Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T04:03:46.510Z Has data issue: false hasContentIssue false

Frontal lobe contributions to recognition and recall: Linking basic research with clinical evaluation and remediation

Published online by Cambridge University Press:  22 March 2006

PATRICK S. R. DAVIDSON
Affiliation:
The Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada
ANGELA K. TROYER
Affiliation:
Department of Psychology, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada
MORRIS MOSCOVITCH
Affiliation:
The Rotman Research Institute, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada Department of Psychology, Baycrest Centre for Geriatric Care, Toronto, Ontario, Canada Department of Psychology, University of Toronto, Toronto, Ontario, Canada

Abstract

The role of the human frontal lobes in episodic memory is becoming better understood, thanks mainly to focal lesion and neuroimaging studies. Here we review some recent findings from basic research on the frontal lobes in memory encoding, search, and decision-making at retrieval. For each of these processes, researchers have uncovered cases in which frontal memory impairments can be attenuated by various task manipulations. We suggest ways in which these findings may inform clinical evaluation and rehabilitation of memory problems following frontal damage. (JINS, 2006, 12, 210–223.)

Type
SYMPOSIUM
Copyright
© 2006 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Alexander, M.P., Stuss, D.T., & Fansabedian, N. (2003). California Verbal Learning Test: Performance by patients with focal frontal and non-frontal lesions. Brain, 126, 14931503.CrossRefGoogle Scholar
Arnsten, A.F.T. & Robbins, T.W. (2002). Neurochemical modulation of prefrontal cortical function in humans and animals. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function (pp. 5184). New York: Oxford University Press.
Baddeley, A., Emslie, H., & Nimmo-Smith, I. (1994). Doors and People Test. New York: Psychological Corporation.
Baddeley, A.D. & Wilson, B.A. (1994). When implicit learning fails: Amnesia and the problem of error elimination. Neuropsychologia, 32, 5368.CrossRefGoogle Scholar
Baldo, J.V., Delis, D., Kramer, J., & Shimamura, A.P. (2002). Memory performance on the California Verbal Learning Test–II: Findings from patients with focal frontal lesions. Journal of the International Neuropsychological Society, 8, 539546.Google Scholar
Baldo, J.V. & Shimamura, A.P. (2002). Frontal lobes and memory. In A.D. Baddeley, M.D. Kopelman, & B.A. Wilson (Eds.), The handbook of memory disorders (2nd ed.). New York: Wiley.
Bondi, M.W. & Troster, A.I. (1997). Parkinson's disease: Neurobehavioral consequences of basal ganglia dysfunction. In P.D. Nussbaum (Ed.), Handbook of neuropsychology and aging (pp. 216245). New York: Plenum.
Bousfield, W.A. (1953). The occurrence of clustering in the recall of randomly arranged associates. Journal of General Psychology, 49, 229240.Google Scholar
Brunfaut, E., Vanoverberghe, V., & d'Ydewalle, G. (2000). Prospective remembering of Korsakoffs and alcoholics as a function of the prospective-memory and on-going tasks. Neuropsychologia, 38, 975984.CrossRefGoogle Scholar
Buckner, R.L. (2003). Functional-anatomic correlates of control processes in memory. Journal of Neuroscience, 23, 39994004.Google Scholar
Burgess, P.W. & McNeil, J.E. (1999). Content-specific confabulation. Cortex, 35, 163182.Google Scholar
Burgess, P.W. & Shallice, T. (1996). Confabulation and the control of recollection. Memory, 4, 359411.CrossRefGoogle Scholar
Burgess, P.W., Veitch, E., de Lacy Costello, A., & Shallice, T. (2000). The cognitive and neuroanatomical correlates of multitasking. Neuropsychologia, 38, 848863.CrossRefGoogle Scholar
Butters, M.A., Kaszniak, A.W., Glisky, E.L., Eslinger, P.J., & Schacter, D.L. (1994). Recency discrimination deficits in frontal lobe patients. Neuropsychology, 8, 343353.Google Scholar
Cabeza, R., Anderson, N.D., Houle, S., Mangels, J.A., & Nyberg, L. (2000). Age-related differences in neural activity during item and temporal-order memory retrieval: A positron emission tomography study. Journal of Cognitive Neuroscience, 12, 197206.CrossRefGoogle Scholar
Cabeza, R., Grady, C.L., Nyberg, L., McIntosh, A.R., Tulving, E., Kapur, S., Jennings, J.M., Houle, S., & Craik, F.I.M. (1997c). Age-related differences in neural activity during memory encoding and retrieval: A positron emission tomography study. Journal of Neuroscience, 17, 391400.Google Scholar
Cabeza, R., Kapur, S., Craik, F.I.M., McIntosh, A.R., Houle, S., & Tulving, E. (1997a). Functional neuroanatomy of recall and recognition: A PET study of episodic memory. The Journal of Cognitive Neuroscience, 9, 254265.Google Scholar
Cabeza, R., Mangels, J., Nyberg, L., Habib, R., Houle, S., McIntosh, A.R., & Tulving, E. (1997b). Brain regions differentially involved in remembering what and when: A PET study. Neuron, 19, 863870.Google Scholar
Chasteen, A.L., Park, D.C., & Schwartz, N. (2001). Implementation intentions and facilitation of prospective memory. Psychological Science, 12, 457461.CrossRefGoogle Scholar
Colcombe, S.J., Kramer, A.F., Erickson, K.I., Scalf, P., McAuley, E., Cohen, N.J., Webb, A., Jerome, G.J., Marquez, D.X., & Elavsky, S. (2004). Cardiovascular fitness, cortical plasticity, and aging. Proceedings of the National Academy of Sciences of the USA, 101, 33163321.CrossRefGoogle Scholar
Cools, R., Barker, R.A., Sahakian, B.J., & Robbins, T.W. (2003). L-Dopa medication remediates cognitive inflexibility, but increases impulsivity, in patients with Parkinson's disease. Neuropsychologia, 41, 14311441.CrossRefGoogle Scholar
Cools, R., Stefanova, E., Barker, R.A., Robbins, T.W., & Owen, A.M. (2002). Dopaminergic modulation of high-level cognition in Parkinson's disease: The role of the prefrontal cortex revealed by PET. Brain, 125, 584594.Google Scholar
Crook, T.H., III & Larrabee, G.J. (1990). A self-rating scale for evaluating memory in everyday life. Psychology and Aging, 5, 4857.CrossRefGoogle Scholar
Dalla Barba, G. (1993). Confabulation: Knowledge and recollective experience. Cognitive Neuropsychology, 10, 120.Google Scholar
Dobbins, I.G., Foley, H., Schacter, D.L., & Wagner, A.D. (2002). Executive control during episodic retrieval: Multiple prefrontal processes subserve source memory. Neuron, 35, 989996.CrossRefGoogle Scholar
Davidson, P.S.R., Cook, S.P., Glisky, E.L., Verfaellie, M., & Rapcsak, S.Z. (2005). Source memory in the real world: A neuropsychological study of flashbulb memory. Journal of Clinical and Experimental Neuropsychology, 27, 915929.CrossRefGoogle Scholar
Davidson, P.S.R. & Glisky, E.L. (2002). Neuropsychological correlates of recollection and familiarity in normal aging. Cognitive, Affective, and Behavioral Neuroscience, 2, 174186.CrossRefGoogle Scholar
Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (2000). California Verbal Learning Test-II. New York: Psychological Corporation.
Dixon, R.A., Hultsch, D.F., & Hertzog, C. (1988). The Metamemory in Adulthood (MIA) Questionnaire. Psychopharmacology Bulletin, 24, 671688.Google Scholar
Fan, J., Snodgrass, J.G., & Bilder, R.M. (2003). Functional magnetic resonance imaging of source versus item memory. Neuroreport, 14, 22752281.CrossRefGoogle Scholar
Fletcher, P.C. & Henson, R.N.A. (2001). Frontal lobes and human memory: Insights from functional neuroimaging. Brain, 124, 849881.Google Scholar
Gardiner, J.M. & Richardson-Klavehn, A. (2000). Remembering and knowing. In E. Tulving & F.I.M. Craik (Eds.), Oxford handbook of memory (pp. 229244). New York: Oxford University Press.
Gershberg, F.B. & Shimamura, A.P. (1995). Impaired use of organizational strategies in free recall following frontal lobe damage. Neuropsychologia, 33, 13051333.CrossRefGoogle Scholar
Gilboa, A. (2005). Mechanisms of confabulation: A test of the temporal context confusion and memory retrieval deficit hypotheses. Symposium on Confabulation, meeting of The British Neuropsychological Society, London, England.
Gilboa, A. & Moscovitch, M. (2002). The cognitive neuroscience of confabulation: A review and a model. In A.D. Baddeley, M.D. Kopelman, & B.A. Wilson (Eds.), Handbook of memory disorders (2nd ed.) (pp. 315342). London: Wiley.
Glisky, E.L. & Glisky, M.L. (2002). Learning and memory impairments. In P.J. Eslinger (Ed.), Neuropsychological interventions: Clinical research and practice (pp. 137162). New York: Guilford Press.
Glisky, E.L., Polster, M.R., & Routhieaux, B.C. (1995). Double dissociation between item and source memory. Neuropsychology, 9, 229235.CrossRefGoogle Scholar
Glisky, E.L., Rubin, S.R., & Davidson, P.S.R. (2001). Source memory in older adults: An encoding or retrieval problem? Journal of Experimental Psychology: Learning, Memory, and Cognition, 27, 11311146.Google Scholar
Goldman-Rakic, P.S. (1998). The cortical dopamine system: Role in memory and cognition. Advances in Pharmacology, 42, 707711.Google Scholar
Gollwitzer, P.M. (1999). Implementation intentions: Strong effects of simple plans. American Psychologist, 54, 493503.CrossRefGoogle Scholar
Gotham, A.M., Brown, R.G., & Marsden, C.D. (1988). ‘Frontal’ cognitive function in patients with Parkinson's disease ‘on’ and ‘off’ levodopa. Brain, 111, 299321.CrossRefGoogle Scholar
Grace, J. & Malloy, P.F. (2001). Frontal Systems Behavior Scale: Professional manual. Lutz, FL: Psychological Assessment Resources.
Henson, R.N.A., Rugg, M.D., Shallice, T., & Dolan, R.J. (2000). Confidence in recognition memory for words: Dissociating right prefrontal roles in episodic retrieval. Journal of Cognitive Neuroscience, 12, 913923.Google Scholar
Henson, R.N.A., Shallice, T., & Dolan, R.J. (1999). Right prefrontal cortex and episodic memory retrieval: A functional MRI test of the monitoring hypothesis. Brain, 122, 13671381.CrossRefGoogle Scholar
Hirst, W. & Volpe, B.T. (1988). Memory strategies with brain damage. Brain & Cognition, 8, 379408.CrossRefGoogle Scholar
Incisa della Rocchetta, A. & Milner, B. (1993). Strategic search and retrieval inhibition: The role of the frontal lobes. Neuropsychologia, 31, 503524.CrossRefGoogle Scholar
Jacoby, L.L. (1991). A process dissociation framework: Separating automatic from intentional uses of memory. Journal of Memory and Language, 30, 513541.CrossRefGoogle Scholar
Jacoby, L.L. (1999). Deceiving the elderly: Effects of accessibility bias in cued recall performance. Cognitive Neuropsychology, 3/4/5, 417436.CrossRefGoogle Scholar
Janowsky, J.S., Shimamura, A.P., & Squire, L.R. (1989a). Source memory impairment in patients with frontal lobe lesions. Neuropsychologia, 27, 10431056.Google Scholar
Janowsky, J.S., Shimamura, A.P., & Squire, L.R. (1989b). Memory and metamemory: Comparisons between patients with frontal lobe lesions and amnesic patients. Psychobiology, 17, 311.Google Scholar
Jennings, J.M. & Jacoby, L.L. (2003). Improving memory in older adults: Training recollection. Neuropsychological Rehabilitation, 13, 417440.CrossRefGoogle Scholar
Jennings, J.M., Webster, L.M., Kleykamp, B.A., & Dagenbach, D. (2005). Recollection training and transfer effects in older adults: Successful use of a repetition-lag procedure. Aging, Neuropsychology, and Cognition, 12, 278298.CrossRefGoogle Scholar
Johnson, M.K., O'Connor, M., & Cantor, J. (1997). Confabulation, memory deficits, and frontal dysfunction. Brain and Cognition, 34, 189206.CrossRefGoogle Scholar
Johnson, M.K., Hayes, S.M., D'Esposito, M., & Raye, C.L. (2000). Confabulation. In J. Grafman & F. Boller (Eds.), Handbook of neuropsychology (2nd ed.) (pp. 359383). Amsterdam: Elsevier Science.
Kapur, N. (1995). Memory aids in the rehabilitation of memory disordered patients. In A.D. Baddeley, B.A. Wilson, & F.N. Watts (Eds.), Handbook of memory disorders (pp. 533556). Toronto: Wiley.
Kesner, R.P., Hopkins, R.O., & Fineman, B. (1994). Item and order dissociation in humans with prefrontal damage. Neuropsychologia, 32, 881891.CrossRefGoogle Scholar
Kessels, R.P.C. & de Haan, E.H.F. (2003). Implicit learning in memory rehabilitation: A meta-analysis on errorless learning and vanishing cues methods. Journal of Clinical and Experimental Neuropsychology, 25, 805814.CrossRefGoogle Scholar
Komatsu, S., Mimura, M., Kato, M., Wakamatsu, N., & Kashima, H. (2000). Errorless and effortful processes involved in the learning of face-name associations by patients with alcoholic Korsakoff's syndrome. Neuropsychological Rehabilitation, 10, 113132.CrossRefGoogle Scholar
Kopelman, M.D. & Stanhope, N. (1998). Recall and recognition memory in patients with focal frontal, temporal lobe and diencephalic lesions. Neuropsychologia, 36, 785795.Google Scholar
Kopelman, M.D., Stanhope, N., & Kingsley, D. (1997). Temporal and spatial context memory in patients with focal frontal, temporal lobe, and diencephalic lesions. Neuropsychologia, 35, 15331545.CrossRefGoogle Scholar
Lange, K.W., Robbins T.W., Marsden C.D., James M., Owen A.M., & Paul G.M. (1992). L-dopa withdrawal in Parkinson's disease selectively impairs cognitive performance in tests sensitive to frontal lobe dysfunction. Psychopharmacology (Berlin), 107, 394404.CrossRefGoogle Scholar
Leach, L., Kaplan, E., Rewilak, D., Richards, B., & Proulx, G. (2000). Kaplan Baycrest Neurocognitive Assessment. New York: Psychological Corporation.
Mandler, G. (1967). Organization and memory. In K.W. Spence & J.T. Spence (Eds.), Psychology of learning and motivation, Vol. 1. New York: Academic Press.
Mandler, G. (1980). Recognizing: The judgment of previous occurrence. Psychological Review, 87, 252271.CrossRefGoogle Scholar
Mangels, J.A. (1997). Strategic processing and memory for temporal order in patients with frontal lobe lesions. Neuropsychology, 11, 207221.CrossRefGoogle Scholar
Mayberg, H.S. (2002). Mapping mood: An evolving emphasis on frontal-limbic interactions. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function. New York: Oxford University Press.
McAndrews, M.P. & Milner, B. (1991). The frontal cortex and memory for temporal order. Neuropsychologia, 29, 849859.CrossRefGoogle Scholar
McDowell, S., Whyte, J., & D'Esposito, M. (1998). Differential effect of a dopaminergic agonist on prefrontal function in traumatic brain injury patients. Brain, 121, 11551164.CrossRefGoogle Scholar
Melo, B., Winocur, G., & Moscovitch, M. (1999). False recall and false recognition: An examination of the effects of selective and combined lesions to the medial temporal lobe/diencephalon and frontal lobe structures. Cognitive Neuropsychology, 16, 343359.CrossRefGoogle Scholar
Milner, B., Corsi, P., & Leonard, G. (1991). Frontal-lobe contribution to recency judgements. Neuropsychologia, 29, 601618.CrossRefGoogle Scholar
Moscovitch, M. (1989). Confabulation and the frontal system: Strategic vs associative retrieval in neuropsychological theories of memory. In H.L. Roediger III & F.I.M. Craik (Eds.), Varieties of memory and consciousness: Essays in honour of Endel Tulving (pp. 133160). Hillsdale, NJ: Erlbaum.
Moscovitch, M. (1992). A neuropsychological model of memory and consciousness. In L.R. Squire & N. Butters (Eds.), The neuropsychology of memory. New York: Guilford Press.
Moscovitch, M. (1994). Memory and working with memory: Evaluation of a component process model and comparisons with other models. In D.L. Schacter & E. Tulving (Eds.), Memory systems 1994 (pp. 269310). Cambridge, MA: MIT Press.
Moscovitch, M. & Melo, B. (1997). Strategic retrieval and the frontal lobes: Evidence from confabulation and amnesia. Neuropsychologia, 35, 10171034.CrossRefGoogle Scholar
Moscovitch, M. & Winocur, G. (1992). The neuropsychology of memory and aging. In F.I.M. Craik & T.A. Salthouse (Eds.), The handbook of aging and cognition (pp. 315372). Hillsdale, NJ: Lawrence Erlbaum Associates.
Moscovitch, M. & Winocur, R. (2002). The frontal cortex and working with memory. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function. New York: Oxford University Press.
Nadel, L. & Moscovitch, M. (1997). Memory consolidation, retrograde amnesia and the hippocampal complex. Current Opinion in Neurobiology, 7, 217227.CrossRefGoogle Scholar
Nolde, S.F., Johnson, M.K., & D'Esposito, M. (1998). Left prefrontal activation during episodic remembering: An event-related fMRI study. Neuroreport, 9, 35093514.CrossRefGoogle Scholar
Nyberg, L., McIntosh, A.R., Cabeza, R., Habib, R., Houle, S., & Tulving, E. (1996). General and specific brain regions involved in encoding and retrieval of events: What, where, and when. Proceedings of the National Academy of Sciences (USA), 93, 1128011285.CrossRefGoogle Scholar
Parkin, A.J., Leng, N.R.C., Stanhope, N., & Smith, A.P. (1988). Memory impairment following ruptured aneurysm of the anterior communicating artery. Brain & Cognition, 7, 231243.CrossRefGoogle Scholar
Parkin, A.J., Ward, J., Bindschaedler, C., Squires, E., & Powell, G. (1999). False recognition after frontal lobe damage: The role of encoding factors. Cognitive Neuropsychology, 16, 243265.CrossRefGoogle Scholar
Petrides, M. (1985). Deficits on conditional associative-learning tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia, 23, 601614.CrossRefGoogle Scholar
Petrides, M. (2000). Frontal lobes and memory. In L.S. Cermak (Ed.), Handbook of neuropsychology: Memory and its disorders (2nd ed.) (pp. 6784). Amsterdam: Elsevier.
Petrides, M. (2002). The mid-ventrolateral prefrontal cortex and active mnemonic retrieval. Neurobiology of Learning and Memory, 78, 528538.CrossRefGoogle Scholar
Petrides, M. & Milner, B. (1982). Deficits on subject-ordered tasks after frontal- and temporal-lobe lesions in man. Neuropsychologia, 20, 249262.CrossRefGoogle Scholar
Ranganath, C., Johnson, M.K., & D'Esposito, M. (2000). Left anterior prefrontal activation increases with demands to recall specific perceptual information. Journal of Neuroscience, 20, RC108.Google Scholar
Ranganath, C., Yonelinas, A.P., Cohen, M.X., Dy, C.J., Tom, S.M., & D'Esposito M. (2004). Dissociable correlates of recollection and familiarity within the medial temporal lobes. Neuropsychologia, 42, 213.CrossRefGoogle Scholar
Rapcsak, S.Z., Nielsen, L., Littrell, L.D., Glisky, E.L., Kaszniak, A.W., & Laguna, J.F. (2001). Face memory impairments in patients with frontal lobe damage. Neurology, 57, 11681175.CrossRefGoogle Scholar
Rapcsak, S.Z., Reminger, S.L., Glisky, E.L., Kaszniak, A.W., & Comer, J.F. (1999). Neuropsychological mechanisms of false facial recognition following frontal lobe damage. Cognitive Neuropsychology, 16, 267292.CrossRefGoogle Scholar
Raz, N., Gunning, F.M., Head, D., Dupuis, J.H., McQuain, J., Briggs, S.D., Loken, W.J., Thornton, A.E., & Acker, J.E. (1997). Selective aging of the human cerebral cortex observed in vivo: Differential vulnerability of the prefrontal gray matter. Cerebral Cortex, 7, 268282.CrossRefGoogle Scholar
Rey, A. (1941). L'examen psychologique dans les cas d'encephalpathie traumatique [Psychological examination of traumatic encephalopathy]. Archives de Psychologie, 28, 286340.Google Scholar
Richards, B., Leach, L., & Proulx, G. (1990). Memory rehabilitation in a patient with bilateral dorsomedial thalamic infarcts. Journal of Clinical and Experimental Neuropsychology, 12, 395.Google Scholar
Robinson, K.M. (2001). Rehabilitation applications in caring for patients with Pick's disease and frontotemporal dementias. Neurology, 56, S56S58.CrossRefGoogle Scholar
Saint-Cyr, J.A. (2003). Frontal-striatal circuit functions: Context, sequence, and consequence. Journal of the International Neuropsychological Society, 9, 103127.Google Scholar
Schacter, D.L., Curran, T., Galluccio, L., Milberg, W.P., & Bates, J.F. (1996). False recognition and the right frontal lobe: A case study. Neuropsychologia, 34, 793808.CrossRefGoogle Scholar
Schacter, D.L., Harbluk, J.L., & McLachlan, D.R. (1984). Retrieval without recollection: An experimental analysis of source amnesia. Journal of Verbal Learning and Verbal Behavior, 23, 593611.CrossRefGoogle Scholar
Schnider, A. (2001). Spontaneous confabulation, reality monitoring, and the limbic system: A review. Brain Research Reviews, 36, 150160.CrossRefGoogle Scholar
Scoville, W.B. & Milner, B. (1957). Loss of recent memory after bilateral hippocampal lesions. Journal of Neurology, Neurosurgery, and Neuropsychiatry, 20, 1121.CrossRefGoogle Scholar
Senkfor, A.J. & Van Petten, C. (1998). Who said what? An event-related potential investgation of source and item memory. Journal of Expermental Psychology: Learning, Memory, and Cognition, 24, 10051025.Google Scholar
Senkfor, A.J., Van Petten, C., & Kutas, M. (2002). Episodic action memory for real objects: An ERP investigation with perform, watch, and imagine action encoding tasks versus a non-action encoding task. Journal of Cognitive Neuroscience, 14, 402419.CrossRefGoogle Scholar
Shallice, T. (2002). Fractionation of the supervisory system. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function. New York: Oxford University Press.
Shallice, T. (2003). Functional imaging and neuropsychology findings: How can they be linked? Neuroimage, 20, S146S154.Google Scholar
Shimamura, A.P. (2000). The role of the prefrontal cortex in dynamic filtering. Psychobiology, 28, 207218.Google Scholar
Shimamura, A.P. (2002). Memory retrieval and executive control processes. In D.T. Stuss & R.T. Knight (Eds.), Principles of frontal lobe function. New York: Oxford University Press.
Shimamura, A.P. & Squire, L.R. (1987). A neuropsychological study of fact memory and source amnesia. Journal of Experimental Psychology: Learning, Memory, and Cognition, 13, 464473.Google Scholar
Shimamura, A.P. & Squire, L.R. (1991). The relationship between fact and source memory: Findings from amnesic patients and normal subjects. Psychobiology, 19, 110.Google Scholar
Shimamura, A.P., Janowsky, J.S., & Squire, L.R. (1990). Memory for the temporal order of events in patients with frontal lobe lesions and amnesic patients. Neuropsychologia, 28, 803813.Google Scholar
Simons, J.S. & Spiers, H.J. (2003). Prefrontal and medial temporal lobe interactions in long-term memory. Nature Reviews Neurosciences, 4, 637648.CrossRefGoogle Scholar
Slotnick, S.D., Moo, L.R., Segal, J.B., & Hart, J. (2003). Distinct prefrontal cortex activity associated with item memory and source memory for visual shapes. Cognitive Brain Research, 17, 7582.CrossRefGoogle Scholar
Squire, L.R., Clark, R.E., & Bayley, P.J. (2004). Medial temporal lobe function and memory. In M. Gazzinaga (Ed.), The cognitive neurosciences (3rd ed.) (pp. 691708). Cambridge, Massachusetts: MIT Press.
Stern, R.A., Javorsky, D.J., Singer, E.A., Singer Harris, N.G., Somerville, J.A., Duke, L.M., Thompson, J.A., & Kaplan, E. (1999). The Boston Qualitative Score System for the Rey-Osterreith Complex Figure. Odessa, FL: Psychological Assessment Resources.
Stuss, D.T., Alexander, M.P., Palumbo, C.L., Buckle, L., Sayer, L., & Pogue, J. (1994). Organizational strategies of patients with unilateral or bilateral frontal lobe injury in word list learning tasks. Neuropsychology, 8, 355373.CrossRefGoogle Scholar
Swain, S.A., Polkey, C.E., Bullock, P., & Morris, R.G. (1998). Recognition memory and memory for order in script-based stories following frontal lobe excisions. Cortex, 34, 2545.Google Scholar
Swick, D. & Knight, R.T. (1999). Contributions of prefrontal cortex to recognition memory: Electrophysiological and behavioral evidence. Neuropsychology, 13, 155170.CrossRefGoogle Scholar
Thaiss, L. & Petrides, M. (2003). Source versus content memory in patients with a unilateral frontal cortex or a temporal lobe excision. Brain, 126, 11121126.CrossRefGoogle Scholar
Tulving, E. (1962). Subjective organization in free recall of “unrelated” words. Psychological Review, 69, 344354.CrossRefGoogle Scholar
Tulving, E. (1983). Elements of Episodic Memory. New York: Oxford University Press.
Turner, G.R. & Levine, B. (2004). Disorders of executive functioning and self-awareness. In J. Ponsford (Ed.), Cognitive and behavioral rehabilitation (pp. 224268). New York: Guilford.
Vriezen, E.R. & Moscovitch, M. (1990). Memory for temporal order on conditional associative-learning in patients with Parkinson's disease. Neuropsychologia, 28, 12831294.CrossRefGoogle Scholar
Verfaellie, M., Rapcsak, S.Z., Keane, M.M., & Alexander, M.P. (2004). Elevated false recognition in patients with frontal lobe damage is neither a general nor a unitary phenomenon. Neuropsychology, 18, 94103.CrossRefGoogle Scholar
Wagner, A.D. (2002). Cognitive control and episodic memory: Contributions from prefrontal cortex. In L.R. Squire & D.L. Schacter (Eds.), Neuropsychology of Memory (3rd ed.) (pp. 174192). New York: Guilford.
Ward, J., Parkin, A.J., Powell, G., Squires, E.J., Townsend, J., & Bradley, V. (1999). False recognition of unfamiliar people: “Seeing film stars everywhere.” Cognitive Neuropsychology, 16, 293316.Google Scholar
Wechsler, D. (1997). Wechsler Memory Scale–III. San Antonio, TX: Psychological Corporation, Harcourt Brace.
West, R.L. (1996). An application of prefrontal cortex function theory to cognitive aging. Psychological Bulletin, 120, 272292.CrossRefGoogle Scholar
Wheeler, M.A. & Stuss, D.T. (2003). Remembering and knowing in patients with frontal lobe injuries. Cortex, 39, 827846.CrossRefGoogle Scholar
Wheeler, M.A., Stuss, D.T., & Tulving, E. (1995). Frontal lobe damage produces episodic memory impairment. Journal of the International Neuropsychological Society, 1, 525536.CrossRefGoogle Scholar
Wilson, B.A. (2002). Memory rehabilitation. In L.R. Squire & D.L. Schacter (Eds.), Neuropsychology of memory (2nd ed.) (pp. 269310). New York: Guilford.
Wilson, B.A., Cockburn, J., Baddeley, A., & Hiorns, R. (1989). The development and validation of a test battery for detecting and monitoring everyday memory problems. Journal of Clinical & Experimental Neuropsychology, 11, 855870.CrossRefGoogle Scholar
Wu, M., Richards, B., & Baecker, R. (2004). Participatory design with individuals who have amnesia. Proceedings of the Participatory Design Conference 2004, 214223.
Yonelinas, A.P., Otten, L.J., Shaw, K.N., & Rugg, M.D. (2005). Separating the brain regions involved in recollection and familiarity in recognition memory. Journal of Neuroscience, 25, 30023008.CrossRefGoogle Scholar