Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T21:33:35.589Z Has data issue: false hasContentIssue false

A Direct Comparison of Real-World and Virtual Navigation Performance in Chronic Stroke Patients

Published online by Cambridge University Press:  22 March 2016

Michiel H.G. Claessen*
Affiliation:
Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands Brain Center Rudolf Magnus and Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, the Netherlands
Johanna M.A. Visser-Meily
Affiliation:
Brain Center Rudolf Magnus and Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, the Netherlands
Nicolien K. de Rooij
Affiliation:
Brain Center Rudolf Magnus and Center of Excellence for Rehabilitation Medicine, University Medical Center Utrecht and De Hoogstraat Rehabilitation, Utrecht, the Netherlands
Albert Postma
Affiliation:
Experimental Psychology, Helmholtz Institute, Utrecht University, Utrecht, the Netherlands
Ineke J.M. van der Ham
Affiliation:
Department of Health, Medical and Neuropsychology, Leiden University, Leiden, the Netherlands
*
Correspondence and reprint requests to: Michiel H. G. Claessen, Heidelberglaan 1, 3584 CS Utrecht, The Netherlands. E-mail: [email protected]

Abstract

Objectives: An increasing number of studies have presented evidence that various patient groups with acquired brain injury suffer from navigation problems in daily life. This skill is, however, scarcely addressed in current clinical neuropsychological practice and suitable diagnostic instruments are lacking. Real-world navigation tests are limited by geographical location and associated with practical constraints. It was, therefore, investigated whether virtual navigation might serve as a useful alternative. Methods: To investigate the convergent validity of virtual navigation testing, performance on the Virtual Tübingen test was compared to that on an analogous real-world navigation test in 68 chronic stroke patients. The same eight subtasks, addressing route and survey knowledge aspects, were assessed in both tests. In addition, navigation performance of stroke patients was compared to that of 44 healthy controls. Results: A correlation analysis showed moderate overlap (r=.535) between composite scores of overall real-world and virtual navigation performance in stroke patients. Route knowledge composite scores correlated somewhat stronger (r=.523) than survey knowledge composite scores (r=.442). When comparing group performances, patients obtained lower scores than controls on seven subtasks. Whereas the real-world test was found to be easier than its virtual counterpart, no significant interaction-effects were found between group and environment. Conclusions: Given moderate overlap of the total scores between the two navigation tests, we conclude that virtual testing of navigation ability is a valid alternative to navigation tests that rely on real-world route exposure. (JINS, 2016, 22, 467–477)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barrash, J., Damasio, H., Adolphs, R., & Tranel, D. (2000). The neuroanatomical correlates of route learning impairment. Neuropsychologia, 38(6), 820836. doi:10.1016/S0028-3932(99)00131-1 Google Scholar
Berthoz, A., & Viaud-Delmon, I. (1999). Multisensory integration in spatial orientation. Current Opinion in Neurobiology, 9(6), 708712. doi:10.1016/S0959-4388(99)00041-0 Google Scholar
Brunsdon, R., Nickels, L., & Coltheart, M. (2007). Topographical disorientation: Towards an integrated framework for assessment. Neuropsychological Rehabilitation, 17(1), 3452. doi:10.1080/09602010500505021 Google Scholar
Burgess, P.W., Alderman, N., Forbes, C., Costello, A., Coates, L.M.-A., Dawson, D.R., & Channon, S. (2006). The case for the development and use of “ecologically valid” measures of executive function in experimental and clinical neuropsychology. Journal of the International Neuropsychological Society, 12, 194209. doi:10.1017/S1355617706060310 CrossRefGoogle ScholarPubMed
Busigny, T., Pagès, B., Barbeau, E.J., Bled, C., Montaut, E., Raposo, N., & Pariente, J. (2014). A systematic study of topographical memory and posterior cerebral artery infarctions. Neurology, 83(11), 9961003. doi:10.1212/WNL.0000000000000780 Google Scholar
Chaytor, N., & Schmitter-Edgecombe, M. (2003). The ecological validity of neuropsychological tests: A review of the literature on everyday cognitive skills. Neuropsychology Review, 13(4), 181197. doi:10.1023/B:NERV.0000009483.91468.fb CrossRefGoogle ScholarPubMed
Chrastil, E.R., & Warren, W.H. (2013). Active and passive spatial learning in human navigation: Acquisition of survey knowledge. Journal of Experimental Psychology: Learning, Memory, and Cognition, 39(5), 15201537. doi:10.1037/a0032382 Google Scholar
Claessen, M.H.G., Van der Ham, I.J.M., Jagersma, E., & Visser-Meily, J.M.A. (in press). Navigation strategy training using virtual reality in six chronic stroke patients: A novel and explorative approach to the rehabilitation of navigation impairment. Neuropsychological Rehabilitation. doi:10.1080/09602011.2015.1045910 Google Scholar
Claessen, M.H.G., Visser-Meily, J.M.A., Jagersma, E., Braspenning, M.E., & Van der Ham, I.J.M. (in press). Dissociating spatial and spatiotemporal aspects of navigation ability in chronic stroke patients. To appear in Neuropsychology.Google Scholar
Cushman, L.A., Stein, K., & Duffy, C.J. (2008). Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology, 71, 888895. doi:10.1212/01.wnl.0000326262.67613.fe CrossRefGoogle ScholarPubMed
De Goede, M., & Postma, A. (2015). Learning your way in a city: Experience and gender differences in configurational knowledge of one’s environment. Frontiers in Psychology, 6, 402. doi:10.3389/fpsyg.2015.00402 CrossRefGoogle Scholar
De Nigris, A., Piccardi, L., Bianchini, F., Palermo, L., Incoccia, C., & Guariglia, C. (2013). Role of visuo-spatial working memory in path integration disorders in neglect. Cortex, 49, 920930. doi:10.1016/j.cortex.2012.03.009 Google Scholar
Guariglia, C., Piccardi, L., Iaria, G., Nico, D., & Pizzamiglio, L. (2005). Representational neglect and navigation in real space. Neuropsychologia, 43(8), 11381143. doi:10.1016/j.neuropsychologia.2004.11.021 Google Scholar
Iachini, T., Ruotolo, F., & Ruggiero, G. (2009). The effects of familiarity and gender on spatial representation. Journal of Environmental Psychology, 29, 227234. doi:10.1016/j.jenvp.2008.07.001 CrossRefGoogle Scholar
Kessels, R.P.C., Van den Berg, E., Ruis, C., & Brands, A.M.A. (2008). The backward span of the Corsi Block-Tapping Task and its association with the WAIS-III Digit Span. Assessment, 15(4), 426434. doi:10.1177/1073191108315611 Google Scholar
Kessels, R.P.C., Van Zandvoort, M.J.E., Postma, A., Kappelle, L.J., & De Haan, E.H.F. (2000). The Corsi Block-Tapping Task: Standardization and normative data. Applied Neuropsychology, 7(4), 252258. doi:10.1207/S15324826AN0704_8 Google Scholar
Livingstone, S.A., & Skelton, R.W. (2007). Virtual environment navigation tasks and the assessment of cognitive deficits in individuals with brain injury. Behavioural Brain Research, 185(1), 2131. doi:10.1016/j.bbr.2007.07.015 Google Scholar
Lloyd, J., Persaud, N.V., & Powell, T.E. (2009). Equivalence of real-world and virtual-reality route learning: A pilot study. Cyberpsychology & Behavior, 12(4), 423427. doi:10.1089/cpb.2008.0326 Google Scholar
Montello, D.R. (1998). A new framework for understanding the acquisition of spatial knowledge in large-scale environments. In M.J. Egenhofer & R.G. Golledge (Eds.), Spatial and temporal reasoning in geographic information systems (pp. 143154). New York: Oxford University Press.Google Scholar
Nadolne, M.J., & Stringer, A.Y. (2001). Ecologic validity in neuropsychological assessment: Prediction of wayfinding. Journal of the International Neuropsychological Society, 7, 675682.Google Scholar
Nemmi, F., Boccia, M., Piccardi, L., Galati, G., & Guariglia, C. (2013). Segregation of neural circuits involved in spatial learning in reaching and navigational space. Neuropsychologia, 51, 15611570. doi:10.1016/j.neuropsychologia.2013.03.031 Google Scholar
Nico, D., Piccardi, L., Iaria, G., Bianchini, F., Zompanti, L., & Guariglia, C. (2008). Landmark based navigation in brain-damaged patients with neglect. Neuropsychologia, 46(7), 18981907. doi:10.1016/j.neuropsychologia.2008.01.013 Google Scholar
Oudman, E., Van der Stigchel, , , S., Nijboer, T.C.W., Wijnia, J.W., Seekles, M.L., &&Postma, A. (in press). Route learning in Korsakoff’s syndrome: Residual acquisition of spatial memory despite profound amnesia. Journal of Neuropsychology. Online early view version. doi:10.1111/jnp.12058 Google Scholar
Péruch, P., Belingard, L., & Thinus-Blanc, C. (2000). Transfer of spatial knowledge from virtual to real environments. In Freksa, C., Bauer, W., Habel, C., & Wender K. (Eds.), Spatial cognition II, Lecture notes in artificial intelligence, Vol. 184, pp. 253264). Berlin: Springer. doi:10.1007/3-540-45460-8_19 Google Scholar
Piccardi, L., Berthoz, A., Baulac, M., Denos, M., Dupont, S., Samson, S., &&Guariglia, C. (2010). Different spatial memory systems are involved in small- and large-scale environments: Evidence from patients with temporal lobe epilepsy. Experimental Brain Research, 206, 171177. doi:10.1007/s00221-010-2234-2 Google Scholar
Piccardi, L., Iaria, G., Bianchini, F., Zompanti, L., & Guariglia, C. (2011). Dissociated deficits of visuo-spatial memory in near space and navigational space: Evidence from brain-damaged patients and healthy older participants. Aging, Neuropsychology, and Cognition, 18(3), 362384. doi:10.1080/13825585.2011.560243 Google Scholar
Prestopnik, J.L., & Roskos-Ewoldsen, B. (2000). The relations among wayfinding strategy use, sense of direction, sex, familiarity, and wayfinding ability. Journal of Environmental Psychology, 20, 177191. doi:10.1006/jevp.1999.0160 Google Scholar
Reitan, R.M. (1992). Trail Making Test. Manual for administration and scoring. Tucson, AZ: Reitan Neuropsychological Laboratory.Google Scholar
Richardson, A.E., Montello, D.R., & Hegarty, M. (1999). Spatial knowledge acquisition from maps and from navigation in real and virtual environments. Memory & Cognition, 27(4), 741750. doi:10.3758/BF03211566 Google Scholar
Rose, F.D., Brooks, B.M., & Rizzo, A.A. (2005). Virtual reality in brain damage rehabilitation: Review. Cyberpsychology & Behavior, 8(3), 241262. doi:10.1089/cpb.2005.8.241 Google Scholar
Schmand, B., Houx, P., & De Koning, I. (2012). Norms for neuropsychological tasks (Verbal Fluency, Stroop Color Word test, Trail Making Test, Story recall of the Rivermead Behavioural Memory Test and the Dutch version of the Rey Auditory Verbal Learning Test). Amsterdam: The Neuropsychology section of the Dutch Association of Psychologists.Google Scholar
Schmand, B., Lindeboom, J., & Van Harskamp, F. (1992). Dutch Adult Reading Test. Lisse, The Netherlands: Swets and Zeitlinger.Google Scholar
Siegel, A.W., & White, S.H. (1975). The development of spatial representations of large-scale environments. In H.W. Reese (Ed.), Advances in child development and behavior (Vol. 10). New York: Academic Press.Google Scholar
Sorita, E., N’Kaoua, B., Larrue, F., Criquillon, J., Simion, A., Sauzéon, H., & Mazaux, J.-M. (2013). Do patients with traumatic brain injury learn a route in the same way in real and virtual environments? Disability & Rehabilitation, 35(16), 13711379. doi:10.3109/09638288.2012.738761 Google Scholar
Van Asselen, M., Kessels, R.P.C., Kappelle, L.J., Neggers, S.F.W., Frijns, C.J.M., & Postma, A. (2006). Neural correlates of human wayfinding in stroke patients. Brain Research, 1067(1), 229238. doi:10.1016/j.brainres.2005.10.048 CrossRefGoogle ScholarPubMed
Van der Ham, I.J.M., Faber, A.M.E., Venselaar, M., Van Krefeld, M.J., & Löffler, M. (2015). Ecological validity of virtual environments to assess human navigation ability. Frontiers in Psychology, 6, 637. doi:10.3389/fpsyg.2015.00637 Google Scholar
Van der Ham, I.J.M., Kant, N., Postma, A., & Visser-Meily, J.M.A. (2013). Is navigation ability a problem in mild stroke patients? Insights from self-reported navigation measures. Journal of Rehabilitation Medicine, 45, 429433. doi:10.2340/16501977-1139 Google Scholar
Van der Ham, I.J.M., Van Zandvoort, M.J.E., Meilinger, T., Bosch, S.E., Kant, N., & Postma, A. (2010). Spatial and temporal aspects of navigation in two neurological patients. Neuroreport, 21, 685689. doi:10.1097/WNR.0b013e32 Google Scholar
Van Veen, H.J., Distler, H.K., Braun, S., & Bülthoff, H.H. (1998). Navigating through a virtual city: Using virtual reality technology to study human action and perception. Future Generation Computer Systems, 14, 231242. doi:10.1016/S0167-739X(98)00027-2833aea78 Google Scholar
Verhage, F. (1964). Intelligence and age: Study with Dutch people from age 12 to 77. Dissertation. Assen: Van Gorcum. (In Dutch).Google Scholar
Wechsler, D. (1997). Wechsler Adult Intelligence Scale—Third edition (WAIS-III). San Antonio, TX: Psychological Corporation.Google Scholar
Wiener, J.M., Büchner, S.J., & Hölscher, C. (2009). Taxonomy of human wayfinding tasks: A knowledge-based approach. Spatial Cognition & Computation, 9, 152165. doi:10.1080/13875860902906496 Google Scholar
Wilson, P.N., Foreman, N., & Tlauka, M. (1997). Transfer of spatial information from a virtual to a real environment. Human Factors, 39, 526531. doi:10.1518/001872097778667988 Google Scholar
Witmer, B.G., Bailey, J.H., Knerr, B.W., & Parsons, K.C. ( 1996). Virtual spaces and real world places: Transfer of route knowledge. International Journal of Human-Computer Studies, 45(4), 413428. doi:doi:10.1006/ijhc.1996.0060 Google Scholar
Wolbers, T., & Hegarty, M. (2010). What determines our navigational abilities? Trends in Cognitive Sciences, 14(3), 138146. doi:10.1016/j.tics.2010.01.001 Google Scholar