Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T04:18:37.910Z Has data issue: false hasContentIssue false

Eye Movements and White Matter are Associated with Emotional Control in Children Treated for Brain Tumors

Published online by Cambridge University Press:  27 May 2020

Iska Moxon-Emre
Affiliation:
The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada University of Toronto, Toronto, ON, M5S 3G3, Canada Pediatric Oncology Group of Ontario, Toronto, ON, M5G 1V2, Canada
Margot J. Taylor
Affiliation:
The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada University of Toronto, Toronto, ON, M5S 3G3, Canada
Norman A. S. Farb
Affiliation:
University of Toronto, Toronto, ON, M5S 3G3, Canada
Adeoye A. Oyefiade
Affiliation:
The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada University of Toronto, Toronto, ON, M5S 3G3, Canada
Michael D. Taylor
Affiliation:
The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada University of Toronto, Toronto, ON, M5S 3G3, Canada
Eric Bouffet
Affiliation:
The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada University of Toronto, Toronto, ON, M5S 3G3, Canada
Suzanne Laughlin
Affiliation:
The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada University of Toronto, Toronto, ON, M5S 3G3, Canada
Jovanka Skocic
Affiliation:
The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
Cynthia B. de Medeiros
Affiliation:
The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
Donald J. Mabbott*
Affiliation:
The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada University of Toronto, Toronto, ON, M5S 3G3, Canada
*
*Correspondence and reprint requests to: Donald J. Mabbott, The Hospital for Sick Children – PGCRL, 686 Bay Street - 8th floor, Toronto, Ontario, M5G 0A4, Canada. Email: [email protected]

Abstract

Objective:

Children treated for brain tumors often experience social and emotional difficulties, including challenges with emotion regulation; our goal was to investigate the attention-related component processes of emotion regulation, using a novel eye-tracking measure, and to evaluate its relations with emotional functioning and white matter (WM) organization.

Method:

Fifty-four children participated in this study; 36 children treated for posterior fossa tumors, and 18 typically developing children. Participants completed two versions of an emotion regulation eye-tracking task, designed to differentiate between implicit (i.e., automatic) and explicit (i.e., voluntary) subprocesses. The Emotional Control scale from the Behavior Rating Inventory of Executive Function was used to evaluate emotional control in daily life, and WM organization was assessed with diffusion tensor imaging.

Results:

We found that emotional faces captured attention across all groups (F(1,51) = 32.18, p < .001, η2p = .39). However, unlike typically developing children, patients were unable to override the attentional capture of emotional faces when instructed to (emotional face-by-group interaction: F(2,51) = 5.58, p = .006, η2p = .18). Across all children, our eye-tracking measure of emotion regulation was modestly associated with the parent-report emotional control score (r = .29, p = .045), and in patients it was associated with WM microstructure in the body and splenium of the corpus callosum (all t > 3.03, all p < .05).

Conclusions:

Our findings suggest that an attention-related component process of emotion regulation is disrupted in children treated for brain tumors, and that it may relate to their emotional difficulties and WM organization. This work provides a foundation for future theoretical and mechanistic investigations of emotional difficulties in brain tumor survivors.

Type
Regular Research
Copyright
Copyright © INS. Published by Cambridge University Press, 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Ameis, S.H., Lerch, J.P., Taylor, M.J., Lee, W., Viviano, J.D., Pipitone, J., & Anagnostou, E. (2016). A diffusion tensor imaging study in children with ADHD, autism spectrum disorder, OCD, and matched controls: Distinct and non-distinct white matter disruption and dimensional brain-behavior relationships. The American Journal of Psychiatry, 173(12), 12131222. doi: 10.1176/appi.ajp.2016.15111435 CrossRefGoogle ScholarPubMed
Andersson, J.L.R., Jenkinson, M., & Smith, S.M. (2007a). Non-linear optimisation. FMRIB technical report TR07JA1. Retrieved from www.fmrib.ox.ac.uk/analysis/techrep Google Scholar
Andersson, J.L.R., Jenkinson, M., & Smith, S.M. (2007b). Non-linear registration, aka Spatial normalisation. FMRIB technical report TR07JA2. Retrieved from www.fmrib.ox.ac.uk/analysis/techrep Google Scholar
Armstrong, G.T., Liu, Q., Yasui, Y., Huang, S., Ness, K.K., Leisenring, W., & Packer, R.J. (2009). Long-term outcomes among adult survivors of childhood central nervous system malignancies in the childhood cancer survivor study. Journal of the National Cancer Institute, 101(13), 946958. doi: 10.1093/jnci/djp148 CrossRefGoogle ScholarPubMed
Barrera, M., Atenafu, E.G., Schulte, F., Bartels, U., Sung, L., Janzen, L., & Zelcer, S. (2017). Determinants of social competence in pediatric brain tumor survivors who participated in an intervention study. Support Care Cancer, 25(9), 28912898. doi: 10.1007/s00520-017-3708-6 CrossRefGoogle Scholar
Beebe, D.W., Ris, M.D., Armstrong, F.D., Fontanesi, J., Mulhern, R., Holmes, E., & Wisoff, J.H. (2005). Cognitive and adaptive outcome in low-grade pediatric cerebellar astrocytomas: Evidence of diminished cognitive and adaptive functioning in national collaborative research studies (CCG 9891/POG 9130). Journal of Clinical Oncology, 23(22), 51985204. doi: 10.1200/JCO.2005.06.117 CrossRefGoogle Scholar
Birmaher, B., Brent, D.A., Chiappetta, L., Bridge, J., Monga, S., & Baugher, M. (1999). Psychometric properties of the Screen for Child Anxiety Related Emotional Disorders (SCARED): A replication study. Journal of the American Academy of Child and Adolescent Psychiatry, 38(10), 12301236. doi: 10.1097/00004583-199910000-00011 CrossRefGoogle ScholarPubMed
Bonner, M.J., Hardy, K.K., Willard, V.W., Anthony, K.K., Hood, M., & Gururangan, S. (2008). Social functioning and facial expression recognition in survivors of pediatric brain tumors. Journal of Pediatric Psychology, 33(10), 11421152. doi: 10.1093/jpepsy/jsn035 CrossRefGoogle ScholarPubMed
Campbell-Sills, L., Ellard, K.K., & Barlow, D.H. (2014). Emotion regulation in anxiety disorders. In Gross, J.J. (Ed.), Handbook of emotion regulation (p. 393–412). Guilford Press.Google Scholar
Constantino, J.N., Kennon-McGill, S., Weichselbaum, C., Marrus, N., Haider, A., Glowinski, A.L., & Jones, W. (2017). Infant viewing of social scenes is under genetic control and is atypical in autism. Nature, 547(7663), 340344. doi: 10.1038/nature22999 CrossRefGoogle ScholarPubMed
Dalton, K.M., Nacewicz, B.M., Johnstone, T., Schaefer, H.S., Gernsbacher, M.A., Goldsmith, H.H., & Davidson, R.J. (2005). Gaze fixation and the neural circuitry of face processing in autism. Nature Neuroscience, 8(4), 519526. doi: 10.1038/nn1421 CrossRefGoogle ScholarPubMed
Davis, S.W. & Cabeza, R. (2015). Cross-hemispheric collaboration and segregation associated with task difficulty as revealed by structural and functional connectivity. The Journal of Neuroscience, 35(21), 81918200. doi: 10.1523/JNEUROSCI.0464-15.2015 CrossRefGoogle ScholarPubMed
Egger, H.L., Pine, D.S., Nelson, E., Leibenluft, E., Ernst, M., Towbin, K.E., & Angold, A. (2011). The NIMH Child Emotional Faces Picture Set (NIMH-ChEFS): A new set of children’s facial emotion stimuli. International Journal of Methods in Psychiatric Research, 20(3), 145156. doi: 10.1002/mpr.343 CrossRefGoogle ScholarPubMed
Gioia, G.A., Isquith, P.K., Retzlaff, P.D., & Espy, K.A. (2002). Confirmatory factor analysis of the Behavior Rating Inventory of Executive Function (BRIEF) in a clinical sample. Child Neuropsychol, 8(4), 249257. doi: 10.1076/chin.8.4.249.13513 CrossRefGoogle Scholar
Gullone, E., & Taffe, J. (2012). The Emotion Regulation Questionnaire for Children and Adolescents (ERQ-CA): A psychometric evaluation. Psychological Assessment, 24(2), 409417. doi: 10.1037/a0025777 CrossRefGoogle ScholarPubMed
Gyurak, A., Gross, J.J., & Etkin, A. (2011). Explicit and implicit emotion regulation: A dual-process framework. Cognition and Emotion, 25(3), 400412. doi: 10.1080/02699931.2010.544160 CrossRefGoogle ScholarPubMed
Hopfinger, J.B., Buonocore, M.H., & Mangun, G.R. (2000). The neural mechanisms of top-down attentional control. Nature Neuroscience, 3(3), 284291. doi: 10.1038/72999 CrossRefGoogle ScholarPubMed
Hopyan, T., Laughlin, S., & Dennis, M. (2010). Emotions and their cognitive control in children with cerebellar tumors. Journal of the International Neuropsychological Society, 16(6), 10271038. doi: 10.1017/S1355617710000974 CrossRefGoogle ScholarPubMed
Hua, K., Zhang, J., Wakana, S., Jiang, H., Li, X., Reich, D.S., & Mori, S. (2008). Tract probability maps in stereotaxic spaces: Analyses of white matter anatomy and tract-specific quantification. Neuroimage, 39(1), 336347. doi: 10.1016/j.neuroimage.2007.07.053 CrossRefGoogle ScholarPubMed
Joormann, J. & Quinn, M.E. (2014). Cognitive processes and emotion regulation in depression. Depress Anxiety, 31(4), 308315. doi: 10.1002/da.22264 CrossRefGoogle ScholarPubMed
Karatekin, C. (2007). Eye tracking studies of normative and atypical development. Developmental Review, 27, 65.CrossRefGoogle Scholar
Kovacs, M. (2011). Children’s Depression Inventory 2 (CDI 2) (2nd ed.). North Tonawanda, NY: Multi-Health Systems Inc. Google Scholar
Lagattuta, K.H. & Kramer, H.J. (2017). Try to look on the bright side: Children and adults can (sometimes) override their tendency to prioritize negative faces. Journal of Experimental Psychology: General, 146(1), 89101. doi: 10.1037/xge0000247 CrossRefGoogle ScholarPubMed
Langner, O., Dotsch, R., Bijlstra, G., Wigboldus, D.H.J., Hawk, S.T., & van Knippenberg, A. (2010). Presentation and validation of the radboud faces database. Cognition and Emotion, 24(8), doi: 10.1080/02699930903485076 CrossRefGoogle Scholar
Law, N., Smith, M.L., Greenberg, M., Bouffet, E., Taylor, M.D., Laughlin, S., & Mabbott, D. (2017). Executive function in paediatric medulloblastoma: The role of cerebrocerebellar connections. Journal of Neuropsychology, 11(2), 174200. doi: 10.1111/jnp.12082 CrossRefGoogle ScholarPubMed
Liu, F., Scantlebury, N., Tabori, U., Bouffet, E., Laughlin, S., Strother, D., & Mabbott, D.J. (2015). White matter compromise predicts poor intellectual outcome in survivors of pediatric low-grade glioma. Neuro-Oncology, 17(4), 604613. doi: 10.1093/neuonc/nou306 CrossRefGoogle ScholarPubMed
Mabbott, D.J., Noseworthy, M.D., Bouffet, E., Rockel, C., & Laughlin, S. (2006). Diffusion tensor imaging of white matter after cranial radiation in children for medulloblastoma: correlation with IQ. Neuro-Oncology, 8(3), 244252. doi: 10.1215/15228517-2006-002 CrossRefGoogle ScholarPubMed
Mabbott, D.J., Spiegler, B.J., Greenberg, M.L., Rutka, J.T., Hyder, D.J., & Bouffet, E. (2005). Serial evaluation of academic and behavioral outcome after treatment with cranial radiation in childhood. Journal of Clinical Oncology, 23(10), 22562263. doi: 10.1200/JCO.2005.01.158 CrossRefGoogle ScholarPubMed
MacLeod, C. & Grafton, B. (2014). Regulation of emotion through modification of attention. In Gross, J.J. (Ed.), Handbook of emotion regulation (p. 508–528). Guilford Press.Google Scholar
Mauss, I.B., Bunge, S.A., & Gross, J.J. (2007). Automatic emotion regulation. Social and Personality Psychology Compass, 1(1), 21.CrossRefGoogle Scholar
Moxon-Emre, I., Bouffet, E., Taylor, M.D., Laperriere, N., Sharpe, M.B., Laughlin, S., & Mabbott, D.J. (2016). Vulnerability of white matter to insult during childhood: evidence from patients treated for medulloblastoma. Journal of Neurosurgery, 18(1), 2940. doi: 10.3171/2016.1.PEDS15580 Google ScholarPubMed
Moxon-Emre, I., Farb, N.A.S., Oyefiade, A.A., Bouffet, E., Laughlin, S., Skocic, J., & Mabbott, D.J. (2019). Facial emotion recognition in children treated for posterior fossa tumours and typically developing children: A divergence of predictors. NeuroImage: Clinical, 23, 101886. doi: 10.1016/j.nicl.2019.101886 CrossRefGoogle ScholarPubMed
Mulckhuyse, M. (2018). The influence of emotional stimuli on the oculomotor system: A review of the literature. Cognitive, Affective, & Behavioral Neuroscience, 18(3), 411425. doi: 10.3758/s13415-018-0590-8 CrossRefGoogle ScholarPubMed
Neumann, A., van Lier, P.A., Gratz, K.L., & Koot, H.M. (2010). Multidimensional assessment of emotion regulation difficulties in adolescents using the difficulties in emotion regulation scale. Assessment, 17(1), 138149. doi: 10.1177/1073191109349579 CrossRefGoogle ScholarPubMed
Nummenmaa, L., Hyona, J., & Calvo, M.G. (2006). Eye movement assessment of selective attentional capture by emotional pictures. Emotion, 6(2), 257268. doi: 10.1037/1528-3542.6.2.257 CrossRefGoogle ScholarPubMed
Oh, Y., Seo, H., Sung, K.W., & Joung, Y.S. (2017). The effects of attention problems on psychosocial functioning in childhood brain tumor survivors: A 2-year postcraniospinal irradiation follow-up. Journal of Pediatric Hematology/Oncology, 39(2), e46e53. doi: 10.1097/MPH.0000000000000766 CrossRefGoogle ScholarPubMed
Palmer, S.L., Glass, J.O., Li, Y., Ogg, R., Qaddoumi, I., Armstrong, G.T., & Reddick, W.E. (2012). White matter integrity is associated with cognitive processing in patients treated for a posterior fossa brain tumor. Neuro-Oncology, 14(9), 11851193. doi: 10.1093/neuonc/nos154 CrossRefGoogle ScholarPubMed
Putnam, M.C., Steven, M.S., Doron, K.W., Riggall, A.C., & Gazzaniga, M.S. (2010). Cortical projection topography of the human splenium: Hemispheric asymmetry and individual differences. Journal of Cognitive Neuroscience, 22(8), 16621669. doi: 10.1162/jocn.2009.21290 CrossRefGoogle ScholarPubMed
Robinson, K.E., Pearson, M.M., Cannistraci, C.J., Anderson, A.W., Kuttesch, J.F. Jr., Wymer, K., … Compas, B.E. (2015). Functional neuroimaging of working memory in survivors of childhood brain tumors and healthy children: Associations with coping and psychosocial outcomes. Child Neuropsychology, 21(6), 779802. 10.1080/09297049.2014.924492 CrossRefGoogle ScholarPubMed
Rueckriegel, S.M., Bruhn, H., Thomale, U.W., & Hernaiz Driever, P. (2015). Cerebral white matter fractional anisotropy and tract volume as measured by MR imaging are associated with impaired cognitive and motor function in pediatric posterior fossa tumor survivors. Pediatric Blood & Cancer, 62(7), 12521258. doi: 10.1002/pbc.25485 CrossRefGoogle ScholarPubMed
Rueckriegel, S.M., Driever, P.H., Blankenburg, F., Ludemann, L., Henze, G., & Bruhn, H. (2010). Differences in supratentorial damage of white matter in pediatric survivors of posterior fossa tumors with and without adjuvant treatment as detected by magnetic resonance diffusion tensor imaging. International Journal of Radiation Oncology, Biology, Physics, 76(3), 859866. doi: 10.1016/j.ijrobp.2009.02.054 CrossRefGoogle ScholarPubMed
Sanchez-Lopez, A., Vanderhasselt, M.A., Allaert, J., Baeken, C., & De Raedt, R. (2018). Neurocognitive mechanisms behind emotional attention: Inverse effects of anodal tDCS over the left and right DLPFC on gaze disengagement from emotional faces. Cognitive, Affective, & Behavioral Neuroscience, 18(3), 485494. doi: 10.3758/s13415-018-0582-8 CrossRefGoogle ScholarPubMed
Schulte, T. & Muller-Oehring, E.M. (2010). Contribution of callosal connections to the interhemispheric integration of visuomotor and cognitive processes. Neuropsychology Review, 20(2), 174190. doi: 10.1007/s11065-010-9130-1 CrossRefGoogle ScholarPubMed
Schulte, T., Muller-Oehring, E.M., Rohlfing, T., Pfefferbaum, A., & Sullivan, E.V. (2010). White matter fiber degradation attenuates hemispheric asymmetry when integrating visuomotor information. The Journal of Neuroscience, 30(36), 1216812178. doi: 10.1523/JNEUROSCI.2160-10.2010 CrossRefGoogle ScholarPubMed
Schultz, K.A., Ness, K.K., Whitton, J., Recklitis, C., Zebrack, B., Robison, L.L., & Mertens, A.C. (2007). Behavioral and social outcomes in adolescent survivors of childhood cancer: A report from the childhood cancer survivor study. Journal of Clinical Oncology, 25(24), 36493656. doi: 10.1200/JCO.2006.09.2486 CrossRefGoogle ScholarPubMed
Seghete, K.L., Herting, M.M., & Nagel, B.J. (2013). White matter microstructure correlates of inhibition and task-switching in adolescents. Brain Research, 1527, 1528. doi: 10.1016/j.brainres.2013.06.003 CrossRefGoogle ScholarPubMed
Smith, S.M., Jenkinson, M., Johansen-Berg, H., Rueckert, D., Nichols, T.E., Mackay, C.E., & Behrens, T.E. (2006). Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data. Neuroimage, 31(4), 14871505. doi: 10.1016/j.neuroimage.2006.02.024 CrossRefGoogle ScholarPubMed
Tottenham, N., Tanaka, J.W., Leon, A.C., McCarry, T., Nurse, M., Hare, T.A., & Nelson, C. (2009). The NimStim set of facial expressions: Judgments from untrained research participants. Psychiatry Research, 168(3), 242249. doi: 10.1016/j.psychres.2008.05.006 CrossRefGoogle ScholarPubMed
Treit, S., Chen, Z., Rasmussen, C., & Beaulieu, C. (2014). White matter correlates of cognitive inhibition during development: A diffusion tensor imaging study. Neuroscience, 276, 8797. doi: 10.1016/j.neuroscience.2013.12.019 CrossRefGoogle ScholarPubMed
Wier, R., Aleksonis, H.A., Pearson, M.M., Cannistraci, C.J., Anderson, A.W., Kuttesch, J.F. Jr., … Hoskinson, K.R. (2019). Fronto-limbic white matter microstructure, behavior, and emotion regulation in survivors of pediatric brain tumor. Journal of Neuro-Oncology, 143(3), 483493. doi: 10.1007/s11060-019-03180-5 CrossRefGoogle ScholarPubMed
Willard, V.W., Allen, T.M., Hardy, K.K., & Bonner, M.J. (2017). Social functioning in survivors of pediatric brain tumors: Contribution of neurocognitive and social-cognitive skills. Children’s Health Care, 46(2), 181195.CrossRefGoogle Scholar
Willard, V.W., Hardy, K.K., & Bonner, M.J. (2009). Gender differences in facial expression recognition in survivors of pediatric brain tumors. Psychooncology, 18(8), 893897. doi: 10.1002/pon.1502 CrossRefGoogle ScholarPubMed
Wolfe, K.R., Walsh, K.S., Reynolds, N.C., Mitchell, F., Reddy, A.T., Paltin, I., & Madan-Swain, A. (2013). Executive functions and social skills in survivors of pediatric brain tumor. Child Neuropsychology, 19(4), 370384. doi: 10.1080/09297049.2012.669470 CrossRefGoogle ScholarPubMed
Young, K.S., Sandman, C.F., & Craske, M.G. (2019). Positive and negative emotion regulation in adolescence: Links to anxiety and depression. Behavioral and Brain Sciences, 9(4). doi: 10.3390/brainsci9040076 Google ScholarPubMed
Zeltzer, L.K., Recklitis, C., Buchbinder, D., Zebrack, B., Casillas, J., Tsao, J.C., & Krull, K. (2009). Psychological status in childhood cancer survivors: A report from the childhood cancer survivor study. Journal of Clinical Oncology, 27(14), 23962404. doi: 10.1200/JCO.2008.21.1433 CrossRefGoogle ScholarPubMed
Supplementary material: PDF

Moxon-Emre et al. supplementary material

Figures S1-S2
Download Moxon-Emre et al. supplementary material(PDF)
PDF 273.9 KB
Supplementary material: PDF

Moxon-Emre et al. supplementary material

Moxon-Emre et al. supplementary material 1

Download Moxon-Emre et al. supplementary material(PDF)
PDF 66.1 KB