Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T19:15:33.666Z Has data issue: false hasContentIssue false

Epistasis between APOE and nicotinic receptor gene CHRNA4 in age related cognitive function and decline

Published online by Cambridge University Press:  24 March 2010

IVAR REINVANG*
Affiliation:
Center for Study of Human Cognition, Department of Psychology, University of Oslo, Norway
ASTRI J. LUNDERVOLD
Affiliation:
Department of Biological and Medical Psychology, University of Bergen, Norway Kavli’s Research Centre for Aging and Dementia, Haraldsplass Deaconess Hospital, Bergen, Norway
EIKE WEHLING
Affiliation:
Department of Biological and Medical Psychology, University of Bergen, Norway Kavli’s Research Centre for Aging and Dementia, Haraldsplass Deaconess Hospital, Bergen, Norway
HELGE ROOTWELT
Affiliation:
Department of Medical Biochemistry, Rikshospitalet University Hospital, Oslo, Norway
THOMAS ESPESETH
Affiliation:
Center for Study of Human Cognition, Department of Psychology, University of Oslo, Norway
*
*Correspondence and reprint requests to: Ivar Reinvang, Department of Psychology, Center for the Study of Human Cognition, University of Oslo, Box 1094 Blindern, N-0317 Oslo, Norway. E-mail: [email protected]

Abstract

Healthy participants (n = 237) aged 45–79 were tested neuropsychologically with tests of memory, speed, and cognitive control and followed up for 3–5 years (mean, 3.4 years). The sample was genotyped for apolipoprotein E (APOE) and CHolinergic Receptor for Nicotine Alpha 4 (CHRNA4), and genetic effects on cognitive function at initial testing and on cognitive decline was studied. We predicted relatively stronger effects of APOE on memory, and of CHRNA4 on speeded tasks. The predictions were partially confirmed, but we found interactive effects of APOE and CHRNA4 in several cognitive domains. Being an APOE ε4/CHRNA4 TT carrier was associated with slower and less efficient performance, and with steeper decline in speed tasks and in delayed recall. Age dependent genetic effects were found for both APOE and CHRNA4, where old participants (60–79 years) showed a negative influence of TT carrier status on initial memory performance, but a tendency for steeper memory decline in ε4 carriers. Inconsistent and small effects of APOE reported in previous studies of healthy groups may be caused by failure to consider epistasis of APOE with nicotinic receptor and other genes. (JINS, 2010, 16, 424–432.)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Allen, S.J., MacGowan, S.H., Tyler, S., Wilcock, G.K., Robertson, A.G., Holden, P.H., et al. (1997). Reduced cholinergic function in normal and Alzheimer’s disease brain is associated with apolipoprotein E4 genotype. Neuroscience Letters, 239, 3336.CrossRefGoogle ScholarPubMed
Baxter, L.C., Caselli, R.J., Johnson, S.C., Reiman, E., & Osborne, D. (2003). Apolipoprotein E epsilon 4 affects new learning in cognitively normal individuals at risk for Alzheimer’s disease. Neurobiology of Aging, 24, 947952.CrossRefGoogle ScholarPubMed
Beck, A.T., & Steer, R.A. (1987). Beck depression inventory – II. Stockholm: Pearson Assessment.Google Scholar
Bertram, L. (2009). Alzheimer’s disease genetics current status and future perspectives. International Review of Neurobiology, 84, 167184.CrossRefGoogle ScholarPubMed
Bookheimer, S.Y., Strojwas, M.H., Cohen, M.S., Saunders, A.M., Pericak-Vance, M.A., Mazziotta, J.C., et al. (2000). Patterns of brain activation in people at risk for Alzheimer’s disease. New England Journal of Medicine, 343, 450456.CrossRefGoogle ScholarPubMed
Bretsky, P., Guralnik, J.M., Launer, L., Albert, M., & Seeman, T.E. (2003). The role of APOE-epsilon4 in longitudinal cognitive decline: MacArthur studies of successful aging. Neurology, 60, 10771081.CrossRefGoogle ScholarPubMed
Burghaus, L., Schütz, U., Krempel, U., de Vos, R.A., Jansen Steur, E.N., Wevers, A., et al. (2000). Quantitative assessment of nicotinic acetylcholine receptor proteins in the cerebral cortex of Alzheimer patients. Brain Research: Molecular Brain Research, 76, 385388.Google ScholarPubMed
Caselli, R.J., Reiman, E.M., Locke, D.E., Hutton, M.L., Hentz, J.G., Hoffman-Snyder, C., et al. (2007). Cognitive domain decline in healthy apolipoprotein E epsilon4 homozygotes before the diagnosis of mild cognitive impairment. Archives of Neurology, 64, 13061311.CrossRefGoogle ScholarPubMed
Caselli, R.J., Reiman, E.M., Osborne, D., Hentz, J.G., Baxter, L.C., Hernandez, J.L., et al. (2004). Longitudinal changes in cognition and behavior in asymptomatic carriers of the APOE e4 allele. Neurology, 62, 19901995.CrossRefGoogle ScholarPubMed
Chen, K., Reiman, E.M., Alexander, G.E., Caselli, R.J., Gerkin, R., Bandy, D., et al. (2007). Correlations between apolipoprotein E epsilon4 gene dose and whole brain atrophy rates. American Journal of Psychiatry, 164, 916921.CrossRefGoogle ScholarPubMed
Cherbuin, N., Leach, L.S., Christensen, H., & Anstey, K.J. (2007). Neuroimaging and APOE genotype: A systematic qualitative review. Dementia & Geriatric Cognitive Disorders, 24, 348362.CrossRefGoogle ScholarPubMed
Christensen, H., Batterham, P.J., Mackinnon, A.J., Jorm, A.F., Mack, H.A., Mather, K.A., et al. (2008). The association of APOE genotype and cognitive decline in interaction with risk factors in a 65–69 year old community sample. BMC Geriatrics, 8, 14.CrossRefGoogle Scholar
Cook, L.J., Ho, L.W., Taylor, A.E., Brayne, C., Evans, J.G., Xuereb, J., et al. (2004). Candidate gene association studies of the α4 (CHRNA4) and β2 (CHRNB2) neuronal nicotinic acetylcholine receptor subunit genes in Alzheimer’s disease. Neuroscience Letters, 358, 142146.CrossRefGoogle ScholarPubMed
Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., et al. (1993). Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science, 261, 921923.Google ScholarPubMed
Court, J.A., Martin-Ruiz, C., Graham, A., & Perry, E. (2000). Nicotinic receptors in human brain: Topography and pathology. Journal of Chemical Neuroanatomy, 20, 281298.CrossRefGoogle ScholarPubMed
Dani, J.A., & Bertrand, D. (2007). Nicotinic acetylcholine receptors and nicotinic cholinergic mechanisms of the central nervous system. Annual Review of Pharmacology and Toxicology, 47, 699729.CrossRefGoogle ScholarPubMed
Delis, D.C., Kaplan, E., & Kramer, J.H. (2001). D-KEFS: Examiners manual. San Antonio, TX: The Psychological Corporation.Google Scholar
Delis, D.C., Kramer, J.H., Kaplan, E., & Ober, B.A. (2000). California verbal learning test (2nd ed.). San Antonio, TX: The Psychological Corporation.Google Scholar
Espeseth, T., Endestad, T., Rootwelt, H., & Reinvang, I. (2007). Nicotine receptor gene CHRNA4 modulates early event-related potentials in auditory and visual oddball target detection tasks. Neuroscience, 147, 974985.CrossRefGoogle ScholarPubMed
Espeseth, T., Greenwood, P.M., Reinvang, I., Fjell, A.M., Walhovd, K.B., Westlye, L.T., et al. (2006). Interactive effects of APOE and CHRNA4 on attention and white matter volume in healthy middle-aged and older adults. Cognitive & Affective Behavioral Neuroscience, 6, 3143.CrossRefGoogle ScholarPubMed
Espeseth, T., Westlye, L.T., Fjell, A.M., Walhovd, K.B., Rootwelt, H., & Reinvang, I. (2008). Accelerated age-related cortical thinning in healthy carriers of apolipoprotein E epsilon 4. Neurobiology of Aging, 29, 329340.CrossRefGoogle ScholarPubMed
Flory, J.D., Manuck, S.B., Ferrell, R.E., Ryan, C.M., & Muldoon, M.F. (2000). Memory performance and the apolipoprotein E polymorphism in a community sample of middle-aged adults. American Journal of Medical Genetics, 96, 707711.3.0.CO;2-V>CrossRefGoogle Scholar
Folstein, M.F., Folstein, S.E., & McHugh, P.R. (1975). Mini-mental state. A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12, 189198.CrossRefGoogle Scholar
Greenwood, P.M., Fossella, J.A., & Parasuraman, R. (2005). Specificity of the effect of a nicotinic receptor polymorphism on individual differences in visuospatial attention. Journal of Cognitive Neuroscience, 17, 16111620.CrossRefGoogle ScholarPubMed
Greenwood, P.M., Lin, M.K., Sundararajan, R., Fryxell, K.J., & Parasuraman, R. (2009). Synergistic effects of genetic variation in nicotinic and muscarinic receptors on visual attention but not working memory. Proceedings of the National Academy of Sciences of the United States of America, 106, 36333638.CrossRefGoogle Scholar
Hariri, A.R., Goldberg, T.E., Mattay, V.S., Kolachana, B.S., Callicott, J.H., Egan, M.F., et al. (2003). Brain-derived neurotrophic factor val66met polymorphism affects human memory-related hippocampal activity and predicts memory performance. Journal of Neuroscience, 23, 66906694.CrossRefGoogle ScholarPubMed
Jack, C.R. Jr., Lowe, V.J., Weigand, S.D., Wiste, H.J., Senjem, M.L., Knopman, D.S., et al. (2009). Serial PIB and MRI in normal, mild cognitive impairment and Alzheimer’s disease: Implications for sequence of pathological events in Alzheimer’s disease. Brain. 132, 13551365.CrossRefGoogle ScholarPubMed
Jorm, A.F., Mather, K.A., Butterworth, P., Anstey, K.J., Christensen, H., & Easteal, S. (2007). APOE genotype and cognitive functioning in a large age stratified population sample. Neuropsychology, 21, 18.CrossRefGoogle Scholar
Kawamata, J., & Shimohama, S. (2002). Association of novel and established polymorphisms in neuronal nicotinic acetylcholine receptors with sporadic Alzheimer’s disease. Journal of Alzheimers Disease, 4, 7176.CrossRefGoogle ScholarPubMed
Lai, M.K., Tsang, S.W., Garcia-Alloza, M., Minger, S.L., Nicoll, J.A., Esiri, M.M., et al. (2006). Selective effects of the APOE epsilon4 allele on presynaptic cholinergic markers in the neocortex of Alzheimer’s disease. Neurobiology of Disease, 22, 555561.CrossRefGoogle ScholarPubMed
Le Hellard, S., Håvik, B., Espeseth, T., Breilid, H., Løvlie, R., Luciano, M., et al. (2009). Variants in doublecortin- and calmodulin kinase like 1, a gene up-regulated by BDNF, are associated with memory and general cognitive abilities. PLoS One, 4, e7534.CrossRefGoogle ScholarPubMed
Lind, J., Larsson, A., Persson, J., Ingvar, M., Nilsson, L.G., Bäckman, L., et al. (2006). Reduced hippocampal volume in non-demented carriers of the apolipoprotein E epsilon4: Relation to chronological age and recognition memory. Neuroscience Letters, 396, 2327.CrossRefGoogle ScholarPubMed
Lind, J., Persson, J., Ingvar, M., Larsson, A., Cruts, M., Van Broeckhoven, C., et al. (2006). Reduced functional brain activity response in cognitively intact apolipoprotein ε4 carriers. Brain, 129, 12401248.CrossRefGoogle ScholarPubMed
Luciano, M., Gow, A.J., Taylor, M.D., Hayward, C., Harris, S.E., Campbell, H., et al. (2009). Apolipoprotein E is not related to memory abilities at 70 Years of age. Behavior Genetics, 39, 614.CrossRefGoogle ScholarPubMed
Mahley, R.W., Weisgraber, K.H., & Huang, Y. (2006). Apolipoprotein E4: A causative factor and therapeutic target in neuropathology, including Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 103, 56445651.CrossRefGoogle ScholarPubMed
Martin-Ruiz, C., Court, J., Lee, M., Piggott, M., Johnson, M., Ballard, C., et al. (2000). Nicotinic receptors in dementia of Alzheimer, Lewy body and vascular types. Acta Neurologica Scandinavia Supplement, 176, 3441.Google ScholarPubMed
Martin-Ruiz, C.M., Court, J.A., Molnar, E., Lee, M., Gotti, C., Mamalaki, A., et al. (1999). Alpha4 but not alpha3 and alpha7 nicotinic acetylcholine receptor subunits are lost from the temporal cortex in Alzheimer’s disease. Journal of Neurochemistry, 73, 16351640.CrossRefGoogle Scholar
Mayeux, R., Small, S.A., Tang, M., Tycko, B., & Stern, Y. (2001). Memory performance in healthy elderly without Alzheimer’s disease: Effects of time and apolipoprotein-E. Neurobiology of Aging, 22, 683689.CrossRefGoogle ScholarPubMed
Mitsis, E.M., Cosgrove, K.P., Staley, J.K., Bois, F., Frohlich, E.B., Tamagnan, G.D., et al. (2009). Age-related decline in nicotinic receptor availability with [123I]5-IA-85380 SPECT, Neurobiology of Aging, 30, 14901497.CrossRefGoogle ScholarPubMed
Nilsson, L.G., Adolfsson, R., Backman, L., Cruts, M., Nyberg, L., Small, B.J., et al. (2006). The influence of APOE status on episodic and semantic memory: Data from a population-based study. Neuropsychology, 20, 645657.Google ScholarPubMed
Nordberg, A. (2004). Functional studies of cholinergic activity in normal and Alzheimer disease states by imaging technique. Progress in Brain Research, 145, 301309.CrossRefGoogle ScholarPubMed
Oddo, S., & LaFerla, F.M. (2006). The role of nicotinic acetylcholine receptors in Alzheimer’s disease. Journal of Physiology Paris, 99, 172179.CrossRefGoogle ScholarPubMed
Papassotiropoulos, A., Stephan, D.A., Huentelman, M.J., Hoerndli, F.J., Craig, D.W., Pearson, J.V., et al. (2006). Common Kibra alleles are associated with human memory performance. Science, 314, 475478.CrossRefGoogle ScholarPubMed
Parasuraman, R., Greenwood, P.M., Kumar, R., & Fossella, J. (2005). Beyond heritability: Neurotransmitter genes differentially modulate visuospatial attention and working memory. Psychological Science, 16, 200207.CrossRefGoogle ScholarPubMed
Phillips, P.C. (2008). Epistasis - the essential role of gene interactions in the structure and evolution of genetic systems. Nature Reviews Genetics, 9, 855867.CrossRefGoogle ScholarPubMed
Pimlott, S.L., Piggott, M., Owens, J., Greally, E., Court, J.A., Jaros, E., et al. (2004). Nicotinic acetylcholine receptor distribution in Alzheimer’s disease, dementia with Lewy bodies, Parkinson’s disease, and vascular dementia: In vitro binding study using 5-[(125)i]-a-85380. Neuropsychopharmacology, 29, 108116.CrossRefGoogle Scholar
Poirier, J., Delisle, M.C., Quirion, R., Aubert, I., Farlow, M., Lahiri, D., et al. (1995). Apolipoprotein E4 allele as a predictor of cholinergic deficits and treatment outcome in Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 92, 1226012264.CrossRefGoogle ScholarPubMed
Raber, J., Huang, Y., & Ashford, J.W. (2004). ApoE genotype accounts for the vast majority of AD risk and AD pathology. Neurobiology of Aging, 25, 641650.CrossRefGoogle ScholarPubMed
Reiman, E.M., Caselli, R.J., Yun, L.S., Chen, K., Bandy, D., Minoshima, S., et al. (1996). Preclinical evidence of Alzheimer’s disease in persons homozygous for the epsilon 4 allele for apolipoprotein E. New England Journal of Medicine, 334, 752758.CrossRefGoogle ScholarPubMed
Reiman, E.M., Chen, K., Liu, X., Bandy, D., Yu, M., Lee, W., et al. (2009). Fibrillar amyloid-beta burden in cognitively normal people at 3 levels of genetic risk for Alzheimer’s disease. Proceedings of the National Academy of Sciences of the United States of America, 106, 68206825.CrossRefGoogle ScholarPubMed
Reinvang, I., Lundervold, A.J., Rootwelt, H., Wehling, E., & Espeseth, T. (2009). Individual variation in a cholinergic receptor gene modulates attention. Neuroscience Letters, 453, 131134.CrossRefGoogle Scholar
Reynolds, C.A., Prince, J.A., Feuk, L., Brookes, A.J., Gatz, M., & Pedersen, N.L. (2006). Longitudinal memory performance during normal aging: Twin association models of APOE and other Alzheimer candidate genes. Behavior Genetics, 36, 185194.CrossRefGoogle ScholarPubMed
Salehi, A., Dubelaar, E.J., Mulder, M., & Swaab, D.F. (1998). Aggravated decrease in the activity of nucleus basalis neurons in Alzheimer’s disease is apolipoprotein E-type dependent. Proceedings of the National Academy of Sciences of the United States of America, 95, 1144511449.CrossRefGoogle ScholarPubMed
Sarter, M., & Bruno, J.P. (2004). Developmental origins of the age related decline in cortical cholinergic function and associated cognitive abilities. Neurobiology of Aging, 25, 11271139.CrossRefGoogle ScholarPubMed
Schjeide, B.M., McQueen, M.B., Mullin, K., DiVito, J., Hogan, M.F., Parkinson, M., et al. (2009). Assessment of Alzheimer’s disease case-control associations using family-based methods. Neurogenetics, 10, 1925.CrossRefGoogle ScholarPubMed
Schultz, M.R., Lyons, M.J., Franz, C.E., Grant, M.D., Boake, C., Jacobson, K.C., et al. (2008). Apolipoprotein E genotype and memory in the sixth decade of life. Neurology, 70, 17711777.CrossRefGoogle ScholarPubMed
Small, B.J., Rosnick, C.B., Fratiglioni, L., & Backman, L. (2004). Apolipoprotein E and cognitive performance: A meta-analysis. Psychology of Aging, 19, 592600.CrossRefGoogle ScholarPubMed
Small, G.W., Siddarth, P., Burggren, A.C., Kepe, V., Ercoli, L.M., Miller, K.J., et al. (2009). Influence of cognitive status, age, and APOE-4 genetic risk on brain FDDNP positron-emission tomography imaging in persons without dementia. Archives of General Psychiatry, 66, 8187.CrossRefGoogle ScholarPubMed
Stroop, J.R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18, 643662.CrossRefGoogle Scholar
Tabachnick, B.G., & Fidell, L.S. (2007). Using multivariate statistics. Boston: Pearson.Google Scholar
Terrière, E., Dempsey, M.F., Herrmann, L.L., Tierney, K.M., Lonie, J.A., O’Carroll, R.E., et al. (2008). 5-(123)I-A-85380 binding to the alpha4beta2-nicotinic receptor in mild cognitive impairment. Neurobiology of Aging, [Epub ahead of print].Google Scholar
Thorvaldsson, V., Hofer, S.M., Berg, S., Skoog, I., Sacuiu, S., & Johansson, B. (2008). Onset of terminal decline in cognitive abilities in individuals without dementia. Neurology, 71, 882887.CrossRefGoogle ScholarPubMed
Tohgi, H., Utsugisawa, K., Yoshimura, M., Nagane, Y., & Mihara, M. (1998). Age-related changes in nicotinic acetylcholine receptor subunits alpha4 and beta2 messenger RNA expression in postmortem human frontal cortex and hippocampus. Neuroscience Letters, 245, 139142.CrossRefGoogle ScholarPubMed
Wechsler, D. (1999). Wechsler abbreviated scale of intelligence. San Antonio, TX: Psychological Corporation.Google Scholar
Whitwell, J.L., Przybelski, S.A., Weigand, S.D., Knopman, D.S., Boeve, B.F., Petersen, R.C., et al. (2007). 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain, 130, 17771786.CrossRefGoogle ScholarPubMed
Wilson, R.S., Schneider, J.A., Barnes, L.L., Beckett, L.A., Aggarwal, N.T., Cochran, E.J., et al. (2002). The apolipoprotein E epsilon 4 allele and decline in different cognitive systems during a 6-year period. Archives of Neurology, 59, 11541160.CrossRefGoogle Scholar
Winterer, G., Musso, F., Konrad, A., Vucurevic, G., Stoeter, P., Sander, T., et al. (2007). Association of attentional network function with exon 5 variations of the CHRNA4 gene. Human Molecular Genetics, 16, 21652174.CrossRefGoogle ScholarPubMed
Wisdom, N.M., Callahan, J.L., & Hawkins, K.A. (2009). The effects of apolipoprotein E on non-impaired cognitive functioning: A meta-analysis. Neurobiology of Aging, [Epub ahead of print].Google ScholarPubMed