Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T18:12:23.713Z Has data issue: false hasContentIssue false

Correlates of memory function in community-dwelling elderly: The importance of white matter hyperintensities

Published online by Cambridge University Press:  01 May 2004

CHRISTOPHER I. PETKOV
Affiliation:
Center for Neuroscience, University of California at Davis, Davis, California
CHRISTINE C. WU
Affiliation:
Center for Neuroscience, University of California at Davis, Davis, California Department of Neurology, University of California at Davis, Davis, California
JAMIE L. EBERLING
Affiliation:
Center for Neuroscience, University of California at Davis, Davis, California Department of Neurology, University of California at Davis, Davis, California
DAN MUNGAS
Affiliation:
Department of Neurology, University of California at Davis, Davis, California
PATRICIA A. ZRELAK
Affiliation:
Department of Epidemiology, University of California at Davis, Davis, California
ANDREW P. YONELINAS
Affiliation:
Center for Neuroscience, University of California at Davis, Davis, California Department of Psychology, University of California at Davis, Davis, California
MARY N. HAAN
Affiliation:
Department of Epidemiology, University of Michigan, Ann Arbor, Michigan
WILLIAM J. JAGUST
Affiliation:
Center for Neuroscience, University of California at Davis, Davis, California Department of Neurology, University of California at Davis, Davis, California William J. Jagust is currently at the University of California, Berkeley

Abstract

We sought to identify magnetic resonance- (MR)-imaged structures associated with declarative memory in a community-dwelling sample of elderly Mexican–American individuals with a spectrum of cognitive decline. Measured structures were the hemispheric volumes of the hippocampus (HC), parahippocampal gyrus, and remaining temporal lobes, as well as severity of white matter signal hyperintensities (WMH). Participants were an imaged subsample from the Sacramento Area Latino Study of Aging (SALSA), N = 122. Individuals were categorized as normal, memory impaired (MI), cognitively impaired non-demented (CIND), or demented. We show that WMH was the strongest structural predictor for performance on a delayed free-recall task (episodic memory) in the entire sample. The association of WMH with delayed recall was most prominent in elderly normals and mildly cognitively impaired individuals with no dementia or impairment of daily function. However, the left HC was associated with verbal delayed recall only in people with dementia. The right HC volume predicted nonverbal semantic-memory performance. We conclude that WMH are an important pathological substrate that affects certain memory functions in normal individuals and those with mild memory loss and discuss how tasks associated with WMH may rely upon frontal lobe function. (JINS, 2004, 10, 371–381.)

Type
Research Article
Copyright
© 2004 The International Neuropsychological Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Abrahams, S., Morris, R.G., Polkey, C.E., Jarosz, J.M., Cox, T.C.S., Graves, M., & Pickering, A. (1999). Hippocampal involvement in spatial and working memory: A structural MRI analysis of patients with unilateral mesial temporal lobe sclerosis. Brain and Cognition, 41, 3965.CrossRefGoogle Scholar
Aggleton, J.P. & Brown, M.W. (1999). Episodic memory, amnesia, and the hippocampal-anterior thalamic axis. Behavioral and Brain Sciences, 22, 425444.Google Scholar
Amaral, D.G. (1999). Introduction: What is where in the medial temporal lobe? Hippocampus, 9, 16.Google Scholar
Black, S.A., Ray, L.A., & Markides, K.S. (1999). The prevalence and health burden of self-reported diabetes in older Mexican Americans: Findings from the Hispanic established populations for epidemiologic studies of the elderly. American Journal of Public Health, 89, 546552.CrossRefGoogle Scholar
Breteler, M.M., van Swieten, J.C., Bots, M.L., Grobbee, D.E., Claus, J.J., van den Hout, J.H., van Harskamp, F., Tanghe, H.L., de Jong, P.T., van Gijn, J., & Hofman, A. (1994). Cerebral white matter lesions, vascular risk factors, and cognitive function in a population-based study: The Rotterdam Study. Neurology, 44, 12461252.Google Scholar
Chan, D., Fox, N.C., Scahill, R.I., Crum, W.R., Whitwell, J.L., Leschziner, G., Rossor, A.M., Stevens, J.M., Cipolotti, L., & Rossor, M.N. (2001). Patterns of temporal lobe atrophy in semantic dementia and Alzheimer's disease. Annals of Neurology, 49, 433442.CrossRefGoogle Scholar
DeCarli, C., Murphy, D.G., Tranh, M., Grady, C.L., Haxby, J.V., Gillette, J.A., Salerno, J.A., Gonzales-Aviles, A., Horwitz, B., Rapoport, S.I., & Schapiro, M.B. (1995). The effect of white matter hyperintensity volume on brain structure, cognitive performance, and cerebral metabolism of glucose in 51 healthy adults. Neurology, 45, 20772084.CrossRefGoogle Scholar
DeCarli, C., Grady, C.L., Clark, C.M., Katz, D.A., Brady, D.R., Murphy, D.G., Haxby, J.V., Salerno, J.A., Gillette, J.A., Gonzalez-Aviles, A., & Rapoport, S.I. (1996). Comparison of positron emission tomography, cognition, and brain volume in Alzheimer's disease with and without severe abnormalities of white matter. Journal of Neurology, Neurosurgery and Psychiatry, 60, 158167.Google Scholar
de Leeuw, F.E., de Groot, J.C., Achten, E., Oudkerk, M., Ramos, L.M., Heijboer, R., Hofman, A., Jolles, J., van Gijn, J., & Breteler, M.M. (2001). Prevalence of cerebral white matter lesions in elderly people: A population based magnetic resonance imaging study. The Rotterdam Scan Study. Journal of Neurology, Neurosurgery and Psychiatry, 70, 914.Google Scholar
Del-Ser, T., Morales, J.M., Barquero, M.S., Cantón, R., & Bermejo, F. (1997). Application of a Spanish version of the “Informant Questionnaire on Cognitive Decline in the Elderly” in the clinical assessment of dementia. Alzheimer Disease and Associated Disorders, 11, 38.Google Scholar
de Toledo-Morrell, L., Dickerson, B., Sullivan, M.P., Spanovic, C., Wilson, R., & Bennett, D.A. (2000). Hemispheric differences in hippocampal volume predict verbal and spatial memory performance in patients with Alzheimer's disease. Hippocampus, 10, 136142.3.0.CO;2-J>CrossRefGoogle Scholar
Eichenbaum, H.B. (1998). Amnesia, the hippocampus, and episodic memory [editorial]. Hippocampus, 8, 197.Google Scholar
Fein, G., Di Sclafani, V., Tanabe, J., Cardenas, V., Weiner, M.W., Jagust, W.J., Reed, B.R., Norman, D., Schuff, N., Kusdra, L., Greenfield, T., & Chui, H. (2000). Hippocampal and cortical atrophy predict dementia in subcortical ischemic vascular disease. Neurology, 55, 16261635.Google Scholar
Fleischman, D.A. & Gabrieli, J. (1999). Long-term memory in Alzheimer's disease. Current Opinion in Neurobiology, 9, 240244.CrossRefGoogle Scholar
Galton, C.J., Patterson, K., Graham, K., Lambon-Ralph, M.A., Williams, G., Antoun, N., Sahakian, B.J., & Hodges, J.R. (2001). Differing patterns of temporal atrophy in Alzheimer's disease and semantic dementia. Neurology, 57, 216225.Google Scholar
Garde, E., Mortensen, E.L., Krabbe, K., Rostrup, E., & Larsson, H.B. (2000). Relation between age-related decline in intelligence and cerebral white-matter hyperintensities in healthy octogenarians: A longitudinal study. Lancet, 356, 628634.CrossRefGoogle Scholar
Gonzalez, H.M., Mungas, D., Reed, B.R., Marshall, S., & Haan, M.N. (2001a). A new verbal learning and memory test for English- and Spanish-speaking older people. Journal of the International Neuropsychological Society, 7, 544555.Google Scholar
Gonzalez, H.M., Haan, M.N., & Hinton, L. (2001b). Acculturation and the prevalence of depression in older Mexican Americans: Baseline results of the Sacramento Area Latino Study on Aging. Journal of the American Geriatric Society, 49, 948953.Google Scholar
Gunning-Dixon, F.M. & Raz, N. (2000). The cognitive correlates of white matter abnormalities in normal aging: A quantitative review. Neuropsychology, 14, 224232.CrossRefGoogle Scholar
Honeycutt, N.A., Smith, P.D., Aylward, E., Li, Q., Chan, M., Barta, P.E., & Pearlson, G.D. (1998). Mesial temporal lobe measurements on magnetic resonance imaging scans. Psychiatry Research, 83, 8594.Google Scholar
Insausti, R., Tuñón, T., Sobreviela, T., Insausti, A.M., & Gonzalo, L.M. (1995). The human entorhinal cortex: A cytoarchitectonic analysis. Journal of Comparative Neurology, 355, 171198.Google Scholar
Insausti, R., Juottonen, K., Soininen, H., Insausti, A.M., Partanen, K., Vainio, P., Laakso, M.P., & Pitkänen, A. (1998). MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. American Journal of Neuroradiology, 19, 659671.Google Scholar
Jack, C.R., Jr., Petersen, R.C., Xu, Y.C., O'Brien, P.C., Smith, G.E., Ivnik, R.J., Boeve, B.F., Waring, S.C., Tangalos, E.G., & Kokmen, E. (1999). Prediction of AD with MRI-based hippocampal volume in mild cognitive impairment. Neurology, 52, 13971403.Google Scholar
Jorm, A.F. & Korten, A.E. (1988). Assessment of cognitive decline in the elderly by informant interview. British Journal of Psychiatry, 152, 209213.Google Scholar
Juottonen, K., Laakso, M.P., Partanen, K., & Soininen, H. (1999). Comparative MR analysis of the entorhinal cortex and hippocampus in diagnosing Alzheimer disease. American Journal of Neuroradiology, 20, 139144.Google Scholar
Klein, G.J., Teng, X., Jagust, W.J., Eberling, J.L., Acharya, A., Reutter, B.W., & Huesman, R.H. (1997). A methodology for specifying PET VOI's using multimodality techniques. IEEE Transactions on Medical Imaging, 16, 405415.Google Scholar
Köhler, S., Black, S.E., Sinden, M., Szekely, C., Kidron, D., Parker, J.L., Foster, J.K., Moscovitch, M., Winocour, G., Szalai, J.P., Bronskill, M.J., & Wincour, G. (1998). Memory impairments associated with hippocampal versus parahippocampal-gyrus atrophy: An MR volumetry study in Alzheimer's disease. Neuropsychologia, 36, 901914.Google Scholar
Kozachuk, W.E., DeCarli, C., Schapiro, M.B., Wagner, E.E., Rapoport, S.I., & Horwitz, B. (1990). White matter hyperintensities in dementia of Alzheimer's type and in healthy subjects without cerebrovascular risk factors. A magnetic resonance imaging study. Archives of Neurology, 47, 13061310.Google Scholar
Libon, D.J., Bogdanoff, B., Cloud, B.S., Skalina, S., Giovannetti, T., Gitlin, H.L., & Bonavita, J. (1998). Declarative and procedural learning, quantitative measures of hippocampus, and subcortical white alterations in Alzheimer's disease and ischaemic vascular dementia. Journal of Clinical and Experimental Neuropsychology, 20, 3041.Google Scholar
Longstreth, W.T., Jr., Manolio, T.A., Arnold, A., Burke, G.L., Bryan, N., Jungreis, C.A., Enright, P.L., O'Leary, D., & Fried, L. (1996). Clinical correlates of white matter findings on cranial magnetic resonance imaging of 3301 elderly people. The Cardiovascular Health Study. Stroke, 27, 12741282.Google Scholar
Mishkin, M., Vargha-Khadem, F., & Gadian, D.G. (1998). Amnesia and the organization of the hippocampal system. Hippocampus, 8, 212216.3.0.CO;2-L>CrossRefGoogle Scholar
Mungas, D., Reed, B.R., Marshall, S.C., & Gonzalez, H.M. (2000). Development of psychometrically matched English and Spanish language neuropsychological tests for older persons. Neuropsychology, 14, 209223.Google Scholar
Nolde, S.F., Johnson, M.K., & Raye, C.L. (1998). The role of prefrontal cortex during tests of episodic memory. Trends in Cognitive Sciences, 2, 399406.CrossRefGoogle Scholar
O'Brien, J.T., Desmond, P., Ames, D., Schweitzer, I., & Tress, B. (1997). Magnetic resonance imaging correlates of memory impairment in the healthy elderly: Association with medial temporal lobe atrophy but not white matter lesions. International Journal of Geriatric Psychiatry, 12, 369374.Google Scholar
Petersen, R.C., Jack, C.R., Jr., Xu, Y.C., Waring, S.C., O'Brien, P.C., Smith, G.E., Ivnik, R.J., Tangalos, E.G., Boeve, B.F., & Kokmen, E. (2000). Memory and MRI-based hippocampal volumes in aging and AD. Neurology, 54, 581587.Google Scholar
Reed, B.R., Eberling, J.L., Mungas, D., Weiner, M.W., & Jagust, W.J. (2000). Memory failure has different mechanism in subcortical stroke and Alzheimer's disease. Annals of Neurology, 48, 275284.Google Scholar
Shrout, P.E. & Fleiss, J.L. (1979). Intraclass correlations: Uses in assessing rater reliability. Psychological Bulletin, 86, 420428.Google Scholar
Simons, J.S., Graham, K.S., Galton, C.J., Patterson, K., & Hodges, J.R. (2001). Semantic knowledge and episodic memory for faces in semantic dementia. Neuropsychology, 15, 101114.Google Scholar
Skoog, I. (1998). Status of risk factors for vascular dementia. Neuroepidemiology, 17, 29.CrossRefGoogle Scholar
Squire, L.R. & Zola, S.M. (1998). Episodic memory, semantic memory, and amnesia. Hippocampus, 8, 205211.Google Scholar
Swan, G.E., DeCarli, C., Miller, B.L., Reed, T., Wolf, P.A., Jack, L.M., & Carmelli, D. (1998). Association of midlife blood pressure to late-life cognitive decline and brain morphology. Neurology, 51, 986993.Google Scholar
Swan, G.E., DeCarli, C., Miller, B.L., Reed, T., Wolf, P.A., & Carmelli, D. (2000). Biobehavioral characteristics of nondemented older adults with subclinical brain atrophy. Neurology, 54, 21082114.CrossRefGoogle Scholar
Teng, E.L. & Chui, H.C. (1987). The Modified Mini-Mental State (3MS) examination. Journal of Clinical Psychiatry, 48, 314318.Google Scholar
Vargha-Khadem, F., Gadian, D.G., Watkins, K.E., Connelly, A., Van Paesschen, W., & Mishkin, M. (1997). Differential effects of early hippocampal pathology on episodic and semantic memory. Science, 277, 376380.Google Scholar
Visser, P.J., Scheltens, P., Verhey, F.R., Schmand, B., Launer, L.J., Jolles, J., & Jonker, C. (1999). Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. Journal of Neurology, 246, 477485.CrossRefGoogle Scholar
Wilson, R.S., Sullivan, M., deToledo-Morrell, L., Stebbins, G.T., & Bennett, D.A. (1996). Association of memory and cognition in Alzheimer's disease with volumetric estimates of temporal lobe structures. Neuropsychology, 10, 459463.CrossRefGoogle Scholar
Wu, C.C., Mungas, D., Petkov, C.I., Eberling, J.L., Zrelak, P.A., Buonocore, M.H., Brunberg, J.A., Haan, M.N., & Jagust, W.J. (2002). Brain structure and cognition in a community sample of elderly Latinos. Neurology, 59, 383391.CrossRefGoogle Scholar
Xu, Y., Jack, C.R., Jr., O'Brien, P.C., Kokmen, E., Smith, G.E., Ivnik, R.J., Boeve, B.F., Tangalos, R.G., & Petersen, R.C. (2000). Usefulness of MRI measures of entorhinal cortex versus hippocampus in AD. Neurology, 54, 17601767.CrossRefGoogle Scholar
Ylikoski, R., Ylikoski, A., Erkinjuntti, T., & Sulkava, R. (1993). White matter changes in healthy elderly persons correlate with attention and speed of mental processing. Archives of Neurology, 50, 818824.Google Scholar