Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T18:43:46.925Z Has data issue: false hasContentIssue false

Decreased Cognitive Function in Extended Family Members from the Single Late-Onset-Alzheimer's-Disease Pedigree

Published online by Cambridge University Press:  07 June 2013

Yan Zeng*
Affiliation:
School of Medicine, Wuhan University of Science and Technology, Wuhan, China
Wei Chang
Affiliation:
Department of Preventive Medicine, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
Chang Shu
Affiliation:
Department of Preventive Medicine, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
Lina Ma
Affiliation:
School of Medicine, Wuhan University of Science and Technology, Wuhan, China
Yuanyuan Huang
Affiliation:
School of Medicine, Wuhan University of Science and Technology, Wuhan, China
Ruoshi Wang
Affiliation:
School of Medicine, Wuhan University of Science and Technology, Wuhan, China
Junpeng Zhang
Affiliation:
School of Medicine, Wuhan University of Science and Technology, Wuhan, China
Changcai Zhu
Affiliation:
Department of Preventive Medicine, School of Medicine, Wuhan University of Science and Technology, Wuhan, China
Shawn M. McClintock
Affiliation:
Neurocognitive Research Laboratory, Division of Brain Stimulation and Neurophysiology, Department of Psychiatry and Behavioral Sciences, Duke University School of Medicine, Durham, North Carolina Department of Psychiatry, UT Southwestern Medical Center, Dallas, Texas
*
Correspondence and reprint requests to: Yan Zeng, Department of Pathophysiology, School of Medicine, Wuhan University of Science and Technology, Wuhan 430065, China. E-mail: [email protected]

Abstract

A family history of dementia is associated with an increased risk of developing Alzheimer's disease (AD) late in life (LOAD). This study marked the first attempt to assess the familial contribution to differences in cognitive performance in a large family-based group in the Chinese community. We enrolled 168 participants without dementia from a single pedigree with 9 probable AD patients diagnosed after age 65. These participants were evaluated with a comprehensive neuropsychological battery, the Chinese version of the Mini Mental State Examination, and the Alzheimer Disease Assessment Scale–Cognitive Subscale. Analyses found that extended family members of the LOAD pedigree showed similar performance on measures of global cognitive function and semantic memory compared to controls, but lower scores on episodic memory, attention, and executive function measures. These results indicate that the genetic influences on certain sub-cognitive domains are more detectable despite normal global cognitive function, and that family members with the LOAD pedigree are at risk for developing LOAD by virtue of their family history with an additive risk due to increased age. The findings in this study support the importance of documenting if there is a positive family history of AD in clinical evaluations. (JINS, 2013, 19, 1–11)

Type
Research Articles
Copyright
Copyright © The International Neuropsychological Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alzheimer's Association. (2012). Alzheimer's disease facts and figures. Alzheimer's & Dementia, 8(2), 131168.Google Scholar
Albert, M.S. (1996). Cognitive and neurobiologic markers of early Alzheimer disease. Proceedings of the National Academy of Sciences of the United States of America, 93(24), 1354713551.CrossRefGoogle ScholarPubMed
Albert, M.S., Moss, M.B., Tanzi, R., Jones, K. (2001). Preclinical prediction of AD using neuropsychological tests. Journal of the International Neuropsychological Society, 7(5), 631639.CrossRefGoogle ScholarPubMed
American Psychiatric Association (Pub.) (1994). Diagnostic and Statistical Manual of Mental Disorders, Fourth Edition—Text Revision (DSMIV-TR). Washington, DC: American Psychiatric Press, Inc.Google Scholar
Backman, L., Jones, S., Berger, A.K., Laukka, E.J., Small, B.J. (2005). Cognitive impairment in preclinical Alzheimer's disease: A meta-analysis. Neuropsychology, 19(4), 520531.CrossRefGoogle ScholarPubMed
Backman, L., Small, B.J., Fratiglioni, L. (2001). Stability of the preclinical episodic memory deficit in Alzheimer's disease. Brain, 124(Pt 1), 96102.CrossRefGoogle ScholarPubMed
Baudic, S., Dalla Barba, G., Thibaudet, M.C., Smagghe, A., Remy, P., Traykov, L. (2006). Executive function deficits in early Alzheimer's disease and their relations with episodic memory. Archives of Clinical Neuropsychology, 21(1), 1521.CrossRefGoogle ScholarPubMed
Bennett, D.A., Wilson, R.S., Boyle, P.A., Buchman, A.S., Schneider, J.A. (2012). Relation of neuropathology to cognition in persons without cognitive impairment. Annals of Neurology, 72(4), 599609.CrossRefGoogle ScholarPubMed
Bertram, L., Tanzi, R.E. (2012). The genetics of Alzheimer's disease. Progress in Molecular Biology and Transitional Science, 107, 79100.CrossRefGoogle ScholarPubMed
Bloss, C.S., Delis, D.C., Salmon, D.P., Bondi, M.W. (2008). Decreased cognition in children with risk factors for Alzheimer's disease. Biological Psychiatry, 64(10), 904906.CrossRefGoogle ScholarPubMed
Bird, T.D. (2005). Genetic factors in Alzheimer's disease. The New England Journal of Medicine, 352, 862864.CrossRefGoogle ScholarPubMed
Bisiacchi, P.S., Borella, E., Bergamaschi, S., Carretti, B., Mondini, S. (2008). Interplay between memory and executive functions in normal and pathological aging. Journal of Clinical and Experimental Neuropsychology, 30(6), 723733.CrossRefGoogle ScholarPubMed
Blacker, D., Lee, H., Muzikansky, A., Martin, E.C., Tanzi, R., McArdle, J.J., Albert, M. (2007). Neuropsychological measures in normal individuals that predict subsequent cognitive decline. Archives of Neurology, 64(6), 862871.CrossRefGoogle ScholarPubMed
Bookheimer, S.Y., Strojwas, M.H., Cohen, M.S., Saunders, A.M., Pericak-Vance, M.A., Mazziotta, J.C., Small, G.W. (2000). Patterns of brain activation in people at risk for Alzheimer's disease. The New England Journal of Medicine, 343, 450456.CrossRefGoogle ScholarPubMed
Bondi, M.W., Jak, A.J., Delano-Wood, L., Jacobson, M.W., Delis, D.C., Salmon, D.P. (2008). Neuropsychological contributions to the early identification of Alzheimer's disease. Neuropsychology Review, 18(1), 7390.CrossRefGoogle Scholar
Bondi, M.W., Salmon, D.P., Galasko, D., Thomas, R.G., Thal, L.J. (1999). Neuropsychological function and Apolipoprotein E genotype in the preclinical detection of Alzheimer's disease. Psychology and Aging, 14(2), 295303.CrossRefGoogle ScholarPubMed
Bondi, M.W., Salmon, D.P., Monsch, A.U., Galasko, D., Butters, N., Klauber, M.R., Saitoh, T. (1995). Episodic memory changes are associated with the APOE-epsilon 4 allele in nondemented older adults. Neurology, 45(12), 22032206.CrossRefGoogle ScholarPubMed
Bowie, C.R., Harvey, P.D. (2006). Administration and interpretation of the trail making test. Nature Protocols, 1(5), 22772281.CrossRefGoogle ScholarPubMed
Braak, E., Arai, K., Braak, H. (1999). Cerebellar involvement in Pick's disease: Affliction of mossy fibers, monodendritic brush cells, and dentate projection neurons. Experimental Neurology, 159, 153163.CrossRefGoogle ScholarPubMed
Braak, H., Braak, E. (1991). Neuropathological staging of Alzheimer-related changes. Acta Neuropathologica (Berl), 82, 239259.CrossRefGoogle ScholarPubMed
Braak, H., Braak, E. (1996a). Development of Alzheimer-related neurofibrillary changes in the neocortex inversely recapitulates cortical myelogenesis. Acta Neuropathologica (Berl), 92, 197201.CrossRefGoogle ScholarPubMed
Braak, H., Braak, E. (1996b). Evolution of the neuropathology of Alzheimer's disease. Acta Neurologica Scandinavica Supplementary, 165, 312.CrossRefGoogle ScholarPubMed
Chen, P.J., Ratcliff, G., Belle, S.H., Cauley, J.A., DeKosky, S.T., Ganguli, M. (2001). Patterns of cognitive decline in presymptomatic Alzheimer disease: A prospective community study. Archives of General Psychiatry, 58(9), 853858.CrossRefGoogle ScholarPubMed
Chiu, H.F., Lee, H.C., Chung, W.S., Kwong, P.K. (1994). Reliability and validity of the Cantonese version of the Mini-Mental State Examination — a preliminary study. Journal of Hong Kong College of Psychiatrists, 2(5), 2528.Google Scholar
Chu, L.W., Chiu, K.C., Hui, S.L., Yu, G.K., Tsui, W.J., Lee, P.W. (2000). The reliability and validity of the Alzheimer's Disease Assessment Scale Cognitive Subscale (ADAS-Cog) among the elderly Chinese in Hong Kong. Annals Academy of Medicine Singapore, 29(4), 474485.Google ScholarPubMed
Communiqué of the National Bureau of Statistics of People's Republic of China on Major Figures of the 2010 Population Census (No. 1) (2011, April 28). National Bureau of Statistics of China. Retrieved from http://www.stats.gov.cn/english/newsandcomingevents/t20110428_402722244.htmGoogle Scholar
Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C. Jr., Rimmler, J.B. (1995). Apolipoprotein E, survival in Alzheimer's disease patients, and the competing risks of death and Alzheimer's disease. Neurology, 45, 13231328.CrossRefGoogle ScholarPubMed
Dickerson, B.C., Sperling, R.A., Hyman, B.T., Albert, M.S., Blacker, D. (2007). Clinical prediction of Alzheimer disease dementia across the spectrum of mild cognitive impairment. Archives of General Psychiatry, 64(12), 14431450.CrossRefGoogle ScholarPubMed
Donix, M., Ercoli, L.M., Siddarth, P., Brown, J.A., Martin-Harris, L., Burggren, A.C., Bookheimer, S.Y. (2012). Influence of Alzheimer disease family history and genetic risk on cognitive performance in healthy middle-aged and older people. The American Journal of Geriatric Psychiatry, 20(7), 565573.CrossRefGoogle ScholarPubMed
Farrer, L.A., Cupples, L.A., Haines, J.L., Hyman, B., Kukull, W.A., Mayeux, R. (1997). Effects of age, sex, and ethnicity on the association between apolipoprotein E genotype and Alzheimer disease. A meta-analysis. APOE and Alzheimer Disease Meta Analysis Consortium. Journal of the American Medical Association, 278(16), 13491356.CrossRefGoogle ScholarPubMed
Fine, E.M., Delis, D.C., Wetter, S.R., Jacobson, M.W., Jak, A.J., McDonald, C.R., Bondi, M.W. (2008). Cognitive discrepancies versus APOE genotype as predictors of cognitive decline in normal-functioning elderly individuals: A longitudinal study. American Journal of Geriatric Psychiatry, 16(5), 366374.CrossRefGoogle ScholarPubMed
Folstein, M.F., Folstein, S.E., McHugh, P.R., “Mini-mental state”. (1975). A practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research, 12(3), 189198.CrossRefGoogle ScholarPubMed
Gatz, M., Pedersen, N.L., Berg, S., Johansson, B., Johansson, K., Mortimer, J.A., Ahlbom, A. (1997). Heritability for Alzheimer's disease: The study of dementia in Swedish twins. Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52(2), M117M125.CrossRefGoogle Scholar
Gatz, M., Reynolds, C.A., Fratiglioni, L., Johansson, B., Mortimer, J.A., Berg, S., Pedersen, N.L. (2006). Role of genes and environments for explaining Alzheimer disease. Archives of General Psychiatry, 63(2), 168174.CrossRefGoogle ScholarPubMed
Gladsjo, J.A., Schuman, C.C., Evans, J.D., Peary, G.M., Miller, S.W., Heaton, R.K. (1999). Norms for letter and category fluency: Demographic corrections for age, education, and ethnicity. Assessment, 6(2), 147178.CrossRefGoogle ScholarPubMed
Green, R.C., Cupples, L.A., Go, R., Benke, K.S., Edeki, T., Griffith, P.A., … MIRAGE Study Group. (2002). Risk of dementia among white and African American relatives of patients with Alzheimer disease. Journal of the American Medical Association, 287(3), 329336.CrossRefGoogle ScholarPubMed
Goate, A., Chartier-Harlin, M.C., Mullan, M., Brown, J., Crawford, F., Fidani, L., James, L. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer's disease. Nature, 349(6311), 704706.CrossRefGoogle ScholarPubMed
Huang, W., Qiu, C., von Strauss, E., Winblad, B., Fratiglioni, L. (2004). APOE genotype, family history of dementia, and Alzheimer disease risk: A 6-year follow-up study. Archives of Neurology, 61(12), 19301934.CrossRefGoogle Scholar
Hughes, C.P., Berg, L., Danziger, W.L., Coben, L.A., Martin, R.L. (1982). A new clinical scale for the staging of dementia. British Journal of Psychiatry, 140, 566572.CrossRefGoogle ScholarPubMed
Jack, C.R. Jr., Petersen, R.C., Xu, Y., O'Brien, P.C., Smith, G.E., Ivnik, R.J., Kokmen, E. (2000). Rates of hip-pocampal atrophy correlate with change in clinical status in aging and AD. Neurology, 55(4), 484489.CrossRefGoogle Scholar
Johnson, D.K., Storandt, M., Morris, J.C., Galvin, J.E. (2009). Longitudinal study of the transition from healthy aging to Alzheimer disease. Archives of Neurology, 66(10), 12541259.CrossRefGoogle ScholarPubMed
Johnson, S.C., Schmitz, T.W., Trivedi, M.A., Ries, M.L., Torgerson, B.M., Carlsson, C.M., Sager, M.A. (2006). The influence of Alzheimer disease family history and apolipoprotein E epsilon4 on mesial temporal lobe activation. Journal of Neuroscience, 26(22), 60696076.CrossRefGoogle ScholarPubMed
Kawas, C.H., Corrada, M.M., Brookmeyer, R., Morrison, A., Resnick, S.M., Zonderman, A.B., Arenberg, D. (2003). Visual memory predicts Alzheimer's disease more than a decade before diagnosis. Neurology, 60(7), 10891093.CrossRefGoogle ScholarPubMed
Lange, K.L., Bondi, M.W., Galasko, D.G., Delis, D.C., Salmon, D.P., Thal, L.J. (2002). Decline in verbal memory during preclinical Alzheimer's disease: Examination of the effect of Apolipoprotein E genotype. Journal of the International Neuropsychological Society, 8(7), 943955.CrossRefGoogle Scholar
Lee, J.H., Cheng, R., Graff-Radford, N., Foroud, T., Mayeux, R., & National Institute on Aging Late-Onset Alzheimer's Disease Family Study Group. (2008). Analyses of the National Institute on Aging Late-Onset Alzheimer's Disease Family Study: Implication of additional loci. Archives of Neurology, 65(11), 15181526.CrossRefGoogle ScholarPubMed
Levy-Lahad, E., Wasco, W., Poorkaj, P., Romano, D.M., Oshima, J., Pettingell, W.H., Wang, K. (1995). Candidate gene for the chromosome 1 familial Alzheimer's; disease locus. Science, 269(5266), 973977.CrossRefGoogle ScholarPubMed
Lindeboom, J., Weinstein, H. (2004). Neuropsychology of cognitive ageing, minimal cognitive impairment, Alzheimer's disease, a vascular cognitive impairment. European Journal of Pharmacology, 490(1–3), 8386.CrossRefGoogle ScholarPubMed
Marshall, G.A., Rentz, D.M., Frey, M.T., Locascio, J.J., Johnson, K.A., Sperling, R.A. (2011). Executive function and instrumental activities of daily living in mild cognitive impairment and Alzheimer's disease. Alzheimer's Disease Neuroimaging Initiative. Alzheimers & Dementia, 7(3), 300308.CrossRefGoogle Scholar
McKhann, G., Drachman, D., Folstein, M., Katzman, R., Price, D., Stadlan, E.M. (1984). Clinical diagnosis of Alzheimer's disease: Report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer's Disease. Neurology, 34(7), 939944.CrossRefGoogle ScholarPubMed
Morris, J.C., Heyman, A., Mohs, R.C., Hughes, J.P., van Belle, G., Fillenbaum, G., Clark, C. (1989). The Consortium to Establish a Registry for Alzheimer's Disease (CERAD). Part I. Clinical and neuropsychological assessment of Alzheimer's disease. Neurology, 39(9), 11591165.Google Scholar
Nair, A.K., Gavett, B.E., Damman, M., Dekker, W., Green, R.C., Mandel, A., Stern, R.A. (2010). Clock drawing test ratings by dementia specialists: Interrater reliability and diagnostic accuracy. The Journal of Neuropsychiatry and Clinical Neuroscience, 22(1), 8592.CrossRefGoogle ScholarPubMed
Perrin, R.J., Fagan, A.M., Holtzman, D.M. (2009). Multimodal techniques for diagnosis and prognosis of Alzheimer's disease. Nature, 461(7266), 916922.CrossRefGoogle ScholarPubMed
Quental, N.B.M., Brucki, S.M.D., Bueno, O.F.A. (2009). Visuospatial function in early Alzheimer's disease. Dementia & Neuropsychologia, 3(3), 234240.CrossRefGoogle ScholarPubMed
Reitz, C., Brayne, C., Mayeux, R. (2011). Epidemiology of Alzheimer disease. Nature Review Neurology, 7(3), 137152.CrossRefGoogle ScholarPubMed
Salmon, D.P., Bondi, M.W. (2009). Neuropsychological assessment of dementia. Annual Review of Psychology, 60, 257282.CrossRefGoogle ScholarPubMed
Saunders, A.M. (2000). Apolipoprotein E and Alzheimer disease: An update on genetic and functional analyses. Journal of Neuropathology Experimental Neurology, 59(9), 751758.CrossRefGoogle ScholarPubMed
Sherrington, R., Rogaev, E.I., Liang, Y., Rogaeva, E.A., Levesque, G., Ikeda, M., St George-Hyslop, P.H. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer's disease. Nature, 375(6534), 754760.CrossRefGoogle ScholarPubMed
Small, B.J., Fratiglioni, L., Viitanen, M., Winblad, B., Backman, L. (2000). The course of cognitive impairment in preclinical Alzheimer disease: Three- and 6-year follow-up of a population-based sample. Archives of Neurology, 57(6), 839844.CrossRefGoogle ScholarPubMed
Small, G.W., Siddarth, P., Burggren, A.C., Kepe, V., Ercoli, L.M., Miller, K.J., Barrio, J.R. (2009). Influence of cognitive status, age, and APOE-4 genetic risk on brain FDDNP positron-emission tomography imaging in persons without dementia. Archives of General Psychiatry, 66(1), 8187.CrossRefGoogle ScholarPubMed
Sosa-Ortiz, A.L., Acosta-Castillo, I., Prince, M.J. (2012). Epidemiology of dementias and Alzheimer's disease. Archives of Medical Research, 43(8), 600608.CrossRefGoogle ScholarPubMed
Sperling, R.A., Laviolette, P.S., O'Keefe, K., O'Brien, J., Rentz, D.M., Pihlajamaki, M., Johnson, K.A. (2009). Amyloid deposition is associated with impaired default network function in older persons without dementia. Neuron, 63(2), 178188.CrossRefGoogle ScholarPubMed
St. George-Hyslop, P.H., Petit, A. (2005). Molecular biology and genetics of Alzheimer's disease. Comptes Rendus Biologies, 328(2), 119130.CrossRefGoogle ScholarPubMed
Storandt, M. (2008). Cognitive deficits in the early stages of Alzheimer's disease. Current Directions in Psychological Science, 17(3), 198202.CrossRefGoogle Scholar
Sweet, R.A., Bennett, D.A., Graff-Radford, N.R., Mayeux, R., National Institute on Aging Late-Onset Alzheimer's Disease Family Study Group. (2010). Assessment and familial aggregation of psychosis in Alzheimer's disease from the National Institute on Aging Late Onset Alzheimer's Disease Family Study. Brain, 133(Pt4), 11551162.CrossRefGoogle ScholarPubMed
Trivedi, M.A., Schmitz, T.W., Ries, M.L., Torgerson, B.M., Sager, M.A., Hermann, B.P., Johnson, S.C. (2006). Reduced hippocampal activation during episodic encoding in middle-aged individuals at genetic risk of Alzheimer's disease: A cross-sectional study. BMC Medicine, 4, 114.CrossRefGoogle ScholarPubMed
Tsai, R.C., Lin, K.N., Wang, H.J., Liu, H.C. (2007). Evaluating the uses of the total score and the domain scores in the cognitive abilities screening instrument, Chinese version (CASI C-2.0): Results of confirmatory factor analysis. International Psychogeriatrics, 19(6), 10511063.CrossRefGoogle ScholarPubMed
Wechsler, D. (1987). Wechsler memory scale-revised manual. San Antonio: Psychological Corporation.Google Scholar
Weintraub, S., Wicklund, H.A., Salmon, D.P. (2012). The Neuropsychological profile of Alzheimer disease. Cold Spring Harbor Perspectives in Medicine, 2(a006171), 118.CrossRefGoogle ScholarPubMed
Welsh, K.A., Butters, N., Hughes, J., Mohs, R.C., Heyman, A. (1991). Detection of abnormal memory decline in mild cases of Alzheimer's disease using CERAD neuropsychological measures. Archives of Neurology, 48(3), 278281.CrossRefGoogle ScholarPubMed
Welsh, K.A., Butters, N., Hughes, J.P., Mohs, R.C., Heyman, A. (1992). Detection and staging of dementia in Alzheimer's disease. Use of the neuropsychological measures developed for the Consortium to Establish a Registry for Alzheimer's Disease. Archives of Neurology, 49(5), 448452.CrossRefGoogle ScholarPubMed
Welsh, K.A., Butters, N., Mohs, R.C., Beekly, D., Edland, S., Fillenbaum, G., Heyman, A. (1994). The Consortium to Establish a Registry for Alzheimer's Disease (CERAD).V. A normative study of the neuropsychological battery. Neurology, 44(4), 609614.CrossRefGoogle Scholar
Werheid, K., Hoppe, C., Thone, A., Muller, U., Mungersdorf, M., von Cramon, D.Y. (2002). The Adaptive Digit Ordering Test: Clinical application, reliability, and validity of a verbal working memory test. Archives of Clinical Neuropsychology, 17(6), 547565.CrossRefGoogle ScholarPubMed
Wilson, R.S., Barral, S., Lee, J.H., Leurgans, S.E., Foroud, T.M., Sweet, R.A., Bennett, D.A. (2011). Heritability of different forms of memory in the Late Onset Alzheimer's Disease Family Study. Journal of Alzheimer's Disease, 23(2), 249255.CrossRefGoogle ScholarPubMed
Wilson, R.S., Bennett, D.A. (2005). Assessment of cognitive decline in old age with brief tests amenable to telephone administration. Neuroepidemiology, 25(1), 1925.CrossRefGoogle ScholarPubMed
Wilson, R.S., Leurgans, S.E., Foroud, T.M., Sweet, R.A., Graff-Radford, N., Mayeux, R., Bennett, D.A., National Institute on Aging Late-Onset Alzheimer's Disease Family Study Group. (2010). Assessment of cognitive function in the Late Onset Alzheimer's Disease Family Study. Archives of Neurology, 67(7), 855861.CrossRefGoogle ScholarPubMed
Xu, G., McLaren, D.G., Ries, M.L., Fitzgerald, M.E., Bendlin, B.B., Rowley, H.A., Johnson, S.C. (2009). The influence of parental history of Alzheimer's disease and apolipoprotein E epsilon4 on the BOLD signal during recognition memory. Brain, 132(Pt 2), 383391.CrossRefGoogle ScholarPubMed