LMU Drive, Suite 4700, Los Angeles, California, 90045, USA; email: [email protected]; Charles H. Hinkin, Box 951759, 760 Westwood Plaza, C8-747 Semel Institute, Los Angeles, California, 90095, USA; email: [email protected].
*Correspondence and reprint requests to: David J. Hardy, 1 LMU Drive, Suite 4700, Los Angeles, California, 90045, USA; email: [email protected]; Charles H. Hinkin, Box 951759, 760 Westwood Plaza, C8-747 Semel Institute, Los Angeles, California, 90095, USA; email: [email protected].

Abstract

Objective:

Incidental learning and memory, as well as processing speed, were examined in human immunodeficiency virus (HIV)-positive adults and a seronegative control group.

Methods:

Participants completed a computerized Symbol-Digit Modalities Test (cSDMT) with two blocked conditions: a set of trials with the standard symbol–digit pairings and the second set with a rearranged symbol–digit pairings.

Results:

HIV-positive adults showed slower overall reaction time compared to the HIV-negative group. More importantly, the most cognitively impaired HIV-positive group showed no interference in the rearranged set of symbol–digit pairings from the standard pairings on the cSDMT.

Conclusion:

The relative slowing, or interference, in the HIV-negative group and two HIV-positive groups (unimpaired and impaired) was quite large (between 122 and 131 ms). We argue that the lack of such relative slowing in the most cognitively impaired HIV-positive group indicates a deficit in incidental learning and memory.

Type
Brief Communication
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Antinori, A., Arendt, G., Becker, J.T., Brew, B. J., Byrd, D.A., Cherner, M., … Wojna, V. E. (2007). Updated research nosology for HIV-associated neurocognitive disorders (HAND). Neurology, 69(18), 17891799.CrossRefGoogle Scholar
Becker, J.T., Dew, M.A., Aizenstein, H.J., Lopez, O.L., Morrow, L. & Saxton, J. (2011). Concurrent validity of a computer-based cognitive screening tool for use in adults with HIV disease. AIDS Patient Care and STDs, 25(6), 351357.CrossRefGoogle ScholarPubMed
Cysique, L.A.J., Maruff, P., Darby, D., & Brew, B.J. (2006). The assessment of cognitive function in advanced HIV-1 infection and AIDS dementia complex using a new computerized cognitive test battery. Archives of Clinical Neuropsychology, 21, 185194.CrossRefGoogle Scholar
Dawes, S., Suarez, P., Casey, C.Y., Cherner, M., Marcotte, T.D., Letendre, S., … The HNRC Group. (2008). Variable patterns of neuropsychological performance in HIV-1 infection. Journal of Clinical and Experimental Neuropsychology, 30(6), 613626.Google ScholarPubMed
Frensch, P.A., & Rünger, D. (2003). Implicit learning. Current Directions in Psychological Science, 12, 1318.CrossRefGoogle Scholar
Goodkin, K., Lopez, E., Hardy, D.J., & Hardy, W.D. (2013). Neurocognitive decline in HIV infection. Psychiatric Annals, 43(5), 204211.CrossRefGoogle Scholar
Gonzalez, R., Jacobus, J., Vassileva, J., Quartana, P., Amatya, A., & Martin, E. (2008). Deficits in complex motor functions, despite no evidence of procedural learning deficits, among HIV+ individuals with history of substance dependence. Neuropsychology, 22, 240251.CrossRefGoogle ScholarPubMed
Grant, I. (2008). Neurocognitive disturbances in HIV. International Review of Psychiatry, 20(1), 3347.CrossRefGoogle ScholarPubMed
Hardy, D.J., & Hinkin, C.H. (2002). Reaction time performance in adults with HIV/AIDS. Journal of Clinical and Experimental Neuropsychology, 24(7), 912929.CrossRefGoogle ScholarPubMed
Heaton, R.K., Grant, I., Butters, N., White, D.A., Kirson, D., Atkinson, H., … The HNRC Group. (1995). The HNRC 500 – neuropsychology of HIV infection at different disease stages. Journal of the International Neuropsychological Society, 1, 231251.CrossRefGoogle ScholarPubMed
Hinkin, C.H., Castellon, S.A., Durvasula, R.S., Hardy, D.J., Lam, M.N., Mason, K.I., … Stefaniak, M. (2002). Medication adherence among HIV+ adults: effects of cognitive dysfunction and regimen complexity. Neurology, 59(12), 19441950.CrossRefGoogle ScholarPubMed
Hinkin, C.H., Hardy, D.J., Mason, K.I., Castellon, S.A., Durvasula, R.S., Lam, M.N., & Stefaniak, M. (2004). Medication adherence in HIV-infected adults: Effect of patient age, cognitive status, and substance abuse. AIDS, 18 (Suppl. 1), 1925.CrossRefGoogle ScholarPubMed
Hulstijn, J.H. (2013). Incidental learning in second language acquisition. In Chapelle, C.A. (Ed.), The encyclopedia of applied linguistics, Vol. 5 (pp. 26322640). Chichester, England: Blackwell Publishing Ltd.Google Scholar
Joy, S., Kaplan, E., & Fein, D. (2003). Digit symbol – incidental learning in the WAIS-III: construct validity and clinical significance. The Clinical Neuropsychologist, 17(2), 182194.CrossRefGoogle ScholarPubMed
Lezak, M.D., Howieson, D.B., Bigler, E.D., & Tranel, D. (2012). Neuropsychological assessment (5th ed.). New York, NY: Oxford University Press.Google Scholar
Llorente, A.M., Miller, E.N., D’Elia, L.F., Selnes, O.A., Wesch, J., Becker, J.T., & Satz, P. (1998). Slowed information processing in HIV-1 disease. Journal of Clinical and Experimental Neuropsychology, 20, 6072.CrossRefGoogle ScholarPubMed
Manly, J.J., Smith, C., Crystal, H.A., Richardson, J., Golub, E.T., Greenblatt, R., … Young, M. (2011). Relationship of ethnicity, age, education, and reading level to speed and executive function among HIV+ and HIV- women: The Women’s Interagency HIV Study (WIHS) Neurocognitive Substudy. Journal of Clinical and Experimental Neuropsychology, 33(8), 853863.CrossRefGoogle ScholarPubMed
Martin, A. (1994). HIV, cognition, and the basal ganglia. In Grant, I. and Martin, A. (Eds.), Neuropsychology of HIV infection (pp. 234259). New York: Oxford University Press.Google Scholar
Martin, A., Heyes, M.P., Salazar, A.M., Law, W.A., & Williams, J. (1993). Impaired motor-skilled learning, slowed reaction time, and elevated cerebrospinal fluid quinolinic acid in a subgroup of HIV-infected individuals. Neuropsychology, 7, 149157.CrossRefGoogle Scholar
Martin, E., Gonzalez, R., Vassileva, J., & Maki, P. (2011). HIV+ men and women show different performance patterns on procedural learning tasks. Journal of Clinical and Experimental Neuropsychology, 33, 112120.CrossRefGoogle ScholarPubMed
Moore, D.J., Masliah, E., Rippeth, J.D., Gonzalez, R., Carey, C.L., Cherner, M., … The HNRC Group. (2006). Cortical and subcortical neurodegeneration is associated with HIV neurocognitive impairment. AIDS, 20, 879887.CrossRefGoogle ScholarPubMed
Morgan, E.E., Woods, S.P., Delano-Wood, L., Bondi, M.W., Grant, I., & The HNRC Group. (2011). Intraindividual variability in HIV infection: Evidence for greater neurocognitive dispersion in older HIV seropositive adults. Neuropsychology, 25(5), 645654.CrossRefGoogle ScholarPubMed
Perruchet, P., & Pacton, S. (2006). Implicit learning and statistical learning: One phenomenon, two approaches. Trends in Cognitive Sciences, 10, 233238.CrossRefGoogle ScholarPubMed
Sanford, R., Fellows, L. K., Ances, B. M., & Collins, L. (2018). Association of brain structure changes and cognitive function with combination antiretroviral therapy in HIV-positive individuals. JAMA Neurology, 75(1), 7279.CrossRefGoogle ScholarPubMed
Sassoon, S.A., Fama, R., Rosenbloom, M.J., O’Reilly, A., Pfefferbaum, A., & Sullivan, E.V. (2007). Component cognitive and motor processes of the Digit Symbol Test: Differential deficits in alcoholism, HIV infection, and their comorbidity. Alcoholism: Clinical and Experimental Research, 31(8), 13151324.CrossRefGoogle ScholarPubMed
Smith, A. (1973). Symbol Digit Modalities Test. Torrance, California: Western Psychological Services.Google Scholar
Stacy, A. W., Newcomb, M. D., & Ames, S. L. (2000). Implicit cognition and HIV risk behavior. Journal of Behavioral Medicine, 23, 475499.CrossRefGoogle ScholarPubMed
SuperLab Pro Version 2.0 (Computer software). (1999). San Pedro, California: Cedrus Corporation.Google Scholar