Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-03T18:19:53.815Z Has data issue: false hasContentIssue false

Immediate and Delayed Neuropsychological Effects of Carbon Monoxide Poisoning: A Meta-analysis

Published online by Cambridge University Press:  30 October 2017

Stephanie Watt
Affiliation:
School of Psychology and Public Health, La Trobe University, Bundoora, Victoria, Australia
Catherine E. Prado
Affiliation:
School of Psychology and Public Health, La Trobe University, Bundoora, Victoria, Australia
Simon F. Crowe*
Affiliation:
School of Psychology and Public Health, La Trobe University, Bundoora, Victoria, Australia
*
Correspondence and reprint requests to: Simon F. Crowe, School of Psychology and Public Health, La Trobe University, Bundoora, Victoria, 3086 Australia. E-mail: [email protected]

Abstract

Background: Carbon monoxide (CO) poisoning is the leading cause of accidental poisoning worldwide. This study undertook a meta-analysis to examine differences in neuropsychological functioning in patients with CO poisoning as compared to healthy controls, and examined the longer-term neuropsychological effects of CO poisoning. Methods: Studies performed between the years 1995 and 2016 were identified through a search of the electronic databases Medline and PsycInfo. Data from the papers identified were pooled to determine standard mean differences using a random-effects model. Results: Ten studies were included in the analysis, with healthy controls performing significantly better than CO poisoned participants on the domains of divided attention, immediate memory, and processing speed. No statistically significant differences were found for sustained attention, recent memory, working memory, visuospatial/constructional ability, and expressive language. Performance by participants with CO poisoning for the domains of sustained attention, recent memory, visuospatial/constructional abilities, and working memory significantly improved over time after initial exposure, demonstrating recovery of these functions over time. No statistically significant differences were evident for divided attention or expressive language. Conclusions: This evidence indicates that healthy controls perform better than do individuals with CO poisoning on a range of neuropsychological domains; however, it also indicates that performance in some domains does improve over time. (JINS, 2018, 24, 405–415)

Type
Critical Reviews
Copyright
Copyright © The International Neuropsychological Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

American Psychiatric Association. (2013). Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: American Psychiatric Publishing.Google Scholar
Amitai, Y., Zlotogorski, Z., Golan-Katzav, V., Wexler, A., & Gross, D. (1998). Neuropsychological impairment from acute low-level exposure to carbon monoxide. Archives of Neurology, 55(6), 845848. doi: 10.1001/archneur.55.6.845 Google Scholar
Armengol, C. (2000). Acute oxygen deprivation: Neuropsychological profiles and implications for rehabilitation. Brain Injury, 14(3), 237250. doi: 10.1080/026990500120718 Google Scholar
Buckley, N., Juurlink, D., Isbister, G., Bennett, M., & Lavonas, E. (2011). Hyperbaric oxygen for carbon monoxide poisoning. Cochrane Database of Systematic Reviews, 13(4), CD002041.Google Scholar
Caine, D., & Watson, J. (2000). Neuropsychological and neuropathological sequelae of cerebral anoxia: A critical review. Journal of the International Neuropsychological Society, 6(1), 8699. doi: 10.1017/S1355617700611116 Google Scholar
Chang, C., Chang, W., Lui, C., Wang, J., Chen, C., Lee, Y., & Chen, C. (2010). Longitudinal study of carbon monoxide intoxication by diffusor tensor imaging with neuropsychiatric correlation. Journal of Psychiatry and Neuroscience, 35(2), 115125. doi: 10.1503/jon.090057 Google Scholar
Chen, H., Chen, P., Lu, C., Hsu, N., Chou, K., Lin, C., & Lin, W. (2013). Structural and cognitive deficits in chronic carbon monoxide intoxication: A voxel-based morphometry study. BMJ Neurology, 13, 129. doi: 10.1186/1471237713129 Google Scholar
Cochrane. (2017). Assessing risk of bias in included studies. Retrieved from http://methods.cochrane.org/bias/assessing-risk-bias-included-studies Google Scholar
Cohen, J. (1988). Statistical power analysis for the behavioural sciences. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Daffner, K.R., Gale, S.A., Barrett, A.M., Boeve, B.F., Chatterjee, A., Coslett, H.B., & Kaufer, D.I. (2015). Improving clinical cognitive testing: Report of the AAN Behavioral Neurology Section Workgroup. Neurology, 85(10), 910918. PMID: 26163433; PMCID: PMC4560060.Google Scholar
Deschamps, D., Geraud, C., Julien, H., Baud, F., & Dally, S. (2003). Memory one month after acute carbon monoxide intoxication: A prospective study. Occupational and Environmental Medicine, 60(3), 212. PMID: 12598670; PMCID: PMC1740494.Google Scholar
Dunham, M., & Johnstone, B. (1999). Variability of neuropsychological deficits associated with carbon monoxide poisoning: Four case reports. Brain Injury, 13(11), 917925. doi: 10.1080/026990599121115 Google Scholar
Effective Practice and Organisation of Care. (2016). Suggested risk of bias criteria for EPOC reviews. EPOC Resources for review authors. Oslo: Norwegian Knowledge Centre for the Health Services.Google Scholar
Ernst, A., & Zibrak, J. (1998). Carbon monoxide poisoning. New England Journal of Medicine, 339, 16031608. doi: 10.1056/NEJM199811263392206 CrossRefGoogle ScholarPubMed
Gale, S., & Hopkins, R. (2004). Effects of hypoxia on the brain: Neuroimaging and neuropsychological findings following carbon monoxide poisoning and obstructive sleep apnea. Journal of the International Neuropsychological Society, 10(1), 6071. doi: 10.1017/S1355617704101082 CrossRefGoogle ScholarPubMed
Gale, S., Hopkins, R., Weaver, L., Bigler, E., Booth, E., & Blatter, D. (1999). MRI, quantitative MRI, SPECT, and neuropsychological findings following carbon monoxide poisoning. Brain Injury, 13(4), 229243. doi: 10.1080/026990599121601 Google Scholar
Gorman, D., Clayton, D., Gilligan, J., & Webb, R. (1992). A longitudinal study of 100 consecutive admissions for carbon monoxide poisoning to the Royal Adelaide Hospital. Anaesthesia and Intensive Care, 20(3), 311316. PMID: 1524170.Google Scholar
Gorman, D., Drewry, A., Huang, Y., & Sames, C. (2003). The clinical toxicology of carbon monoxide. Toxicology, 187(1), 2538. doi: 10.1016/S0300-483X(03)00005-2 Google Scholar
Hay, P., Denson, L., van Hoof, M., & Blumenfeld, N. (2002). The neuropsychiatry of carbon monoxide poisoning in attempted suicide. Journal of Psychiatric Research, 53(2), 699708. doi: 10.1016/S0022-39999(02)00424-5 Google Scholar
Higgins, J., & Green, S. (2011). Cochrane handbook for systematic reviews of interventions (Version 5.1.0). The Cochrane Collaboration. Available from www.handbook.cochrane.org.Google Scholar
Higgins, J., Thompson, S., Deeks, J., & Altman, D. (2003). Measuring inconsistency in meta-analyses. The British Medical Journal, 327, 557560. doi: 10.1136/bmj.327.7414.557 Google Scholar
Hopkins, R., Weaver, L., & Kesner, R. (1993). Long-term memory impairments and hippocampal magnetic resonance imaging in carbon monoxide poisoned subjects. Undersea and Hyperbaric Medicine, 20(1), 15.Google Scholar
Jasper, B., Hopkins, R., Duker, H., & Weaver, L. (2005). Affective outcome following carbon monoxide poisoning: A prospective longitudinal study. Cognitive and Behavioural Neurology, 18(2), 127134. doi: 10.1097/01.wnn.0000160820.07836.cf Google Scholar
Kesler, S., Hopkins, R., Weaver, L., Blatter, D., Edge-Booth, H., & Bigler, E. (2001). Verbal memory deficits associated with fornix atrophy in carbon monoxide poisoning. Journal of the International Neuropsychological Society, 7(5), 640646. PMID: 11459115.Google Scholar
Lezak, M., Howieson, D., Bigler, E., & Tranel, D. (2012). Neuropsychological assessment (5th ed.). New York, NY: Oxford University Press.Google Scholar
Min, S. (1986). A brain syndrome associated with delayed neuropsychiatric sequelae following acute carbon monoxide poisoning. Acta Psychiatrica Scandinavica, 73(1), 8086. doi: 10.1111/j.1600-0447.1986.tb02671.x Google Scholar
Pang, L., Bian, M., Zang, X., Wu, Y., Xu, D., Dong, N., & Zhang, N. (2013). Neuroprotective effects of erythropoietin in patients with carbon monoxide poisoning. Journal of Biochemical and Molecular Toxicology, 27(5), 266271. doi: 10.1002/jbt.21484 Google Scholar
Piantadosi, C., Zhang, J., Levin, E., Folz, R., & Schmechel, D. (1997). Apoptosis and delayed neuronal damage after carbon monoxide poisoning in the rat. Experimental Neurology, 147(1), 103114. doi: 10.1006/exnr.1997.6584 Google Scholar
Porter, S., Hopkins, R., Weaver, L., Bigler, E., & Blatter, D. (2002). Corpus callosum atrophy and neuropsychological outcome following carbon monoxide poisoning. Archives of Clinical Neuropsychology, 17(2), 195204. doi: 10.1016/S0887-6177(00)00110-4 Google Scholar
Prockop, L., & Chichkova, R. (2007). Carbon monoxide intoxication: An updated review. Journal of the Neurological Sciences, 262(1-2), 122130. doi: 10.1016/j.jns.2007.06.037 Google Scholar
Raub, J., Mathieu-Nolf, M., Hampson, N., & Thom, S. (2000). Carbon monoxide poisoning – a public health perspective. Toxicology, 145(1), 114. doi: 10.1016/S0300-483X(99)00217-6 Google Scholar
Rottman, S., Kaser-Boyd, N., Cannis, T., & Alexander, J. (1995). Low-level carbon monoxide poisoning: Inability of neuropsychological testing to identify patients who benefit from hyperbaric oxygen therapy. Prehospital and Disaster Medicine, 10(4), 276282. doi: 10.1017/S1049023X00042175 Google Scholar
Strauss, E., Sherman, M.S., & Spreen, O. (2006). A compendium of neuropsychological tests: Administration, norms, and commentary. New York: Oxford University Press.Google Scholar
Tendal, B., Higgins, J., Juni, P., Hrobartsson, A., Trelle, S., Nuesch, E., & Gotzsche, P. (2009). Disagreements in meta-analyses using outcomes measured on continuous or rating scales: Observer agreement study. British Medical Journal, 339, b3128. doi: 10.1136/bmj.b3128 Google Scholar
Thom, S. (1990). Antagonism of carbon monoxide-mediated brain lipid peroxidation by hyperbaric oxygen. Toxicology and Applied Pharmacology, 105(2), 340344. doi: 10.1016/0041-008X(90)90195-Z CrossRefGoogle ScholarPubMed
Turner, C., Barker-Collo, S., Connell, C., & Gant, N. (2015). Acute hypoxic gas breathing severely impairs cognitive and task learning in humans. Physiology and Behaviour, 142, 104110. doi: 10.1016/j.psybeh.2015.02.006.Google Scholar
Weaver, L. (1999). Carbon monoxide poisoning. Critical Care Clinics, 15(2), 297317. PMID: 10331130.Google Scholar
Weaver, L. (2014). Hyperbaric oxygen therapy for carbon monoxide poisoning. Undersea and Hyperbaric Medicine, 41(4), 339354. PMID: 25109087.Google Scholar
Weaver, L., Hopkins, R., Chan, K., Churchill, S., Elliott, C., Clemmer, T., & Morris, A. (2002). Hyperbaric oxygen for acute carbon monoxide poisoning. The New England Journal of Medicine, 347(14), 10571067. doi: 10.1056/NEJMoa013121 Google Scholar
Wu, P., & Juurlink, D. (2014). Carbon monoxide poisoning. Canadian Medical Association Journal, 186(8), 611. doi: 10.1503/cmaj.130972 CrossRefGoogle ScholarPubMed
Yang, K., Wang, S., Hsieh, W., Lirng, J., Yang, C., Deng, J., & Chou, Y. (2015). Longitudinal changes in the dopamine transporter and cognition in suicide attempters with charcoal burning. Psychiatry Research, 231(2), 160167. doi: 10.1016/j.psychresns.2014.12.002 Google Scholar